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Abstract. The grouplike elements of a coalgebra over a field are
known to be linearly independent over said field. Here we prove three
variants of this result. One is a generalization to coalgebras over a com-
mutative ring (in which case the linear independence has to be replaced
by a weaker statement). Another is a stronger statement that holds (un-
der stronger assumptions) in a commutative bialgebra. The last variant
is a linear independence result for characters (as opposed to grouplike
elements) of a bialgebra.
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1. Introduction

A classical result in the theory of coalgebras ([Sweedl69, Proposition 3.2.1 b)],
[Radfor12, Lemma 2.1.12], [Abe80, Theorem 2.1.2 (i)]) says that the grouplike el-
ements of a coalgebra over a field are linearly independent over said field. We
shall prove three variants of this result. The first variant (Theorem 3.1, in Section 3)
generalizes it to coalgebras over an arbitrary commutative ring (at the expense of
obtaining a subtler claim than literal linear independence). The second variant
(Theorem 4.7, in Section 4) gives a stronger independence claim under a stronger
assumption (viz., that the coalgebra is a commutative bialgebra, and that the grou-
plike elements and their pairwise differences are regular). The third variant (Theo-
rem 5.3 (b), in Section 5) is a linear independence statement in the dual algebra of a
bialgebra; namely, it claims that (again under certain conditions) a set of characters
of a bialgebra (i.e., algebra homomorphisms from the bialgebra to the base ring)
are linearly independent not just over the base ring, but over a certain subalgebra
of the dual. We discuss the connection between grouplike elements and characters.
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2. Background

2.1. Notations and generalities

2.1.1. General conventions

We shall study coalgebras and bialgebras. We refer to the literature on Hopf alge-
bras and bialgebras – e.g., [GriRei20, Chapter 1] or [Bourba89, Section III.11] – for
these concepts.1

We let N denote the set {0, 1, 2, . . .}.

1We note that terminology is not entirely standardized across the literature. What we call a “coal-
gebra”, for example, is called a “counital coassociative cogebra” in [Bourba89, Section III.11].
What we call a “bialgebra” is called a “bigebra” in [Bourba89, Section III.11].
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Rings are always associative and have unity (but are not always commutative).
We fix a commutative ring k. All algebras, linear maps and tensor signs that

appear in the following are over k unless specified otherwise. The symbol Hom
shall always stand for k-module homomorphisms.

2.1.2. Algebras, coalgebras, bialgebras

Recall that

• a k-algebra can be defined as a k-module A equipped with a k-linear map µ :
A ⊗ A → A (called multiplication) and a k-linear map η : k → A (called unit
map) satisfying the associativity axiom (which says that µ ◦ (µ ⊗ id) = µ ◦
(id⊗µ)) and the unitality axiom (which says that µ ◦ (η ⊗ id) and µ ◦ (id⊗η)
are the canonical isomorphisms from k ⊗ A and A ⊗ k to A).

• a k-coalgebra is defined as a k-module C equipped with a k-linear map ∆ :
C → C ⊗ C (called comultiplication) and a k-linear map ǫ : C → k (called
counit map) satisfying the coassociativity axiom (which says that (∆ ⊗ id) ◦
∆ = (id⊗∆) ◦ ∆) and the counitality axiom (which says that (ǫ ⊗ id) ◦ ∆ and
(id⊗ǫ) ◦ ∆ are the canonical isomorphisms from C to k ⊗ C and C ⊗ k).

• a k-bialgebra means a k-module B that is simultaneously a k-algebra and a
k-coalgebra, with the property that the comultiplication ∆ and the counit ǫ
are k-algebra homomorphisms (where the k-algebra structure on B ⊗ B is the
standard one, induced by the one on B).

(Note that Lie algebras are not considered to be k-algebras.)
The multiplication and the unit map of a k-algebra A will always be denoted by

µA and ηA. Likewise, the comultiplication and the counit of a k-coalgebra C will
always be denoted by ∆C and ǫC. We will occasionally omit the subscripts when
it is clear what they should be (e.g., we will write ∆ instead of ∆C when it is clear
that the only coalgebra we could possibly be referring to is C).

2.1.3. Convolution and the dual algebra of a coalgebra

If C is a k-coalgebra, and if A is a k-algebra, then the k-module Hom (C, A) itself
becomes a k-algebra using a multiplication operation known as convolution. We
denote it by ⊛, and recall how it is defined: For any two k-linear maps f , g ∈
Hom (C, A), we have

f ⊛ g = µA ◦ ( f ⊗ g) ◦ ∆C : C → A.

The map ηA ◦ ǫC : C → A is a neutral element for this operation ⊛.
(Note that the operation ⊛ is denoted by ⋆ in [GriRei20, Definition 1.4.1].)
If f is a k-linear map from a coalgebra C to an algebra A, and if n ∈ N, then f⊛n

denotes the n-th power of f with respect to convolution (i.e., the n-th power of f in
the algebra (Hom (C, A) ,⊛, ηA ◦ ǫC)).
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If M is any k-module, then the dual k-module Homk (M, k) shall be denoted by
M∨. Thus, if C is a k-coalgebra, then its dual k-module C∨ = Hom (C, k) becomes
a k-algebra via the convolution product ⊛. The unity of this k-algebra C∨ is exactly
the counit ǫ of C.

2.1.4. Grouplike elements

One of the simplest classes of elements in a coalgebra are the grouplike elements:

Definition 2.1. An element g of a k-coalgebra C is said to be grouplike if it satisfies
∆ (g) = g ⊗ g and ǫ (g) = 1.

We reject the alternative definition of “grouplike” (preferred by some authors)
that replaces the “ǫ (g) = 1” condition by the weaker requirement “g 6= 0”; this
definition is equivalent to ours when k is a field, but ill-behaved and useless when
k is merely a commutative ring.

The following examples illustrate the notion of grouplike elements in different
k-bialgebras.

Example 2.2. Let q ∈ k. Consider the polynomial ring k [x] in one variable x over
k. Define two k-algebra homomorphisms ∆ : k [x] → k [x]⊗ k [x] and ǫ : k [x] → k
by setting

∆ (x) = x ⊗ 1 + 1 ⊗ x and ǫ (x) = 0.

Then, it is easy to check that the k-algebra k [x], equipped with the comultiplication
∆ and the counit ǫ, is a k-bialgebra. This is the “standard” k-bialgebra structure
on the polynomial ring k. If k is a reduced ring (i.e., a commutative ring with no
nonzero nilpotent elements), then it is not hard to show that 1 is the only grouplike
element of this k-bialgebra. On the other hand, if u ∈ k satisfies u2 = 0, then the
element 1 + ux ∈ k [x] is also grouplike.

Example 2.3. Let q ∈ k. Consider the polynomial ring k [x] in one variable x over k.
Define two k-algebra homomorphisms ∆↑q

: k [x] → k [x]⊗ k [x] and ǫ : k [x] → k
by setting

∆↑q
(x) = x ⊗ 1 + 1 ⊗ x + qx ⊗ x and ǫ (x) = 0.

Then, it is easy to check that the k-algebra k [x], equipped with the comultiplication

∆↑q
and the counit ǫ, is a k-bialgebra. This k-bialgebra

(

k [x] , ∆↑q
, ǫ
)

is known as

the univariate q-infiltration bialgebra2. Note the following special cases:

1. If q = 0, then the univariate q-infiltration bialgebra
(

k [x] , ∆↑q
, ǫ
)

is the “stan-

dard” k-bialgebra (k [x] , ∆, ǫ) from Example 2.2. (Indeed, ∆↑q
= ∆ when

q = 0.)

2See [ChFoLy58, Ducham01, Ducham15] for the multivariate case.
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2. When q is nilpotent, the univariate q-infiltration bialgebra
(

k [x] , ∆↑q
, ǫ
)

is a
Hopf algebra (see, e.g., [GriRei20, Definition 1.4.6] or [Radfor12, Definition
7.1.1] for the definition of this concept). In this case, the antipode of this Hopf
algebra sends x to −x/ (1 + qx).

If k is a Q-algebra, then we can say even more: Assume that k is a Q-algebra

and q is nilpotent. Let y be the element
∞

∑
k=1

1
k!

qk−1xk of k [x]. (This sum is

actually finite, since q is nilpotent. It can be viewed as the result of evaluating

the formal power series
exp (tx)− 1

t
∈ k [x] [[t]] at t = q.) Consider the

unique k-algebra homomorphism Φ : k [x] → k [x] that sends x to y. Then,

Φ is an isomorphism from the k-bialgebra
(

k [x] , ∆↑q
, ǫ
)

to the k-bialgebra

(k [x] , ∆, ǫ) (defined in Example 2.2).

No such isomorphism exists in general when k is not a Q-algebra. For ex-
ample, if k is an F2-algebra, and if q ∈ k satisfies q 6= 0 and q2 = 0, then
the Hopf algebra (k [x] , ∆, ǫ) has the property that its antipode is the iden-

tity, but the Hopf algebra
(

k [x] , ∆↑q
, ǫ
)

does not have this property. Since
any k-bialgebra isomorphism between Hopf algebras must respect their an-
tipodes (see, e.g., [GriRei20, Corollary 1.4.27]), this precludes any k-bialgebra
isomorphism.

Let us return to the general case (with k and q arbitrary). From the above defini-
tions of ∆↑q

and ǫ, it is easy to see that

∆↑q (1 + qx) = ∆↑q (1)
︸ ︷︷ ︸

=1⊗1

+q ∆↑q (x)
︸ ︷︷ ︸

=x⊗1+1⊗x+qx⊗x

= (1 + qx)⊗ (1 + qx)

and
ǫ (1 + qx) = ǫ (1)

︸︷︷︸

=1

+q ǫ (x)
︸︷︷︸

=0

= 1.

Thus, the element 1+ qx of the univariate q-infiltration bialgebra is grouplike. The
element 1 is grouplike as well (in fact, 1 is grouplike in any k-bialgebra).

Example 2.4. Let p be a prime. Let k be a commutative Fp-algebra. Let q ∈ k. Let
B be the quotient ring of the polynomial ring k [x] by the ideal I generated by xp.
For any f ∈ k [x], we let f denote the projection f + I of f onto this quotient B.
(Thus, xp = xp = 0.) Define two k-algebra homomorphisms ∆↑q

: B → B ⊗ B and
ǫ : B → k by setting

∆↑q
(x) = x ⊗ 1 + 1 ⊗ x + qx ⊗ x and ǫ (x) = 0.

