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Université Paris-Saclay, CentraleSupélec, Inria, CVN, Gif-sur-Yvette, 91190, France

ABSTRACT
Modern 3D image recovery problems require powerful optimization
frameworks to handle high dimensionality while providing reliable
numerical solutions in a reasonable time. In this perspective, asyn-
chronous parallel optimization algorithms have received an increas-
ing attention by overcoming memory limitation issues and commu-
nication bottlenecks. In this work, we propose a block distributed
Majorize-Minorize Memory Gradient (BD3MG) optimization algo-
rithm for solving large scale non-convex differentiable optimization
problems. Assuming a distributed memory environment, the algo-
rithm casts the efficient 3MG scheme [1] into smaller dimension
subproblems where blocks of variables are addressed in an asyn-
chronous manner. Convergence of the sequence built by the pro-
posed BD3MG method is established under mild assumptions. Ap-
plication to the restoration of 3D images degraded by a depth-variant
blur shows that our method yields significant computational time re-
duction compared to several synchronous and asynchronous com-
petitors, while exhibiting great scalability potential.

Index Terms— Majorization-Minimization ; Block-alternating
optimization ; Distributed scheme ; Asynchronous communication ;
Image deblurring ; Depth-varying blur.

1. INTRODUCTION

Constantly improving image acquisition devices, from microscopes
to medical imaging machines, impose to work with increasingly
large data. From the mathematical perspective, many problems of
image processing require to solve

minimizex∈RN f(x) (1)

with f : RN 7→ R a differentiable objective function. To limit the
dependence of the optimization process on the dimension N of the
problem, block alternating algorithms have been developed. In these
schemes, at each iteration only a subset of the variables are updated,
by minimizing f with respect to only those variables, the others be-
ing fixed. The blocks are selected iteratively following a cyclic (or
quasi-cyclic) order or a random rule. For a majority of problems en-
countered in image restoration, the minimization of f with respect
to a given block of variables is usually not possible in a closed form.
Furthermore, the application of such basic block coordinate descent
update is usually non desirable, as it may lead to convergence is-
sues [2]. Better performance and stability are obtained when com-
bining the block alternating approach with a so-called majoration-
minimization (MM) scheme [3]. It consists in building, at each it-
eration, a majorizing approximation for f within the active block of
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variables, whose minimizer has a more tractable form. Many power-
ful algorithms fall within this framework, such as BSUM [4], PALM
[5], NMF [6], to name a few. By relying more closely on the struc-
ture of the objective function, block alternating MM methods can
reach fast convergence rate [7, 8] while offering theoretical guaran-
tees in non-convex cases [5, 9].

When the problem size becomes increasingly large, running
such algorithm becomes difficult, due to memory limitation issues.
Parallel implementations of MM schemes have been devised, where
the block updates are performed simultaneously, allowing to dis-
tribute computations on different nodes (or machines) [10, 11, 12].
Implementation on parallel architecture requires to pay attention to
communication cost. The latter can be reduced by resorting to an
asynchronous parallel implementation. Each computation node has
its own iteration loop, so that it can keep updating its local variables
without having to wait for the update of the other, distant variables.
This raises challenging questions, in terms of convergence analysis,
as the communication delays may introduce instabilities. A plethora
of recent works have focused on proposing distributed optimization
algorithms with assessed convergence, based on stochastic proximal
primal [13, 14] or primal-dual [15, 16, 17, 18, 19, 20] techniques.
However, as they rely on the formulation of dual instances of a
stochastic coordinate descent strategy, those algorithms are limited
to convex (sometimes even strongly convex) optimization and often
require specific probabilistic assumptions on the block update rule
difficult to meet in practice. In the context of MM algorithms, al-
though the need for distributed implementation strategies is crucial
(see the discussion in [4]), few results are available so far regarding
theoretical convergence guarantees. For example, we can men-
tion the work of [21, 22], that proposes an asynchronous version
of PALM, with proven convergence in non-convex case, and good
practical behaviour [23].