These homomorphisms are well-defined, because Freshman’s Dream (i.e., the prop-
erty of the Frobenius homomorphism to be a Fp-algebra homomorphism) shows
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that

(x ⊗ 1 + 1 ⊗ x + qx ⊗ x)p = (x ⊗ 1)p + (1 ⊗ x)p + qp (x ⊗ x)p

= xp
︸︷︷︸

=0

⊗1 + 1 ⊗ xp
︸︷︷︸

=0

+qp xp
︸︷︷︸

=0

⊗ xp
︸︷︷︸

=0

= 0

in the commutative Fp-algebra B⊗ B. The k-algebra B, equipped with the comulti-
plication ∆↑q

and the counit ǫ, is a k-bialgebra – actually a quotient of the univariate
q-infiltration bialgebra defined in Example 2.3. Unlike the latter, it is always a Hopf
algebra (whether or not q is nilpotent). Examples of grouplike elements in B are 1,
1 + qx and (1 + qx)−1 = 1 − qx + q2x2 − q3x3 ± · · ·+ (−q)p−1 xp−1.

Example 2.5. Consider the polynomial ring k [g, x] in two (commuting) variables g
and x over k. Let B be the quotient ring of this ring by the ideal J generated by gx.
For any f ∈ k [g, x], we let f denote the projection f + J of f onto this quotient B.
Define a k-algebra homomorphism ∆ : B → B ⊗ B by

∆ (g) = g ⊗ g and ∆ (x) = x ⊗ 1 + 1 ⊗ x,

and define a k-algebra homomorphism ǫ : B → k by

ǫ (g) = 1 and ǫ (x) = 0.

(It is straightforward to see that both of these homomorphisms are well-defined,
since (g ⊗ g) (x ⊗ 1 + 1 ⊗ x) = 0 and 1 · 0 = 0.) These homomorphisms (taken as
comultiplication and counit) turn the k-algebra B into a k-bialgebra. Its element g

is grouplike, and so are all its powers gi.

Example 2.6. Let M be a monoid, and let (k[M], µM, 1M) be the monoid algebra of
M. As a k-module, k[M] is k(M), the set of finitely supported functions M → k.
As usual, we identify each w ∈ M with the indicator function δw ∈ k(M) = k[M]
that sends w to 1k and all other elements of M to 0. Thus, M becomes a basis
of k[M]. The multiplication on k[M] is given by k-bilinearly extending the multi-
plication of M from this basis to the entire k-module k[M]. Thus, k[M] becomes
a k-algebra, with unity equal to the neutral element of M (or, more precisely, its
indicator function).

The k-module dual (k[M])∨ of k[M] can be identified with kM, the set of all
functions M → k, via the natural k-bilinear pairing between kM and k(M) given by

〈S | P〉 = ∑
w∈M

S(w)P(w) for all S ∈ kM and P ∈ k[M] = k(M). (1)

The k-linear map ∆⊙ : k[M] → k[M]⊗ k[M] that sends each w ∈ M to w ⊗ w is
a k-algebra homomorphism; it is called the diagonal comultiplication. The k-linear
map ǫ : k[M] → k sending each w ∈ M to 1k is a k-algebra homomorphism as
well. Equipping k[M] with these two maps ∆⊙ and ǫ, we obtain a k-bialgebra
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B = (k[M], µM, 1M, ∆⊙, ǫ), in which every w ∈ M is grouplike. More generally, a
k-linear combination ∑

w∈M
aww (with aw ∈ k) is grouplike in B if and only if the aw

are orthogonal idempotents (i.e., satisfy a2
w = aw for all w ∈ M, and avaw = 0 for

any distinct v, w ∈ M). We call B the monoid bialgebra of M.
If M is a group, then B is a Hopf algebra. The converse is also true when k is

nontrivial.
We remark that there is some overlap between monoid bialgebras and q-infiltration

bialgebras. Indeed, let M be the monoid {xn | n ∈ N} of all monomials in one vari-

able x. Let q ∈ k, and let
(

k [x] , ∆↑q
, ǫ
)

be the univariate q-infiltration bialgebra

as in Example 2.3. Then, the k-algebra homomorphism k [x] → k[M] that sends
x to 1 + qx is a homomorphism of k-bialgebras from the univariate q-infiltration

bialgebra
(

k [x] , ∆↑q
, ǫ
)

to the monoid bialgebra B = (k[M], µM, 1M, ∆⊙, ǫ). When
q is invertible, this homomorphism is an isomorphism.

3. Grouplikes in a coalgebra

Let us first state a simple fact in commutative algebra:

Theorem 3.1. Let g1, g2, . . . , gn be n elements of a commutative ring A. Let c1, c2, . . . , cn

be n further elements of A. Assume that

n

∑
i=1

cig
k
i = 0 for all k ∈ N. (2)

Then,
ci ∏

j 6=i

(
gi − gj

)
= 0 for all i ∈ {1, 2, . . . , n} . (3)

Proof. Consider the ring A [[t]] of formal power series in one variable t over A. In
this ring, we have

n

∑
i=1

ci ·
1

1 − tgi
︸ ︷︷ ︸

= ∑
k∈N

(tgi)
k

=
n

∑
i=1

ci · ∑
k∈N

(tgi)
k

︸ ︷︷ ︸

=tkgk
i

=
n

∑
i=1

ci · ∑
k∈N

tkgk
i = ∑

k∈N

n

∑
i=1

cig
k
i

︸ ︷︷ ︸

=0
(by (2))

tk = 0.

Multiplying this equality by
n

∏
j=1

(
1 − tgj

)
, we obtain

n

∑
i=1

ci ∏
j 6=i

(
1 − tgj

)
= 0. (4)

This is an equality in the polynomial ring A [t] (which is a subring of A [[t]]).
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Now consider the ring A
[
t, t−1] of Laurent polynomials in t over A. There is an

A-algebra homomorphism A [t] → A
[
t, t−1

]
, t 7→ t−1 (by the universal property

of A [t]). Applying this homomorphism to both sides of the equality (4), we obtain
n

∑
i=1

ci ∏
j 6=i

(

1 − t−1gj

)

= 0.

Hence,
n

∑
i=1

ci ∏
j 6=i

(
t − gj

)

︸ ︷︷ ︸

=t(1−t−1gj)

=
n

∑
i=1

ci ∏
j 6=i

(

t
(

1 − t−1gj

))

=
n

∑
i=1

cit
n−1 ∏

j 6=i

(

1 − t−1gj

)

= tn−1
n

∑
i=1

ci ∏
j 6=i

(

1 − t−1gj

)

︸ ︷︷ ︸

=0

= 0. (5)

This is an equality in the polynomial ring A [t] (which is a subring of A
[
t, t−1

]
);

hence, we can substitute arbitrary values for t in it.
Now, fix h ∈ {1, 2, . . . , n}. Substitute gh for t in the equality (5). The result is

n

∑
i=1

ci ∏
j 6=i

(
gh − gj

)
= 0.

Hence,

0 =
n

∑
i=1

ci ∏
j 6=i

(
gh − gj

)
= ch ∏

j 6=h

(
gh − gj

)
+ ∑

i∈{1,2,...,n};
i 6=h

ci ∏
j 6=i

(
gh − gj

)

︸ ︷︷ ︸

=0
(since gh−gh=0 is among
the factors of this product)

(here, we have split off the addend for i = h from the sum)

= ch ∏
j 6=h

(
gh − gj

)
+ ∑

i∈{1,2,...,n};
i 6=h

ci0

︸ ︷︷ ︸

=0

= ch ∏
j 6=h

(
gh − gj

)
.

Now forget that we fixed h. Thus, we have shown that ch ∏
j 6=h

(
gh − gj

)
= 0 for all

h ∈ {1, 2, . . . , n}. Renaming h as i, we obtain (3). Theorem 3.1 is proven.

Our first main result is now the following:

Theorem 3.2. Let g1, g2, . . . , gn be n grouplike elements of a k-coalgebra C. Let c1, c2, . . . , cn ∈
k. Assume that

n

∑
i=1

cigi = 0. Then,

ci ∏
j 6=i

(
gi − gj

)
= 0 in Sym C for all i ∈ {1, 2, . . . , n} .
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Here, Sym C denotes the symmetric algebra of the k-module C.

Our proof of this theorem will rely on a certain family of maps defined for any
k-coalgebra:

Definition 3.3. Let C be a k-coalgebra. We then define a sequence of k-linear maps
∆(−1), ∆(0), ∆(1), . . ., where ∆(k) is a k-linear map from C to C⊗(k+1) for any integer
k ≥ −1. Namely, we define them recursively by setting ∆(−1) = ǫ and ∆(0) = idC

and ∆(k) =
(

idC ⊗∆(k−1)
)

⊗ ∆ for all k ≥ 1. These maps ∆(k) are known as the
iterated comultiplications of C, and studied further, e.g., in [GriRei20, Exercise
1.4.20].

Proof of Theorem 3.2. Every grouplike element g ∈ C and every k ∈ N satisfy

∆(k−1)g = g⊗k (6)

(where g⊗k means g ⊗ g ⊗ · · · ⊗ g
︸ ︷︷ ︸

k times

∈ C⊗k). Indeed, this can be easily proven by

induction on k.
The gi (for all i ∈ {1, 2, . . . , n}) are grouplike. Thus, (6) (applied to g = gi) shows

that ∆(k−1)gi = g⊗k
i for each k ∈ N and each i ∈ {1, 2, . . . , n}. Hence, applying the

k-linear map ∆(k−1) to both sides of the equality
n

∑
i=1

cigi = 0, we obtain

n

∑
i=1

cig
⊗k
i = 0 (7)

for each k ∈ N.
But recall that the symmetric algebra Sym C is defined as a quotient of the tensor

algebra T (C). Hence, there is a canonical projection from T (C) to Sym C that sends
each tensor x1 ⊗ x2 ⊗ · · · ⊗ xm ∈ T (C) to x1x2 · · · xm ∈ Sym C. In particular, this
projection sends g⊗k

i to gk
i for each i ∈ {1, 2, . . . , n} and each k ∈ N. Thus, applying

this projection to both sides of (7), we obtain
n

∑
i=1

cig
k
i = 0 in Sym C for all k ∈ N.

Thus, Theorem 3.1 can be applied to A = Sym C. We conclude that

ci ∏
j 6=i

(
gi − gj

)
= 0 in Sym C for all i ∈ {1, 2, . . . , n} .

This proves Theorem 3.2.

From Theorem 3.2, we obtain the following classical fact [Radfor12, Lemma
2.1.12]:

Corollary 3.4. Assume that k is a field. Let g1, g2, . . . , gn be n distinct grouplike elements
of a k-coalgebra C. Then, g1, g2, . . . , gn are k-linearly independent.
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Proof of Corollary 3.4. The k-module C is free (since k is a field). Thus, the k-algebra
Sym C is isomorphic to a polynomial algebra over k, and thus is an integral do-
main (again since k is a field). Its elements gi − gj for j 6= i are nonzero (since
g1, g2, . . . , gn are distinct), and thus their products ∏

j 6=i

(
gi − gj

)
(for i ∈ {1, 2, . . . , n})

are nonzero as well (since Sym C is an integral domain).

Let c1, c2, . . . , cn ∈ k be such that
n

∑
i=1

cigi = 0. Then, Theorem 3.2 yields

ci ∏
j 6=i

(
gi − gj

)
= 0 in Sym C for all i ∈ {1, 2, . . . , n} .

We can cancel the ∏
j 6=i

(
gi − gj

)
factors from this equality (since these factors ∏

j 6=i

(
gi − gj

)

are nonzero, and since Sym C is an integral domain). Thus, we obtain the equal-
ities ci = 0 in Sym C for all i ∈ {1, 2, . . . , n}. In other words, ci = 0 in k for all
i ∈ {1, 2, . . . , n} (since k embeds into Sym C).

Now, forget that we fixed c1, c2, . . . , cn. We thus have proven that if c1, c2, . . . , cn ∈
k are such that

n

∑
i=1

cigi = 0, then ci = 0 for all i ∈ {1, 2, . . . , n}. In other words,

g1, g2, . . . , gn are k-linearly independent. This proves Corollary 3.4.

Remark 3.5. Example 2.3 illustrates why we required k to be a field in Corollary
3.4. Indeed, if q ∈ k is a zero-divisor but nonzero, then the two grouplike elements
1 and 1 + qx of the k-bialgebra in Example 2.3 fail to be k-linearly independent.
Theorem 3.2, however, provides a weaker version of linear independence that is
still satisfied.

4. Grouplikes over id-unipotents in a bialgebra

4.1. The notion of id-unipotence

In this section, we shall use the following concept:

Definition 4.1. Let B be a k-bialgebra. An element b ∈ B is said to be id-unipotent
if there exists some m ∈ Z such that every nonnegative integer n > m satisfies

(ηǫ − id)⊛n (b) = 0 (8)

(where id means idB). We shall refer to such an m as a degree-upper bound of b.

Before we move on to studying id-unipotent elements, let us show several exam-
ples:

Example 4.2. Let B be a connected graded k-bialgebra. (The word “graded” here
means “N-graded”, and it is assumed that all structure maps µ, η, ∆, ǫ preserve the
grading. The word “connected” means that the 0-th homogeneous component B0
is isomorphic to k.) Then, each b ∈ B is id-unipotent, and if b ∈ B is homogeneous
of degree k, then k is a degree-upper bound of b.
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Example 4.3. Let q, k [x], ∆↑q
and ǫ be as in Example 2.3. Assume that q is nilpo-

tent, with qm = 0 for some m ∈ N. It is easy to see (by induction on n) that
(ηǫ − id)⊛n (x) = −(−q)n−1xn in k [x] for each n ≥ 1. Thus, for each n > m, we
have (ηǫ − id)⊛n (x) = −(−q)n−1xn = 0 (since qm = 0 and thus (−q)n−1 = 0).
Hence, the element x is id-unipotent in k [x], with m being a degree-upper bound
of x. Combining this observation with Corollary 4.24 further below, it follows
easily that every element of k [x] is id-unipotent (albeit m will not always be a
degree-upper bound).

Example 4.4. Let p, k, q and B be as in Example 2.4. It is easy to see (by induction
on n) that (ηǫ − id)⊛n (x) = −(−q)n−1xn for each n ≥ 1. Thus, for each n ≥ p, we
have (ηǫ − id)⊛n (x) = −(−q)n−1xn = 0 (since xp = 0 and thus xn = 0). Hence,
the element x is id-unipotent in B, with p − 1 being a degree-upper bound of x.

Remark 4.5. The notion of id-unipotence is connected with the classical notion of
∆+-nilpotence, but it is a weaker notion. Let us briefly describe the latter notion
and the connection.

Consider a k-bialgebra B with comultiplication ∆, counit ǫ and unit map η. Then,
we have a canonical direct sum decomposition B = k1B ⊕ B+ of the k-module B,
where B+ = ker(ǫ) (and where 1B = ǫ(1k) is the unity of B). The corresponding
projections are ηǫ (projecting B onto k1B) and id−ηǫ (projecting B onto B+). Thus,
we set id = id−ηǫ : B → B (this projection, in a way, “eliminates the constant
term”). For each k ∈ N, we define a map

∆
(k)
+ = id

⊗(k+1) ◦ ∆(k) : B → B⊗(k+1),

where id
⊗(k+1)

= id ⊗ id ⊗ · · · ⊗ id (with k + 1 tensorands) and where ∆(k) : B →
B⊗(k+1) is the iterated comultiplication from Definition 3.3.

Now, an element x of B is said to be ∆+-nilpotent if there exists some m ∈ Z

such that every nonnegative integer k > m satisfies

∆
(k)
+ (b) = 0. (9)

It is easy to see that every n ≥ 1 satisfies

(ηǫ − id)⊛n = (−id)⊛n = (−1)nµ(n−1) ◦ ∆
(n−1)
+ ,

where µ(n−1) : B⊗n → B is the “iterated multiplication” map that sends each pure
tensor b1 ⊗ b2 ⊗ · · · ⊗ bn to b1b2 · · · bn ∈ B. Thus, every ∆+-nilpotent element of B
is id-unipotent. The converse, however, is not true. For instance, the element x in
Example 4.4 is id-unipotent but (in general) not ∆+-nilpotent. (But the elements x
in Example 4.3 and b in Example 4.2 are ∆+-nilpotent.)3

3Nevertheless, at least in one important case, the two concepts are closely intertwined. Namely, if
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4.2. The linear independence

We shall also use a slightly generalized notion of linear independence:

Definition 4.6. Let g1, g2, . . . , gn be some elements of a k-algebra A. Let S be a
subset of A.

(a) We say that the elements g1, g2, . . . , gn are left S-linearly independent if every

n-tuple (s1, s2, . . . , sn) ∈ Sn of elements of S satisfying
n

∑
i=1

sigi = 0 must satisfy

(si = 0 for all i).

(b) The notion of “right S-linearly independent” is defined in the same way

as “left S-linearly independent”, except that the sum
n

∑
i=1

sigi is replaced by

n

∑
i=1

gisi.

(c) If the k-algebra A is commutative, then these two notions are identical, and
we just call them “S-linearly independent”.

We also recall that an element a of a commutative ring A is said to be regular if
it is a non-zero-divisor – i.e., if it has the property that whenever b is an element of
A satisfying ab = 0, then b = 0.

We can now state the second of our main theorems:

Theorem 4.7. Let B be a commutative k-bialgebra. Let L denote the set of all id-unipotent
elements of B.

Let g1, g2, . . . , gn be n grouplike elements of B. Let us make two assumptions:

• Assumption 1: For any 1 ≤ i < j ≤ n, the element gi − gj of B is regular.

• Assumption 2: For any 1 ≤ i ≤ n, the element gi of B is regular.

Then, g1, g2, . . . , gn are L-linearly independent.

Before we prove this theorem, some remarks are in order.

k is a Q-algebra and B is cocommutative, then we have the following chain of equivalences:

(every b ∈ B is id-unipotent) ⇐⇒ (B = U (Prim(B))) ⇐⇒ (every b ∈ B is ∆+-nilpotent) ,

where “B = U (Prim(B))” means that B is the universal enveloping bialgebra (see [Bourba98,
ch II §1] for the definition) of its primitive elements. The two equivalence signs follow easily
from [DMTCN14, Theorem 1] (noticing that a filtration as in [DMTCN14, Theorem 1 condition
1] forces every b ∈ B to be ∆+-nilpotent). This is a variant of the well-known Cartier–Quillen–
Milnor–Moore theorem [Car07, MM65] that relies on (formal) convergence of infinite sums in-
stead of primitive generation of the Hopf algebra.
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Remark 4.8. The L in Theorem 4.7 is a k-submodule of B. (This is easily seen
directly: If u ∈ B and v ∈ B are id-unipotent with degree-upper bounds p and q,
respectively, then λu + µv is id-unipotent with degree-upper bound max {p, q} for
any λ, µ ∈ k.)

It can be shown that L is a k-subalgebra of B. (See Corollary 4.24 further be-
low; we will not need this to prove Theorem 4.7.) We do not know if L is a k-
subcoalgebra of B.

Remark 4.9. Example 2.5 illustrates why we required Assumption 2 to hold in The-
orem 4.7. Indeed, in this example, g is grouplike, and x is id-unipotent (with
degree-upper bound 1), so the equality xg = gx = 0 shows that even the single
grouplike element g is not L-linearly independent.

The necessity of Assumption 1 can be illustrated by Remark 3.5 again.

Question 1. Is the requirement for B to be commutative necessary? (It is certainly
needed for our proof.)

To prove Theorem 4.7, we shall use a few lemmas. The first one is a classical
result [GriRei20, Exercise 1.5.11(a)]:

Lemma 4.10. Let C be a k-bialgebra. Let A be a commutative k-algebra. Let p : C → A
and q : C → A be two k-algebra homomorphisms. Then, the map p ⊛ q : C → A is also a
k-algebra homomorphism.

Proof of Lemma 4.10. Let a ∈ C and b ∈ C. We shall prove that (p ⊛ q) (ab) =
(p ⊛ q) (a) · (p ⊛ q) (b).

Using Sweedler notation, write ∆ (a) = ∑
(a)

a(1) ⊗ a(2) and ∆ (b) = ∑
(b)

b(1) ⊗ b(2).

Then, the multiplicativity of ∆ yields ∆ (ab) = ∑
(a)

∑
(b)

a(1)b(1) ⊗ a(2)b(2). Thus,

(p ⊛ q) (ab) = ∑
(a)

∑
(b)

p
(

a(1)b(1)

)

︸ ︷︷ ︸

=p(a(1))p(b(1))
(since p is a k-algebra

homomorphism)

q
(

a(2)b(2)

)

︸ ︷︷ ︸

=q(a(2))q(b(2))
(since q is a k-algebra

homomorphism)

= ∑
(a)

∑
(b)

p
(

a(1)

)

p
(

b(1)

)

q
(

a(2)

)

q
(

b(2)

)

=



∑
(a)

p
(

a(1)

)

q
(

a(2)

)





︸ ︷︷ ︸

=(p⊛q)(a)

·



∑
(b)

p
(

b(1)

)

q
(

b(2)

)





︸ ︷︷ ︸

=(p⊛q)(b)

(since A is commutative)
= (p ⊛ q) (a) · (p ⊛ q) (b) .

Now, forget that we fixed a and b. We thus have proven that (p ⊛ q) (ab) =
(p ⊛ q) (a) · (p ⊛ q) (b) for each a, b ∈ C. An even simpler argument shows that
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(p ⊛ q) (1) = 1. Combining these results, we conclude that p ⊛ q : C → A is a
k-algebra homomorphism. This completes the proof of Lemma 4.10.

Lemma 4.11. Let B be a commutative k-bialgebra. Let k ∈ N. Then, id⊛k : B → B is a
k-algebra homomorphism.