In this paper, we focus on the MM Memory Gradient (3MG)
method [1]. This algorithm integrates a subspace acceleration strat-
egy in the MM framework, leading to one of the most efficient strate-
gies for smooth optimization at large scales [24]. Here, we pro-
pose to set forth an asynchronous distributed version of this algo-
rithm, called Block Distributed 3MG (BD3MG). The latter allows to
account efficiently for implementation on parallel architecture with
communication delays. By relying on the theoretical framework in-
troduced in [22], we derive convergence guarantees for BD3MG in
the challenging non-convex setting, under mild assumptions on the
block update rule. We illustrate its performance on the problem of
3D image restoration in the presence of depth-variant blur. The rest
of the paper is organized as follows. In Section 2, we introduce our
algorithm, analyse its principle features and state its convergence
properties. Section 3 focuses on its application to 3D image deblur-
ring. We conclude in Section 4.



2. PROPOSED METHOD

2.1. Notations

We consider the Hilbert space RN endowed with the usual scalar
product and norm (〈·, ·〉, ‖ · ‖). Let a subset S ⊂ [[1, N ]] of cardi-
nality |S|. We denote x(S) = (xi)i∈S ∈ R|S| the restriction of x
to the coordinates in S. In the same fashion, ∇(S)f(x) ∈ R|S| de-
notes the gradient of f , evaluated at x along the components indexed
in S. Finally, for a matrix A ∈ RN×N , we define the submatrix
A(S) =

(
[A]p,p

)
p∈S ∈ R|S|×|S|.

2.2. Block quadratic majorant function

Our approach relies on the use of block quadratic majorant functions
which constitute quadratic surrogates functions for the restriction of
f to any set of coordinates S ⊂ [[1, N ]]. Let x̃ ∈ RN . Let us define :

∀ v ∈ R|S|, Q(S)(v, x̃) = f(x̃) + 〈∇(S)f(x̃), v − x̃(S)〉

+
1

2
〈v − x̃(S),A(S)(x̃)(v − x̃(S))〉. (2)

Matrix A(S)(x̃) ∈ R|S|×|S| hereabove is a symmetric definite pos-
itive matrix whose expression depends on x̃. Following the MM
paradigm [3], it should be chosen so as to fulfill:

∀v ∈ R|S|, Q(S)(v, x̃) ≥ f(S)(v; x̃), (3)

where v 7→ f(S)(v; x̃) denotes the restriction of function f to co-
ordinates in S, the other coordinates being fixed to those in vector
x̃. The existence and construction for such majorant matrices, not
discussed here due to the lack of space, is addressed for instance in
[11, 9, 24].

2.3. Block distributed MM memory gradient algorithm

We are now ready to present our BD3MG algorithm, assuming a
memory-distributed star cluster of C computing agents with a Mas-
ter node connected to all other agents. The Master loop starts at
x0 ∈ RN and generates the sequence of iterates (xk)k∈N, that is in-
cremented whenever a worker c ∈ [[1, C]] updates a subset of coordi-
nates of the global variable. The main particularity of our algorithm
is that the updates can occur in an asynchronous fashion, thus reduc-
ing considerably idle time. We denote Skc ⊂ [[1, N ]] the processing
set of each worker c at times k, and Sk =

⋃
1≤c≤C(Skc ) the total set

of active blocks at that time. The subset associated to any worker is
allowed to change from one iteration to an other. We only impose
that there is no overlap in the coordinates updated by the workers at
a given time:

(∀k ∈ N)
⋂

c∈{1,...,C}

Skc = ∅. (4)

At iteration k ∈ N, the Master receives an updated increment d(Sk
c )

from a given worker c ∈ [[1, C]]. The later is used to increment the
corresponding indexes Skc within the global variable xk−1, while
the others remain untouched, which defines xk. The Master then
decides for the new set of indexes Sk+1

c to be treated by worker
c. He informs worker c of his new task, and send him the triplet1

(xk,Sk+1
c , (xk − xk−1))

(Sk+1
c )

.

1Note that communication cost can be reduced, when function f reads as
composition of terms with sparse operators. See our discussion in [11] for an
example.

From the viewpoint of the workers, for each new triplet (S, x, d(S))
sent by the Master, a 3MG iterate is performed. The later corre-
sponds to the minimization of the block quadratic majorant function
(2), within the memory gradient subspace spanned by the two
columns of D(S)(x) = [−∇(S)f(x) | d(S)] ∈ R|S|×2. This
amounts to find û, a minimizer of u → Q(S)(x + D(S)(x)u, x),
which can be obtained through:

û = (D>(S)(x)A(S)(x)D(S)(x))†D(S)(x)∇(S)f(x), (5)

with ·† the Moore-Penrose pseudo-inverse operator. The upcoming
tables summarize our BD3MG algorithm, that consists of two parts,
one to be executed by a ’Master’ computing node that receives up-
dates and sends tasks, a second one to be executed by all other com-
puting nodes.