Proof of Lemma 4.11. This follows by straightforward induction on k. Indeed, the
base case k = 0 follows from the fact that ηBǫB is a k-algebra homomorphism,
while the induction step uses Lemma 4.10 (applied to C = B and A = B) and the
fact that idB is a k-algebra homomorphism.

Lemma 4.12. Let B be a k-bialgebra. Let g ∈ B be any grouplike element. Let k ∈ N.

Then, id⊛k (g) = gk. (Here, id means idB.)

Proof of Lemma 4.12. This follows easily by induction on k.

Lemma 4.13. Let B be a k-bialgebra. Let b ∈ B be id-unipotent and nonzero. Let m be a
degree-upper bound of b. Then, m ∈ N.

Proof of Lemma 4.13. Assume the contrary. Thus, m is negative (since m is an in-
teger). Therefore, every n ∈ N satisfies n > m. Hence, by the definition of a
degree-upper bound, we must have (ηǫ − id)⊛n (b) = 0 for each n ∈ N. Thus, in
particular, we have (ηǫ − id)⊛0 (b) = 0 and (ηǫ − id)⊛1 (b) = 0. Hence,

(ηǫ − id)⊛0 (b)
︸ ︷︷ ︸

=0

− (ηǫ − id)⊛1 (b)
︸ ︷︷ ︸

=0

= 0.

This contradicts

(ηǫ − id)⊛0

︸ ︷︷ ︸

=ηǫ

(b)− (ηǫ − id)⊛1

︸ ︷︷ ︸

=ηǫ−id

(b) = (ηǫ) (b)− (ηǫ − id) (b) = id (b) = b 6= 0

(since b is nonzero). This contradiction completes the proof of Lemma 4.13.

Lemma 4.14. Let B be a k-bialgebra. Let b ∈ B be id-unipotent. Let m be a degree-upper
bound of b. Then, in the ring B [[t]] of power series4, we have

(1 − t)m+1
∑

k∈N

id⊛k (b) tk =
m

∑
k=0

(−1)k (ηǫ − id)⊛k (b) tk (1 − t)m−k .

(Here, id means idB.)

4This ring is defined in the usual way even if B is not commutative. Thus, t will commute with
every power series in B [[t]].
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Proof of Lemma 4.14. We know that m is a degree-upper bound of b. In other words,
we have (ηǫ − id)⊛n (b) = 0 for every nonnegative integer n > m (by (8)). In other
words, we have

(ηǫ − id)⊛k (b) = 0 for every nonnegative integer k > m. (10)

Let ι denote the canonical inclusion B →֒ B [[t]]. This is an injective k-algebra
homomorphism, and will be regarded as an inclusion.

The convolution algebra (Hom (B, B) ,⊛) embeds in the convolution algebra
(Hom (B, B [[t]]) ,⊛) (indeed, there is an injective k-algebra homomorphism from
the former to the latter, which sends each f ∈ Hom (B, B) to ι ◦ f ∈ Hom (B, B [[t]])).
Again, we shall regard this embedding as an inclusion (so we will identify each
f ∈ Hom (B, B) with ι ◦ f ).

The convolution algebra (Hom (B, B [[t]]) ,⊛) has unity ηǫ = ηB[[t]]ǫB. Thus, from

the classical power-series identity (1 − u)−1 = ∑
k∈N

uk, we obtain the equality

(ηǫ − t f )⊛(−1) = ∑
k∈N

(t f )⊛k = ∑
k∈N

tk f⊛k (11)

for every f ∈ Hom (B, B [[t]]).
Now,

∑
k∈N

id⊛k (b) tk =

(

∑
k∈N

tk id⊛k

)

︸ ︷︷ ︸

=(ηǫ−t id)⊛(−1)

(by (11), applied to f = id)

(b)

= (ηǫ − t id)⊛(−1) (b) . (12)

But

ηǫ − t id = ηǫ (1 − t)− t (id−ηǫ) =

(

ηǫ − t (id−ηǫ)
1

1 − t

)

(1 − t)

and therefore

(ηǫ − t id)⊛(−1) =

((

ηǫ − t (id−ηǫ)
1

1 − t

)

(1 − t)

)⊛(−1)

= (1 − t)−1 ·
(

ηǫ − t (id−ηǫ)
1

1 − t

)⊛(−1)

= (1 − t)−1 · ∑
k∈N

tk

(

(id−ηǫ)
1

1 − t

)⊛k
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(by (11), applied to f = (id−ηǫ)
1

1 − t
). Hence, (12) becomes

∑
k∈N

id⊛k (b) tk = (ηǫ − t id)⊛(−1)

︸ ︷︷ ︸

=(1−t)−1· ∑
k∈N

tk

(

(id−ηǫ)
1

1 − t

)⊛k

(b)

= (1 − t)−1 · ∑
k∈N

tk

(

(id−ηǫ)
1

1 − t

)⊛k

(b)

︸ ︷︷ ︸

=(id−ηǫ)⊛k(b)

(
1

1 − t

)k

= (1 − t)−1 · ∑
k∈N




 id−ηǫ
︸ ︷︷ ︸

=−(ηǫ−id)






⊛k

(b)

(
t

1 − t

)k

= (1 − t)−1 · ∑
k∈N

(− (ηǫ − id))⊛k

︸ ︷︷ ︸

=(−1)k(ηǫ−id)⊛k

(b)

(
t

1 − t

)k

= (1 − t)−1 · ∑
k∈N

(−1)k (ηǫ − id)⊛k (b)

(
t

1 − t

)k

︸ ︷︷ ︸

All addends of this sum for k>m are
zero, due to (10).

= (1 − t)−1 ·
m

∑
k=0

(−1)k (ηǫ − id)⊛k (b)

(
t

1 − t

)k

.

Multiplying both sides of this equality by (1 − t)m+1, we get

(1 − t)m+1
∑

k∈N

id⊛k (b) tk = (1 − t)m ·
m

∑
k=0

(−1)k (ηǫ − id)⊛k (b)

(
t

1 − t

)k

=
m

∑
k=0

(−1)k (ηǫ − id)⊛k (b) tk (1 − t)m−k .

This proves Lemma 4.14.

Lemma 4.15. Let A be a commutative ring. Let m ∈ N and u ∈ A. Let F (t) ∈ A [t] be
a polynomial of degree ≤ m. Set

G (t) = tmF
(u

t

)

∈ A
[

t, t−1
]

.

Then, G (t) is actually a polynomial in A [t] and satisfies

G (u) = umF (1) . (13)
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Proof of Lemma 4.15. We have G (t) = tmF
(u

t

)

∈ A [t] because F (t) has degree

≤ m. It remains to show that G (u) = umF (1). It is tempting to argue this by

substituting u for t in the equality G (t) = tmF
(u

t

)

, but this is not completely justi-

fied (we cannot arbitrarily substitute u for t in an equality of Laurent polynomials
unless we know that u is invertible5). But we can argue as follows instead:

The polynomial F (t) has degree ≤ m. Hence, we can write it in the form F (t) =
a0 + a1t+ a2t2 + · · ·+ amtm for some a0, a1, . . . , am ∈ A. Consider these a0, a1, . . . , am.
Thus, F (1) = a0 + a11 + a212 + · · ·+ am1m = a0 + a1 + a2 + · · ·+ am and F

(u

t

)

=

a0 + a1
u

t
+ a2

(u

t

)2
+ · · ·+ am

(u

t

)m
. The definition of G (t) yields

G (t) = tm F
(u

t

)

︸ ︷︷ ︸

=a0+a1
u

t
+a2

(u

t

)2

+···+am

(u

t

)m

= tm

(

a0 + a1
u

t
+ a2

(u

t

)2
+ · · ·+ am

(u

t

)m
)

= a0tm + a1utm−1 + a2u2tm−2 + · · ·+ amumt0.

Substituting u for t in this equality of polynomials, we obtain

G (u) = a0um + a1uum−1 + a2u2um−2 + · · ·+ amumu0

= a0um + a1um + a2um + · · ·+ amum = um (a0 + a1 + a2 + · · ·+ am)
︸ ︷︷ ︸

=F(1)

= umF (1) ,

and thus Lemma 4.15 is proven.

Proof of Theorem 4.7. Let b1, b2, . . . , bn ∈ L be such that
n

∑
i=1

bigi = 0. We must show

that bi = 0 for all i.
Assume the contrary. Thus, there exists some i such that bi 6= 0. We WLOG

assume that each i satisfies bi 6= 0, since otherwise we can just drop the violating
bi and the corresponding gi and reduce the problem to a smaller value of n.

For each i ∈ {1, 2, . . . , n}, the element bi ∈ B is id-unipotent (since it belongs to
L) and thus has a degree-upper bound. We let mi be the smallest degree-upper
bound of bi. This is well-defined, because Lemma 4.13 (applied to b = bi) shows
that every degree-upper bound of bi must be ∈ N. Thus, each mi belongs to N.

For each i ∈ {1, 2, . . . , n}, Lemma 4.14 (applied to b = bi and m = mi) shows that
in the ring B [[t]], we have

(1 − t)mi+1
∑

k∈N

id⊛k (bi) tk

=
mi

∑
k=0

(−1)k (ηǫ − id)⊛k (bi) tk (1 − t)mi−k (14)

5since the universal property of the Laurent polynomial ring A
[
t, t−1] is only stated for invertible

elements
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(since mi is a degree-upper bound of bi). The right-hand side of this equality is
a polynomial in t of degree ≤ mi. Denote this polynomial by Qi (t). Hence, (14)
becomes

(1 − t)mi+1
∑

k∈N

id⊛k (bi) tk = Qi (t) ,

so that

∑
k∈N

id⊛k (bi) tk =
Qi (t)

(1 − t)mi+1 . (15)

Now, let k ∈ N. Lemma 4.11 yields that the map id⊛k is a k-algebra homomor-
phism. Thus,

id⊛k

(
n

∑
i=1

bigi

)

=
n

∑
i=1

id⊛k (bi) id⊛k (gi)
︸ ︷︷ ︸

=gk
i

(by Lemma 4.12,
since gi is grouplike)

=
n

∑
i=1

id⊛k (bi) gk
i .

Hence,

n

∑
i=1

id⊛k (bi) gk
i = id⊛k








n

∑
i=1

bigi

︸ ︷︷ ︸

=0








= 0. (16)

Forget that we fixed k. We thus have proved (16) for each k ∈ N. Now, in the
commutative ring B [[t]], we have

n

∑
i=1

Qi (tgi)

(1 − tgi)
mi+1

︸ ︷︷ ︸

= ∑
k∈N

id⊛k(bi)(tgi)
k

(by substituting tgi
for t in (15))

=
n

∑
i=1

∑
k∈N

id⊛k (bi) (tgi)
k

︸ ︷︷ ︸

=tkgk
i

=
n

∑
i=1

∑
k∈N

id⊛k (bi) tkgk
i

= ∑
k∈N

n

∑
i=1

id⊛k (bi) gk
i

︸ ︷︷ ︸

=0
(by (16))

tk = 0.

Multiplying this equality by
n

∏
j=1

(
1 − tgj

)mj+1, we obtain

n

∑
i=1

Qi (tgi)∏
j 6=i

(
1 − tgj

)mj+1
= 0.

This is an equality in the polynomial ring B [t]. Hence, we can apply the B-algebra
homomorphism

B [t] → B
[

t, t−1
]

, t 7→ t−1
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(into the Laurent polynomial ring B
[
t, t−1]) to this equality. We obtain

n

∑
i=1

Qi

(gi

t

)

∏
j 6=i

(

1 −
gj

t

)mj+1

= 0.

Multiplying this equality with tm1+m2+···+mn+n−1, we transform this equality into

n

∑
i=1

tmi Qi

(gi

t

)

∏
j 6=i

(
t − gj

)mj+1
= 0 (17)

(an equality in the Laurent polynomial ring B
[
t, t−1

]
).

For each i ∈ {1, 2, . . . , n}, we set

Ri (t) = tmi Qi

(gi

t

)

∈ B
[

t, t−1
]

.

This Ri (t) is actually a polynomial in B [t] (since Qi is a polynomial of degree
≤ mi). Using the definition of Ri (t), the equality (17) rewrites as

n

∑
i=1

Ri (t)∏
j 6=i

(
t − gj

)mj+1
= 0. (18)

Now fix h ∈ {1, 2, . . . , n}. We have mh ∈ N (since each mi belongs to N), so that
mh + 1 is a positive integer. Therefore, 0mh+1 = 0. In other words, (gh − gh)

mh+1 =
0.

The equality (18) is an equality in the polynomial ring B [t] (since each mi belongs
to N, and since each Ri (t) is a polynomial in B [t]), so we can substitute gh for t in
it. We thus obtain

n

∑
i=1

Ri (gh)∏
j 6=i

(
gh − gj

)mj+1
= 0. (19)

But all addends on the left hand side of this equality are 0 except for the addend
with i = h (since the product ∏

j 6=i

(
gh − gj

)mj+1 contains the factor (gh − gh)
mh+1 = 0

unless i = h). Thus, the equality (19) simplifies to

Rh (gh)∏
j 6=h

(
gh − gj

)mj+1
= 0.

Since all the factors gh − gj (with j 6= h) are regular elements of B (by Assumption

1), we can cancel ∏
j 6=h

(
gh − gj

)mj+1 from this equality, and obtain Rh (gh) = 0.

But recall that Qh (t) ∈ B [t] is a polynomial of degree ≤ mh, and we have Rh (t) =

tmh Qh

(gh

t

)

(by the definition of Rh). Hence, (13) (applied to A = B, m = mh,

u = gh, F (t) = Qh (t) and G (t) = Rh (t)) yields Rh (gh) = g
mh
h Qh (1). Hence,
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g
mh
h Qh (1) = Rh (gh) = 0, so that Qh (1) = 0 (since Assumption 2 shows that gh ∈ B

is regular).
But the definition of Qh yields

Qh (t) =
mh

∑
k=0

(−1)k (ηǫ − id)⊛k (bh) tk (1 − t)mh−k .

Substituting 1 for t in this equality, we find

Qh (1) =
mh

∑
k=0

(−1)k (ηǫ − id)⊛k (bh) 1k
︸︷︷︸

=1

(1 − 1)mh−k

︸ ︷︷ ︸

=0mh−k=







1, if k = mh;
0, if k 6= mh

=
mh

∑
k=0

(−1)k (ηǫ − id)⊛k (bh)

{

1, if k = mh;
0, if k 6= mh

= (−1)mh (ηǫ − id)⊛mh (bh) .

Hence, (−1)mh (ηǫ − id)⊛mh (bh) = Qh (1) = 0. Therefore, (ηǫ − id)⊛mh (bh) = 0.
Recall that mh is the smallest degree upper-bound of bh (since this is how mh was

defined). Thus, every nonnegative integer n > mh satisfies the equality (ηǫ − id)⊛n (bh) =
0 (by the definition of a degree upper-bound). Since n = mh also satisfies this
equality (because we just showed that (ηǫ − id)⊛mh (bh) = 0), we thus conclude
that every nonnegative integer n > mh − 1 satisfies (ηǫ − id)⊛n (bh) = 0. In other
words, mh − 1 is a degree-upper bound of bh (by the definition of a degree upper-
bound). Thus, mh is not the smallest degree-upper bound of bh (since mh − 1 is
smaller). This contradicts our definition of mh. This contradiction completes our
proof of Theorem 4.7.

4.3. Appendix: The id-unipotents form a subalgebra

In this subsection, we shall show that the id-unipotent elements in a commutative
k-bialgebra form a k-subalgebra. The proof will rely on a sequence of lemmas. We
begin with two identities for binomial coefficients:

Lemma 4.16. Let N ∈ N. Let (a0, a1, . . . , aN) and (b0, b1, . . . , bN) be two (N + 1)-tuples
of rational numbers. Assume that

bn =
n

∑
i=0

(−1)i
(

n

i

)

ai for each n ∈ {0, 1, . . . , N} .

Then,

an =
n

∑
i=0

(−1)i
(

n

i

)

bi for each n ∈ {0, 1, . . . , N} .
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Lemma 4.17. Let a, b, m ∈ N. Then,

(
m

a

)(
m

b

)

=
a+b

∑
i=a

(
i

a

)(
a

a + b − i

)(
m

i

)

.

Both of these lemmas are not hard to prove; they are also easily found in the
literature (e.g., Lemma 4.16 is [Grinbe17, Proposition 7.26], while Lemma 4.17 is
[Grinbe17, Proposition 3.37]). Note that we have

(
n

i

)

= 0 (20)

for any n, i ∈ N satisfying i > n. Thus, the nonzero addends on the right hand
side in Lemma 4.17 don’t start until i = max {a, b}.

The following modified version of Lemma 4.16 will be useful to us:6

Lemma 4.18. Let A be an abelian group, written additively. Let (a0, a1, a2, . . .) and
(b0, b1, b2, . . .) be two sequences of elements of A. Assume that

bn =
n

∑
i=0

(−1)i
(

n

i

)

ai for each n ∈ N.

Then,

an =
n

∑
i=0

(−1)i
(

n

i

)

bi for each n ∈ N.

First proof of Lemma 4.18. The proof of Lemma 4.16 that was given in [Grinbe17,
proof of Proposition 7.26] can be immediately reused as a proof of Lemma 4.18
(after removing all inequalities of the form “n ≤ N”, and after replacing every
appearance of “{0, 1, . . . , N}” by “N”).

Second proof of Lemma 4.18 (sketched). We will interpret binomial transforms in terms
of sequence transformations (see [GoF04] for motivations and details). A row-finite
matrix will mean a family

(M[n, k])n,k≥0 with M[n, k] ∈ k

(i.e., a matrix of type (N, N) with elements in k, in the terminology of [Bourba89,
Chapter II, §10]) with the property that for every fixed row index n, the sequence
(M[n, k])k≥0 has finite support. We let L(kN) be the algebra of row-finite matrices;
its product is given by the usual formula7

(M1M2) [i, j] = ∑
k∈N

M1[i, k]M2[k, j] . (21)

6An “abelian group, written additively” means an abelian group whose binary operation is de-
noted by + and whose neutral element is denoted by 0.

7This is just the definition in [Bourba89, Chapter II, §10, (3)], extended a bit.

20-09-2020 04:53



Variations on linear independence of grouplikes page 22

Any row-finite matrix M ∈ L(kN) canonically acts on AN for any k-module A:
Namely, if a = (an)n≥0 ∈ AN is a sequence of elements of A, then Ma is defined to
be the sequence (bn)n≥0 ∈ AN with

bn = ∑
k≥0

M[n, k] ak for all n ∈ N. (22)

This action gives rise to a k-algebra homomorphism

Φ1 : L(kN) → End(AN), (23)

which is injective in the case when A = k (but neither injective nor surjective in
the general case). Applying this to k = Q and A = Q, we thus have an injective
Q-algebra homomorphism Φ1 : L(QN) → End(QN). We also have a Q-vector
space isomorphism

QN
∼=→ Q[[z]],

(an)n∈N 7→ ∑
n≥0

an
zn

n!

(where z is a formal variable), thus a Q-algebra isomorphism End(QN) → End(Q[[z]]).
Composing the latter with Φ1, we get an injective Q-algebra homomorphism Φ2 :
L(QN) → End(Q[[z]]). Explicitly, for any power series f = f (z) = ∑

n≥0
an

zn

n! ∈

Q[[z]] and any row-finite matrix M ∈ L(QN), we have

Φ2(M)( f ) = ∑
n≥0

bn
zn

n!
= ∑

n≥0
∑
k≥0

M[n, k] ak
zn

n!
. (24)

Now, let M1 ∈ L(ZN) ⊆ L(QN) be the row-finite matrix whose entries are

M1[n, i] := (−1)i
(

n

i

)

. (25)

Then, the assumption in Lemma 4.18 is saying that b = M1a, where a, b ∈ AN

are given by a = (an)n≥0 and b = (bn)n≥0. Likewise, the claim of Lemma 4.18 is
saying that a = M1b. Hence, in order to prove Lemma 4.18, it suffices to show
that M2

1a = a. Thus, it suffices to show that M2
1 = IL(ZN) (the identity matrix in

L(ZN)).
But this can be done via the injective Z-algebra homomorphism Φ2 : L(QN) →

End(Q[[z]]). Indeed, a direct calculation shows that any f ∈ Q[[z]] satisfies

Φ2(M1)( f )(z) = f (−z)ez ,

and hence

Φ2(M2
1)( f )(z) = Φ2(M1)( f (−z)ez) = ( f (−(−z))e−z)ez = f (z).
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This shows that Φ2(M2
1) = id = Φ2(IL(QN)). Since Φ2 is injective, this entails

M2
1 = IL(QN) = IL(ZN) and proves Lemma 4.18 (as every abelian group is a Z-

module).

Our next lemma is a classical fact about finite differences:

Lemma 4.19. Let A be an abelian group, written additively. Let (a0, a1, a2, . . .) ∈ AN be
a sequence of elements of A. Let m ≥ −1 be an integer. Then, the following two statements
are equivalent:

1. We have
n

∑
i=0

(−1)i (n
i )ai = 0 for every integer n > m.

2. There exist m + 1 elements c0, c1, . . . , cm of A such that every n ∈ N satisfies an =
m

∑
i=0

(n
i )ci.

The sequences (a0, a1, a2, . . .) satisfying these two equivalent statements can be
regarded as a generalization of polynomial sequences (i.e., sequences whose n-th
entry is given by evaluating a fixed integer-valued polynomial at n).