Block Distributed 3MG (Master)

Initialization :

Set k = 0, x0 ∈ RN .
For all c ∈ [[1, C]], set S0

c ⊂ [[1, N ]] s.t.
⋂

c∈[[1,C]]

S0
c = ∅,

and send (x0,S0
c , 0|S0

c |) to worker c.
Define S0 =

⋃
c∈[[1,C]] S

0
c .

While a stopping criterion is not met:
(0) Wait for any worker to send an update
(1) Receive (d(Sk

c )) from a worker c

(2) Update

x
k+1

(Sk
c )

= xk(Sk
c ) + d(Sk

c )

xk+1

(Sk
c )

= xk
(Sk

c )

(3) Choose Sk+1
c ⊂ [[1, N ]]/(Sk/Skc )

For every c′ ∈ [[1, C]]/{c}, set Sk+1
c′ = Skc′ .

Define Sk+1 = (Sk/Skc ) ∪ Sk+1
c

(4) Send (xk+1,Sk+1
c , (xk+1 − xk)

(Sk+1
c )

) to worker c
(5) Increment k = k + 1

Block Distributed 3MG (Worker)

While the Master stopping criterion is not met:
(1) Receive (x,S, d(S)) from Master
(2) Set D(S)(x) = [−∇(S)f(x) | d(S)]
(3) Compute A(S)(x) and∇(S)f(x)

(4) B(S)(x) = (D(S)(x)A(S)(x)D(S)(x))†

(6) d′(S) = −D(S)(x)B(S)(x)D(S)(x)∇(S)f(x)

(7) Send (d′(S)) to the Master

2.4. Analysis

In contrast with its parallel variant [11], BD3MG does not impose
any locking condition between workers to perform their computa-
tions. Therefore, latency may appear in local variables. A local
coordinate xi used by any worker to perform its update at time k



belongs to a previous element xk
′
i
i of the sequence {xk}k∈N with:

k′i = max{k′ ∈ [[0, k]] | i ∈ Sk′}. We will model this latency at
any iteration k ∈ N by introducing δk,n = k − k′n ∈ [[0, k]] the
delay at a coordinate n ∈ [[1, N ]] and δk = (δk,n)n∈[[1,N ]] the com-
plete vector of delays. For the sake of readability, we will denote
xk,δk = (x

k−δk,n
n )n∈[[1,N ]]. Thanks to the majorizing condition (3),

the sequence (xk)k∈N defined in BD3MG algorithm satisfies, for ev-
ery k ∈ N, for every c ∈ [[1, C]],

f(xk+1) ≤ Q(Sk
c )(x

k+1

(Sk
c )
, xk,δk ) ≤ Q(Sk

c )(x
k,δk
(Sk

c )
, xk,δk ) = f(xk,δk ).

When there is no delay , i.e. δk ≡ 0, we go back to a syn-
chronous algorithm, benefiting from the classical block descent re-
sult inherent to MM schemes:

f(xk+1) ≤ Q(Sk
c )(x

k+1

(Sk
c )
, xk) ≤ Q(Sk

c )(x
k
(Sk

c ), x
k) = f(xk).

2.5. Hypothesis and convergence

We now state our convergence result for the sequence (xk)k∈N re-
sulting from the BD3MG algorithm presented in Section 2.3. We
first introduce the following assumptions.

Assumption 1 Function f is differentiable, bounded from below
and semi-algebraic2. Moreover, f has an L-Lipschitzian gradient
on RN with L > 0, i.e.

∀(x, y) ∈ (RN )2, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (6)

Assumption 2 (Boundedness of delay) Under the convention that
∀ l ∈ N∗, S−l = ∅, there exists τ ∈ N such that

∀k ∈ N, [[1, N ]] ⊂
k⋃

i=k−τ

Si. (7)

Assumption 3 (Curvature of quadratic majorant) Let us denote
(Γkc )k∈N,c∈[[1,C]] the sequence of matrices defined as:

∀k ∈ N, ∀c ∈ [[1, C]], Γkc = A(Sk
c )(x

k,δk )− 1

2
A(Sk

c )(x
k).

There exists (ν, ν) > 0 such that, for every k ∈ N, for every c ∈
[[1, C]],

(L
√
τ + ν)Id|Sk

c | � Γkc � νId|Sk
c |. (8)

Under those assumptions, we state our convergence result for
BD3MG, whose proof, relying on the analysis from [22, 1], is
skipped by lack of space.

Theorem 1 (Convergence of BD3MG) Let f : RN 7→ R, and
x0 ∈ RN . If Assumptions 1-2-3 are verified, then the sequence
(xk)k∈N built by BD3MG algorithm converges globally to a station-
ary point x∗ of f .

It is worthy to point out that, in contrast with most existing works in
the literature of distributed optimization, no convexity assumption is
required in our analysis. The MM framework allows to make use
of the recent theory of non-smooth analysis [25], as we also have
shown in our previous works [9, 1].

2Real semi-algebraic functions represent a wide class of functions that
satisfy the Kurdyka-Lojasiewicz inequality, which is at the core of our con-
vergence study. See [25, 5] for further details.

3. APPLICATION TO 3D IMAGE DEBLURRING

3.1. Model and objective function

We consider the restoration of a 3D microscopic volume x of size
N = NX ×NY ×NZ, given a degraded observation y, altered by a
depth-variant blur operator H and an additive white noise b:

y = Hx+ b. (9)

The associated inverse problem can be solved efficiently by mini-
mizing a least squares penalization penalized by a smooth 3D regu-
larization function. Specifically, f takes the form:

∀x ∈ RN , f(x) =

4∑
s=1

fs(Lsx) (10)

with f1 ◦L1 = 1
2
‖H · −y‖2, f2 ◦L2 = η d2[xmin,xmax]N

, f3 ◦L3 =

λ
∑N
n=1

√(
[V X·]n

)2
+
(
[V Y·]n

)2
+ δ2, and f4 ◦L4 = κ‖V Z · ‖2.

Hereabove, V X ∈ RN×N , V Y ∈ RN×N , V Z ∈ RN×N state
for discrete gradient operators along the three directions of the vol-
ume, xmin (resp xmax) ∈ R are minimal (resp. maximal) bounds
on the sought intensity values and dE is the Euclidian distance to
set E. Function f satisfies Ass. 1 as a combination of squared dis-
tances and discretized total-variation distances. If not specified oth-
erwise, the majorizing matrices for f will be constructed following
the strategy in [1], ensuring the fulfillment of Ass. 3. The convo-
lution operator H simulates a depth-varying 3D Gaussian blur. For
each depth z ∈ {1, . . . , NZ}, the blur kernel is characterized by
different variance and rotation parameters whose values are taken
as random realizations of uniform distributions. The depth-variant
structure of the blur model motivates us to split the vector x along
the dimension Z, assigning computing agents (i.e. workers) to one
(or several) selected slice(s) of the 3D volume. For the sake of sim-
plicity, a sequential ordering is used, for the selection rule of the
processed blocks, hence Ass. 2 is fulfilled. Furthermore, the same
strategy as in [11] is employed to control the memory usage during
communications master/worker. All algorithms are initialized with
x0 ∈ RN whose entries are uniformly sampled in [0,max(y)]. Pa-
rameters λ, η, δ, κ > 0 will be tuned manually, for both presented
examples, so as to maximize the Signal-to-Noise Ratio (SNR) of the
restored volume. Two microscopic images, namely FlyBrain and
Aneurysm will be considered. Example of restoration results are
presented in Fig. 2.

3.2. Ablation study and comparative analysis

In order to measure the performance improvement allowed by
BD3MG, we conducted an “ablation study”, that consists in re-
moving some/all acceleration features of our algorithm, namely
asynchrony, subspace line-search and MM scaling. We then ob-
tain, in addition to BD3MG, four parallel/distributed optimization
algorithms that we detail hereafter. The asynchronous gradient
descent (Async-GD) corresponds to the algorithm from [13], ob-
tained by limiting the subspace to the sole gradient descent direction
D(S)(x) = −∇(S)f(x) and by setting A(S) = L Id|S|, with L
the Lipschitz constant of ∇f . The asynchronous conjugate gra-
dient algorithm (Async-CG) identifies with our BD3MG method
when using the basic MM metric A(S) = L Id|S|. The resulting
algorithm can be viewed as a distributed version of the nonlin-
ear conjugate gradient method, with closed form stepsize from
[26]. The asynchronous MM algorithm (Async-MM) is obtained



by removing the subspace acceleration strategy in BD3MG, so
that d′S = −A(S)(x)−1∇(S)f(x) in the Worker loop. The lat-
ter inversion is performed with linear biconjugate gradient solver.
Async-MM can be interpreted as a distributed implementation of
a half-quadratic algorithm [27]. Finally, block parallel 3MG al-
gorithm (BP3MG) is the method we originally proposed in [11],
where blocks updates are assumed to be computed at the same time
without any communication delay. The names and characteristics of
the resulting five tested methods are summarized in Tab. 1.