Proof of Lemma 4.19. We must prove the equivalence of Statement 1 and Statement
2. We shall do so by proving the implications 1 =⇒ 2 and 2 =⇒ 1 separately:

Proof of the implication 1 =⇒ 2: Let us first show that Statement 1 implies State-
ment 2.

Indeed, assume that Statement 1 holds. In other words, we have

n

∑
i=0

(−1)i
(

n

i

)

ai = 0 (26)

for every integer n > m.
We shall now show that Statement 2 holds.
Indeed, let us set

bn =
n

∑
i=0

(−1)i
(

n

i

)

ai (27)

for each n ∈ N. Then, for every integer n > m, we have

bn =
n

∑
i=0

(−1)i
(

n

i

)

ai = 0

(by (26)). Renaming n as i in this statement, we obtain the following: For every
integer i > m, we have

bi = 0. (28)
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Furthermore, recall that bn =
n

∑
i=0

(−1)i (n
i )ai for each n ∈ N. Thus, Lemma 4.16

shows that we have

an =
n

∑
i=0

(−1)i
(

n

i

)

bi (29)

for each n ∈ N.
Now, let n ∈ N. Let N = max {n, m}; then, N ≥ n and N ≥ m. Thus, 0 ≤ n ≤ N

and 0 ≤ m ≤ N. Now, comparing

N

∑
i=0

(
n

i

)

(−1)i bi =
n

∑
i=0

(
n

i

)

(−1)i

︸ ︷︷ ︸

=(−1)i(n
i )

bi +
N

∑
i=n+1

(
n

i

)

︸︷︷︸

=0
(by (20),

since i≥n+1>n)

(−1)i bi

(here, we have split the sum at i = n, since 0 ≤ n ≤ N)

=
n

∑
i=0

(−1)i
(

n

i

)

bi +
N

∑
i=n+1

0 (−1)i bi

︸ ︷︷ ︸

=0

=
n

∑
i=0

(−1)i
(

n

i

)

bi

= an (by (29))

with
N

∑
i=0

(
n

i

)

(−1)i bi =
m

∑
i=0

(
n

i

)

(−1)i bi +
N

∑
i=m+1

(
n

i

)

(−1)i bi
︸︷︷︸

=0
(by (28),

since i≥m+1>m)

(here, we have split the sum at i = m, since 0 ≤ m ≤ N)

=
m

∑
i=0

(
n

i

)

(−1)i bi +
N

∑
i=m+1

(
n

i

)

(−1)i 0

︸ ︷︷ ︸

=0

=
m

∑
i=0

(
n

i

)

(−1)i bi,

we obtain

an =
m

∑
i=0

(
n

i

)

(−1)i bi.

Forget that we fixed n. We thus have proved that every n ∈ N satisfies an =
m

∑
i=0

(n
i ) (−1)i bi. Thus, there exist m + 1 elements c0, c1, . . . , cm of A such that every

n ∈ N satisfies an =
m

∑
i=0

(n
i )ci (namely, these m + 1 elements are given by ci =

(−1)i bi). In other words, Statement 2 holds.
We thus have proved the implication 1 =⇒ 2.
Proof of the implication 2 =⇒ 1: Let us now show that Statement 2 implies State-

ment 1.
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Indeed, assume that Statement 2 holds. That is, there exist m + 1 elements
c0, c1, . . . , cm of A such that every n ∈ N satisfies

an =
m

∑
i=0

(
n

i

)

ci. (30)

Consider these c0, c1, . . . , cm.
We must prove that Statement 1 holds. In other words, we must prove that we

have
n

∑
i=0

(−1)i (n
i )ai = 0 for every integer n > m.

Extend the (m + 1)-tuple (c0, c1, . . . , cm) ∈ Am+1 to an infinite sequence (c0, c1, c2, . . .) ∈
AN by setting

(ci = 0 for all integers i > m) . (31)

Furthermore, define a sequence (d0, d1, d2, . . .) ∈ AN by setting
(

di = (−1)i ci for all i ∈ N

)

. (32)

Then, each i ∈ N satisfies

(−1)i di
︸︷︷︸

=(−1)ici
(by (32))

= (−1)i (−1)i

︸ ︷︷ ︸

=(−1)2i=1

ci = ci. (33)

Let n ∈ N. Let N = max {n, m}; then, N ≥ n and N ≥ m. Thus, 0 ≤ n ≤ N and
0 ≤ m ≤ N. Now, comparing

N

∑
i=0

(
n

i

)

ci =
n

∑
i=0

(
n

i

)

ci +
N

∑
i=n+1

(
n

i

)

︸︷︷︸

=0
(by (20),

since i≥n+1>n)

ci

(here, we have split the sum at i = n, since 0 ≤ n ≤ N)

=
n

∑
i=0

(
n

i

)

ci +
N

∑
i=n+1

0ci

︸ ︷︷ ︸

=0

=
n

∑
i=0

(
n

i

)

ci

with
N

∑
i=0

(
n

i

)

ci =
m

∑
i=0

(
n

i

)

ci +
N

∑
i=m+1

(
n

i

)

ci
︸︷︷︸

=0
(by (31),

since i≥m+1>m)

(here, we have split the sum at i = m, since 0 ≤ m ≤ N)

=
m

∑
i=0

(
n

i

)

ci +
N

∑
i=m+1

(
n

i

)

0

︸ ︷︷ ︸

=0

=
m

∑
i=0

(
n

i

)

ci = an (by (30)) ,
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we obtain

an =
n

∑
i=0

(
n

i

)

ci
︸︷︷︸

=(−1)idi
(by (33))

=
n

∑
i=0

(
n

i

)

(−1)i di =
n

∑
i=0

(−1)i
(

n

i

)

di.

Now, forget that we fixed n. We thus have shown that an =
n

∑
i=0

(−1)i (n
i )di for

each n ∈ N. Thus, Lemma 4.18 (applied to dn and an instead of an and bn) shows
that

dn =
n

∑
i=0

(−1)i
(

n

i

)

ai for each n ∈ N. (34)

Now, let n > m be an integer. Then, (31) (applied to i = n) yields cn = 0. But (32)

(applied to i = n) yields dn = (−1)n cn
︸︷︷︸

=0

= 0. But (34) yields dn =
n

∑
i=0

(−1)i (n
i )ai.

Comparing the latter two equalities, we obtain
n

∑
i=0

(−1)i (n
i )ai = 0.

Forget that we fixed n. We thus have shown that
n

∑
i=0

(−1)i (n
i )ai = 0 for every

integer n > m. In other words, Statement 1 holds.
We thus have proved the implication 2 =⇒ 1.
Having now shown both implications 1 =⇒ 2 and 2 =⇒ 1, we conclude that

Statement 1 and Statement 2 are equivalent. This proves Lemma 4.19.

Definition 4.20. Let A be an abelian group, written additively. Let (a0, a1, a2, . . .) ∈
AN be a sequence of elements of A. Let m ≥ −1 be an integer. We say that the
sequence (a0, a1, a2, . . .) is m-polynomial if the two equivalent statements 1 and 2 of
Lemma 4.19 are satisfied.

Lemma 4.21. Let A be an abelian group, written additively. Let p ≥ −1 and q ≥ −1 be
two integers such that p + q ≥ −1. Let (a0, a1, a2, . . .) ∈ AN be a p-polynomial sequence
of elements of A. Let (b0, b1, b2, . . .) ∈ AN be a q-polynomial sequence of elements of A.
Then, (a0b0, a1b1, a2b2, . . .) ∈ AN is a (p + q)-polynomial sequence of elements of A.

Proof of Lemma 4.21. We have assumed that the sequence (a0, a1, a2, . . .) is p-polynomial.
In other words, this sequence satisfies the two equivalent statements 1 and 2 of
Lemma 4.19 for m = p (by the definition of “p-polynomial”). Thus, in particular,
it satisfies Statement 2 of Lemma 4.19 for m = p. In other words, there exist p + 1

elements c0, c1, . . . , cp of A such that every n ∈ N satisfies an =
p

∑
i=0

(n
i )ci. Consider

these c0, c1, . . . , cp, and denote them by u0, u1, . . . , up. Thus, u0, u1, . . . , up are p + 1
elements of A with the property that every n ∈ N satisfies

an =
p

∑
i=0

(
n

i

)

ui. (35)
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The same argument (but applied to the sequence (b0, b1, b2, . . .) and the integer
q instead of the sequence (a0, a1, a2, . . .) and the integer p) helps us construct q + 1
elements v0, v1, . . . , vq of A with the property that every n ∈ N satisfies

bn =
q

∑
i=0

(
n

i

)

vi. (36)

Consider these q + 1 elements v0, v1, . . . , vq.
For each i ∈ N, we set

wi = ∑
(j,k)∈N×N;

j≤p; k≤q;
j≤i≤j+k

(
i

j

)(
j

j + k − i

)

ujvk. (37)

Thus, if i ∈ N satisfies i > p + q, then

wi = 0. (38)

[Proof of (38): Let i ∈ N satisfy i > p + q. Then, there exists no (j, k) ∈ N × N

satisfying j ≤ p and k ≤ q and j ≤ i ≤ j + k (since any such (j, k) would satisfy
i ≤ j

︸︷︷︸

≤p

+ k
︸︷︷︸

≤q

≤ p + q, which would contradict i > p + q). Hence, the sum on

the right hand side of (37) is empty, and thus equals 0. Therefore, (37) rewrites as
wi = 0. This proves (38).]

Let n ∈ N. Then, (35) yields

an =
p

∑
i=0

(
n

i

)

ui =
p

∑
j=0

(
n

j

)

uj.

Meanwhile, (36) yields

bn =
q

∑
i=0

(
n

i

)

vi =
q

∑
k=0

(
n

k

)

vk.
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Multiplying these two equalities, we obtain

anbn =

(
p

∑
j=0

(
n

j

)

uj

)(
q

∑
k=0

(
n

k

)

vk

)

=
p

∑
j=0

q

∑
k=0

︸ ︷︷ ︸

= ∑
(j,k)∈N×N;

j≤p; k≤q

(
n

j

)(
n

k

)

︸ ︷︷ ︸

=
j+k

∑
i=j

(i
j)(

j
j+k−i)(

n
i )

(by Lemma 4.17,
applied to m=n, a=j and b=k)

ujvk

= ∑
(j,k)∈N×N;

j≤p; k≤q

j+k

∑
i=j
︸︷︷︸

= ∑
i∈N;

j≤i≤j+k

(
i

j

)(
j

j + k − i

)(
n

i

)

ujvk

= ∑
(j,k)∈N×N;

j≤p; k≤q

∑
i∈N;

j≤i≤j+k
︸ ︷︷ ︸

= ∑
i∈N

∑
(j,k)∈N×N;

j≤p; k≤q;
j≤i≤j+k

(
i

j

)(
j

j + k − i

)(
n

i

)

ujvk

= ∑
i∈N

∑
(j,k)∈N×N;

j≤p; k≤q;
j≤i≤j+k

(
i

j

)(
j

j + k − i

)(
n

i

)

ujvk

= ∑
i∈N

(
n

i

)

∑
(j,k)∈N×N;

j≤p; k≤q;
j≤i≤j+k

(
i

j

)(
j

j + k − i

)

ujvk

︸ ︷︷ ︸
=wi

(by (37))

= ∑
i∈N

(
n

i

)

wi = ∑
i∈N;

i≤p+q
︸ ︷︷ ︸

=
p+q

∑
i=0

(
n

i

)

wi + ∑
i∈N;

i>p+q

(
n

i

)

wi
︸︷︷︸

=0
(by (38))

=
p+q

∑
i=0

(
n

i

)

wi + ∑
i∈N;

i>p+q

(
n

i

)

0

︸ ︷︷ ︸

=0

=
p+q

∑
i=0

(
n

i

)

wi.