Name Asynchrony Memory MM scaling
Async-GD X 7 7

Async-CG X X 7

Async-MM X 7 X
BP3MG 7 X X

BD3MG X X X

Table 1: Algorithmic features of the compared approaches.

Fig. 1: Evolution of SNR in dB (left) and relative distance to solution
‖xk − x∗‖/‖x∗‖ (right) along time (in seconds) for FlyBrain
restoration. Results are averaged over ten noise realizations.

We perform our comparative analysis, using the microscopic im-
age FlyBrain with size N = 256 × 256 × 24. It is degraded by
depth-variant blur kernels of size 11 × 11 × 21, and a zero-mean
white Gaussian noise with standard deviation 0.04. The results are
averaged over ten noise realizations, and the initial signal to noise
ratio is around 11.6 dB. Fig. 1 illustrates the evolution of the SNR
of the restored image along time in seconds, for each method, for
experiments performed using Python 3, running an Intel R© Xeon(R)
W-2135 CPU with 12 cores clocked at 3.70GHz. We also display
the relative distance to the solution x∗, computed after a large num-
ber of iterations (typically, 104), characterized by an average SNR
of 14.33 dB. One can see that the proposed BD3MG method clearly
outperforms the others in terms of time to reach close-to-optimal
solution. Async-MM led to the slowest convergence, as it requires
linear system inversion at each iteration. The superiority of Async-
CG over Async-GD illustrates the benefits for including the mem-
ory term within the subspace. Finally, BD3MG reaches convergence
faster than its synchronous counterpart, BP3MG, probably thanks to
the removal of the locking conditions in the Master loop.

3.3. Linear Speedup

In order to assess the scalability of the BD3MG algorithm, we further
analysed the speed-up of the optimization process when a High Par-
allel Computing computer is being used. Namely, we ran BD3MG
and BP3MG on an Intel Xeon CPU 6148 with up to 80 physical
cores at 2.4 GHz (Skylake) and 1.5 Tio of RAM. Image Aneurysm

Fig. 2: Comparison between original (left), degraded (middle) and
restored (right) slices (z = 10) of FlyBrain and Aneurysm.

with sizeN = 155×154×79 is degraded by blur kernels of size to
5 × 5 × 11, and noise standard deviation of 0.04, so that the initial
SNR is 6.44 dB, while the restored SNR is 11.92 dB. Fig. 3 presents
the acceleration ratio between the required computation time for two
cores (i.e. one Master and one Worker) versus the computation time
when activating from 10 to 80 cores, for reaching the stopping crite-
rion ‖xk+1 − xk‖ ≤ 10−6‖xk‖. This illustrates the great potential
of scalability of the proposed algorithm. Asynchronicity of BD3MG
allows to improve the speed-up, in comparison to the one exhibited
by BP3MG [11]. Finally, as the number of core increases, a mild
saturation effect is observed (in agreement with Amdahl’s law [28]).

Fig. 3: Speed-up ratio for BD3MG (blue) and BP3MG (red), with re-
spect to the number of active cores for the restoration of Aneurysm.

4. CONCLUSION

In this paper, we have presented a new block distributed Majorize-
Minimize Memory Gradient algorithm to tackle a wide class of large
scale optimization problems. The main feature of our method lies
in its distributed asynchronous formulation that allows for delays
among workers, while theoretically maintaining the convergence
guarantees and the practical performance of the powerful 3MG
scheme. The new algorithm has been tested in the context of 3D
image restoration under depth-variant blur. Experimental results un-
derlined its scalability and efficiency3. Future works will be focused
on the extension to more general graph topologies.

3The code of BD3MG for depth-variant image deblurring has been made
available at https://github.com/mathieuchal/BD3MG
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