Forget that we fixed n. We thus have shown that every n ∈ N satisfies anbn =
p+q

∑
i=0

(n
i )wi. Hence, there exist p + q + 1 elements c0, c1, . . . , cp+q of A such that every
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n ∈ N satisfies anbn =
p+q

∑
i=0

(n
i )ci (namely, these p + q + 1 elements are given by

ci = wi). In other words, Statement 2 of Lemma 4.19 with m and (a0, a1, a2, . . .)
replaced by p + q and (a0b0, a1b1, a2b2, . . .) is satisfied. Thus, the two equivalent
statements 1 and 2 of Lemma 4.19 with m and (a0, a1, a2, . . .) replaced by p + q and
(a0b0, a1b1, a2b2, . . .) is satisfied. In other words, the sequence (a0b0, a1b1, a2b2, . . .)
is (p + q)-polynomial (by the definition of “(p + q)-polynomial”). This proves
Lemma 4.21.

Lemma 4.22. Let B be a k-bialgebra. Let b ∈ B. Let m ≥ −1 be an integer.
Then, m is a degree-upper bound of b if and only if the sequence

(

id⊛0 (b) , id⊛1 (b) , id⊛2 (b) , . . .
)

is m-polynomial.

Proof of Lemma 4.22. The elements ηǫ and id of the convolution algebra (Hom (B, B) ,⊛)
commute (since ηǫ is the unity of this algebra). Thus, the binomial formula shows
that

(ηǫ − id)⊛n =
n

∑
i=0

(−1)i
(

n

i

)

id⊛i

for every n ∈ N (again because ηǫ is the unity of the convolution algebra). Hence,
for every n ∈ N, we have

(ηǫ − id)⊛n (b) =
n

∑
i=0

(−1)i
(

n

i

)

id⊛i (b) . (39)

Now, we have the following chain of equivalences:

(m is a degree-upper bound of b)

⇐⇒
(

(ηǫ − id)⊛n (b) = 0 for every integer n > m
)

(by the definition of a “degree-upper bound”)

⇐⇒
(

n

∑
i=0

(−1)i
(

n

i

)

id⊛i (b) = 0 for every integer n > m

)

(by (39))

⇐⇒
(

Statement 1 of Lemma 4.19 holds for A = B and ai = id⊛i (b)
)

⇐⇒
(

the sequence
(

id⊛0 (b) , id⊛1 (b) , id⊛2 (b) , . . .
)

is m-polynomial
)

(by the definition of “m-polynomial”) .

This proves Lemma 4.22.
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Proposition 4.23. Let B be a commutative k-bialgebra. Let b, c ∈ B. Let p, q ≥ −1 be
two integers with p + q ≥ −1. Assume that p is a degree-upper bound of b. Assume that
q is a degree-upper bound of c. Then, p + q is a degree-upper bound of bc.

Proof of Proposition 4.23. For each k ∈ N, we know that the map id⊛k : B → B

is a k-algebra homomorphism (by Lemma 4.11), and thus satisfies id⊛k (bc) =

id⊛k (b) · id⊛k (c). Hence,
(

id⊛0 (bc) , id⊛1 (bc) , id⊛2 (bc) , . . .
)

=
(

id⊛0 (b) id⊛0 (c) , id⊛1 (b) id⊛1 (c) , id⊛2 (b) id⊛2 (c) , . . .
)

. (40)

Lemma 4.22 (applied to m = p) shows that p is a degree-upper bound of b if

and only if the sequence
(

id⊛0 (b) , id⊛1 (b) , id⊛2 (b) , . . .
)

is p-polynomial. Thus,

the sequence
(

id⊛0 (b) , id⊛1 (b) , id⊛2 (b) , . . .
)

is p-polynomial (since p is a degree-
upper bound of b). The same argument (applied to c and q instead of b and p)

shows that the sequence
(

id⊛0 (c) , id⊛1 (c) , id⊛2 (c) , . . .
)

is q-polynomial. Hence,

Lemma 4.21 (applied to A = B, ai = id⊛i (b) and bi = id⊛i (c)) shows that
(

id⊛0 (b) id⊛0 (c) , id⊛1 (b) id⊛1 (c) , id⊛2 (b) id⊛2 (c) , . . .
)

is a (p + q)-polynomial se-
quence of elements of B. In view of (40), this rewrites as follows:
(

id⊛0 (bc) , id⊛1 (bc) , id⊛2 (bc) , . . .
)

is a (p + q)-polynomial sequence of elements
of B.

But Lemma 4.22 (applied to p+ q and bc instead of m and b) shows that p+ q is a

degree-upper bound of bc if and only if the sequence
(

id⊛0 (bc) , id⊛1 (bc) , id⊛2 (bc) , . . .
)

is (p + q)-polynomial. Hence, p + q is a degree-upper bound of bc (since the

sequence
(

id⊛0 (bc) , id⊛1 (bc) , id⊛2 (bc) , . . .
)

is (p + q)-polynomial). This proves
Proposition 4.23.

Corollary 4.24. Let B be a commutative k-bialgebra. Let L denote the set of all id-unipotent
elements of B. Then, L is a k-subalgebra of B.

Proof of Corollary 4.24. We have already seen in Remark 4.8 that L is a k-submodule
of B. Thus, it suffices to show that 1 ∈ L and that all b, c ∈ L satisfy bc ∈ L.

It is easy to see that 1 ∈ L: Indeed, it is easy to see (by induction) that (ηǫ − id)⊛n (1) =
0 for every positive integer n. Thus, 0 is a degree-upper bound of 1. Hence, the
element 1 is id-unipotent, i.e., we have 1 ∈ L.

It remains to show that all b, c ∈ L satisfy bc ∈ L. So let b, c ∈ L be arbitrary.
Thus, b and c are two id-unipotent elements of B. Clearly, b ∈ B has a degree-upper
bound (since b is id-unipotent); let us denote this bound by p. We WLOG assume
that p is nonnegative (since otherwise, we can replace p by 0). Likewise, we can
find a nonnegative degree-upper bound q of c. Now, Proposition 4.23 shows that
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p + q is a degree-upper bound of bc. Hence, bc is id-unipotent. In other words,
bc ∈ L.

We thus have shown that all b, c ∈ L satisfy bc ∈ L. As we have seen, this
concludes the proof of Corollary 4.24.

5. Linear independence in the dual algebra

So far we have considered grouplike elements in coalgebras and bialgebras. A
related (and, occasionally, equivalent) concept are the characters of an algebra.

5.1. Some words on characters

We recall that a character of a k-algebra A means a k-algebra homomorphism from
A to k. Before we study linear independence questions for characters, let us briefly
survey their relation to grouplike elements.

The simplest way to connect characters with grouplike elements is the following
(easily verified) fact:

Proposition 5.1. Let C be a k-coalgebra that is free as a k-module. Let c ∈ C. Consider
the k-linear map c∨∨ : C∨ → k that sends each f ∈ C∨ to f (c) ∈ k. Then, c∨∨ is a
character of the k-algebra C∨ if and only if c is grouplike in C.

Proof of Proposition 5.1 (sketched). We shall prove the two equivalences

(∆ (c) = c ⊗ c)

⇐⇒
(
c∨∨ ( f ⊛ g) = c∨∨ ( f ) · c∨∨ (g) for all f , g ∈ C∨) (41)

and
(ǫ (c) = 1) ⇐⇒

(
c∨∨ (ǫ) = 1

)
. (42)

Indeed, the equivalence (42) follows from the fact that c∨∨ (ǫ) = ǫ (c) (which is a
direct consequence of the definition of c∨∨). Let us now prove the equivalence (41).

The k-module C is free. Hence, it is easy to prove the following fact:

Fact 1: Let x and y be two elements of C ⊗ C. Then, x = y if and only if
we have

( f ⊗ g) (x) = ( f ⊗ g) (y) for all f , g ∈ C∨.

Fact 1 is often stated as “the pure tensors in C∨ ⊗ C∨ separate C ⊗ C”. It can be
proved by picking a basis (ei)i∈I of C and its corresponding dual “basis”

(
e∗i
)

i∈I

of C∨ (with e∗i
(
ej

)
being the Kronecker delta δi,j for all i, j ∈ I), and arguing that

(

e∗i ⊗ e∗j
)

(i,j)∈I×I
is the dual “basis” to the basis

(
ei ⊗ ej

)

(i,j)∈I×I
of C ⊗ C.
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Applying Fact 1 to x = ∆ (c) and y = c ⊗ c, we obtain the following equivalence:

(∆ (c) = c ⊗ c)

⇐⇒
(
( f ⊗ g) (∆ (c)) = ( f ⊗ g) (c ⊗ c) for all f , g ∈ C∨) . (43)

But the multiplication map µk : k ⊗ k → k of k is bijective; thus, for any f , g ∈ C∨,
we have the following chain of equivalences:

(( f ⊗ g) (∆ (c)) = ( f ⊗ g) (c ⊗ c))

⇐⇒ (µk (( f ⊗ g) (∆ (c))) = µk (( f ⊗ g) (c ⊗ c)))

⇐⇒ (( f ⊛ g) (c) = f (c) · g (c))






since µk (( f ⊗ g) (∆ (c))) = (µk ◦ ( f ⊗ g) ◦ ∆)
︸ ︷︷ ︸

= f⊛g
(by the definition of ⊛)

(c) = ( f ⊛ g) (c)

and µk (( f ⊗ g) (c ⊗ c)) = µk ( f (c)⊗ g (c)) = f (c) · g (c)







⇐⇒
(
c∨∨ ( f ⊛ g) = c∨∨ ( f ) · c∨∨ (g)

)

(
since the definition of c∨∨ yields c∨∨ ( f ⊛ g) = ( f ⊛ g) (c)

and c∨∨ ( f ) = f (c) and c∨∨ (g) = g (c)

)

.

Hence, the equivalence (43) is saying the same thing as the equivalence (41). Thus,
the latter equivalence is proven.

We have now proved both equivalences (41) and (42). But the definition of grou-
plike elements yields the following chain of equivalences:

(c is grouplike in C)

⇐⇒ (∆ (c) = c ⊗ c) and (ǫ (c) = 1)

⇐⇒
(
c∨∨ ( f ⊛ g) = c∨∨ ( f ) · c∨∨ (g) for all f , g ∈ C∨) and

(
c∨∨ (ǫ) = 1

)

(by (41) and (42))

⇐⇒
(
c∨∨ is a k-algebra homomorphism from C∨ to k

)

(
since the map c∨∨ is k-linear, and ǫ is the unity of the k-algebra C∨)

⇐⇒
(
c∨∨ is a character of the k-algebra C∨) .

This proves Proposition 5.1.

Proposition 5.1 can be used to characterize the characters of some algebras as
grouplikes. To wit: If A is a k-algebra that is finite free as a k-module, then the
dual k-module A∨ canonically receives the structure of a k-coalgebra8, whose dual
(A∨)∨ is canonically isomorphic to the k-algebra A (via the standard k-module

8This structure can be defined as follows: Its comultiplication ∆A∨ : A∨ → A∨ ⊗ A∨ is the compo-
sition of the map µ∨

A : A∨ → (A ⊗ A)∨ (which is the dual of the multiplication µA : A ⊗ A → A

of A) with the canonical isomorphism (A ⊗ A)∨ → A∨ ⊗ A∨ (which exists because A is finite
free). The counit ǫA∨ : A∨ → k of A∨ is the dual of the unit map ηA : k → A of A.
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isomorphism A → (A∨)∨). Thus, Proposition 5.1 yields that the characters of a
k-algebra A that is finite free as a k-module are precisely the grouplike elements
of its dual coalgebra A∨.

There are some ways to extend this result to k-algebras A that are not finite free;
the best-known case is when k is a field. In this case, every k-algebra A has a Hopf
dual Ao (also known as the zero dual or Sweedler dual), which is a k-coalgebra
whose grouplike elements are precisely the characters of A. (See [Sweedl69, Section
6.0] for the definition and fundamental properties of this Hopf dual and [Duc97,
DucTol09] for questions linked to rationality.) When k is not a field, this Hopf dual
is not defined any more. Indeed, the canonical map M∨ ⊗ N∨ → (M ⊗ N)∨ that is
defined for any two k-modules M and N is known to be injective when k is a field,
but may fail to be injective even when k is an integral domain9. Other concepts can
be used to salvage the relation between grouplikes and characters: bases in duality,
dual laws constructed directly [Bui12, BDMKT16, Ducham01], pseudo-coproducts
[PatReu02, Section 2]. We shall not delve on these things; but the upshot for us
is that while the concepts of characters of an algebra and grouplike elements of a
coalgebra are closely connected, neither concept subsumes the other.

For this reason, our third main result10 will be stated directly in the language of
characters on a bialgebra (i.e., algebra morphisms from this bialgebra to the base
ring).

5.2. Characters on bialgebras

We begin with a simple fact:

Proposition 5.2. Let B be a k-bialgebra. Then, the set Ξ(B) of characters of B is a monoid
for the convolution product ⊛.

Proof. We know that B∨ is a k-algebra under convolution, and thus a monoid.
Hence, we just need to prove that Ξ(B) is a submonoid of this monoid B∨. But this
follows from the following two observations:

• If p, q ∈ Ξ(B), then p ⊛ q ∈ Ξ(B). (This is a consequence of Lemma 4.10,
applied to C = B and A = k.)

• The neutral element ηk
︸︷︷︸

=id

ǫB = ǫB of ⊛ belongs to Ξ(B).

Thus, Proposition 5.2 is proved.

The convolution monoid Ξ(B) is not always a group.

9This will happen when M∨⊗ N∨ has torsion (see Subsection 5.3 and Proposition 5.9 in particular).
10which has been briefly announced at https://mathoverflow.net/questions/310354
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Theorem 5.3. Let B be a k-bialgebra. As usual, let ∆ = ∆B and ǫ = ǫB be its comultipli-
cation and its counit.

Let B+ = ker(ǫ). For each N ≥ 0, let BN
+ = B+ · B+ · · · · · B+

︸ ︷︷ ︸

N times

, where B0
+ = B. Note

that
(
B0
+,B1

+,B2
+, . . .

)
is called the standard decreasing filtration of B.

For each N ≥ −1, we define a k-submodule B∨
N of B∨ by

B∨
N = (BN+1

+ )⊥ =
{

f ∈ B∨ | f
(

BN+1
+

)

= 0
}

. (44)

Thus,
(
B∨
−1,B∨

0 ,B∨
1 , . . .

)
is an increasing filtration of B∨

∞ :=
⋃

N≥−1
B∨

N with B∨
−1 = 0.

Then:

(a) We have B∨
p ⊛ B∨

q ⊆ B∨
p+q for any p, q ≥ −1 (where we set B∨

−2 = 0). Hence, B∨
∞

is a subalgebra of the convolution algebra B∨.

(b) Assume that k is an integral domain. Then, the set Ξ(B)× of invertible characters
(i.e., of invertible elements of the monoid Ξ(B) from Proposition 5.2) is left B∨

∞-
linearly independent.

Proof. The map ǫ : B → k is a k-algebra homomorphism; hence, its kernel B+ is
an ideal of B. Thus, B+ = BB+, so that

BN
+ = BN−1

+ B+ for each N ≥ 1. (45)

Let us define a left action ⊲ of the k-algebra B on B∨ by setting

〈u ⊲ f | v〉 = 〈 f | vu〉 for all f ∈ B∨ and u, v ∈ B.

Here, 〈g | b〉 means g (b) whenever g ∈ B∨ and b ∈ B. Thus, B∨ is a left B-module.
For a given u ∈ B, we shall refer to the operator B∨ → B∨, f 7→ u ⊲ f as shifting by
u or the u-left shift operator; it generalizes Schützenberger’s right u−1 in automata
theory [BeRe88, Schütz61].

In the following, we shall use a variant of Sweedler notation: Given an u ∈ B,
instead of writing ∑

(u)
u1 ⊗ u2 for ∆(u), we will write ∑

(u)
u(1) ⊗ u(2) for ∆(u) − u ⊗

1 − 1 ⊗ u. Thus,
∆(u) = u ⊗ 1 + 1 ⊗ u +∑

(u)

u(1) ⊗ u(2) (46)

for each u ∈ B. Moreover, if u ∈ B+, then all of the u(1) and u(2) can be chosen to
belong to B+ themselves (because it is easy to check that ∆ (u) − u ⊗ 1 − 1 ⊗ u =
((id−ηǫ)⊗ (id−ηǫ)) (∆ (u)) ∈ ((id−ηǫ)⊗ (id−ηǫ)) (B ⊗B) = B+ ⊗ B+, since
(id−ηǫ) (B) = B+). We shall understand, in the following, that we choose u(1)

and u(2) from B+ when u ∈ B+.
The following two lemmas give simple properties of the left action ⊲:
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Lemma 5.4. Let f1, f2 ∈ B∨ and u ∈ B+ = ker(ǫ). Then,

u ⊲ ( f1 ⊛ f2) = (u ⊲ f1)⊛ f2 + f1 ⊛ (u ⊲ f2) + ∑
(u)

(u(1)
⊲ f1)⊛ (u(2)

⊲ f2). (47)

Proof. Immediate by direct computation.

Lemma 5.5. Let k ≥ 0, and let f ∈ B∨
k and u ∈ B+. Then, u ⊲ f ∈ B∨

k−1.

Proof. Easy using (45).

Let us now proceed with the proof of Theorem 5.3.
(a) We shall first show that B∨

p ⊛B∨
q ⊆ B∨

p+q for any p, q ≥ −1.
Indeed, we proceed by strong induction on p + q. Let f1 ∈ B∨

p and f2 ∈ B∨
q . We

intend to show that f1 ⊛ f2 ∈ B∨
p+q. This is trivial if p or q is −1, since B∨

−1 = 0.
Thus, we WLOG assume p, q ≥ 0.

Hence, Bp+q+1
+ = Bp+q

+ B+ by (45). Thus, the k-module Bp+q+1
+ is spanned by the

products uv for u ∈ Bp+q
+ and v ∈ B+. Thus, in order to prove that f1 ⊛ f2 ∈ B∨

p+q,
it suffices to show that f1 ⊛ f2 is orthogonal to all these products.

So let u ∈ Bp+q
+ and v ∈ B+. Then, we must prove that 〈 f1 ⊛ f2 | uv〉 = 0. But we

have

〈 f1 ⊛ f2 | uv〉 = 〈v ⊲ ( f1 ⊛ f2) | u〉. (48)

Applying (47) to v instead of u, we get

v ⊲ ( f1 ⊛ f2) = (v ⊲ f1)⊛ f2 + f1 ⊛ (v ⊲ f2) + ∑
(v)

(v(1) ⊲ f1)⊛ (v(2) ⊲ f2) (49)

with all v(1) and v(2) lying in B+. Thus, Lemma 5.5 yields v ⊲ f1 ∈ B∨
p−1 and

v ⊲ f2 ∈ B∨
q−1 and v(1) ⊲ f1 ∈ B∨

p−1 and v(2) ⊲ f2 ∈ B∨
q−1. Thus, (49) becomes

v ⊲ ( f1 ⊛ f2) = (v ⊲ f1)
︸ ︷︷ ︸

∈B∨
p−1

⊛ f2
︸︷︷︸

∈B∨
q

+ f1
︸︷︷︸

∈B∨
p

⊛ (v ⊲ f2)
︸ ︷︷ ︸

∈B∨
q−1

+∑
(v)

(v(1) ⊲ f1)
︸ ︷︷ ︸

∈B∨
p−1

⊛ (v(2) ⊲ f2)
︸ ︷︷ ︸

∈B∨
q−1

∈ B∨
p−1 ⊛B∨

q + B∨
p ⊛B∨

q−1 + B∨
p−1 ⊛B∨

q−1 ⊆ B∨
p+q−1

(by the induction hypothesis, applied three times). This entails 〈v ⊲ ( f1 ⊛ f2) | u〉 =
0 by the definition of B∨

p+q−1. Thus, (48) yields 〈 f1 ⊛ f2 | uv〉 = 0. Thus, we have
proved that f1 ⊛ f2 ∈ B∨

p+q. This completes the proof of B∨
p ⊛B∨

q ⊆ B∨
p+q.

The fact that B∨
∞ is a subalgebra of the convolution algebra B∨ follows from the

preceding, since we also know that ǫ ∈ B∨
0 ⊆ B∨

∞.
(b) We define the degree of an element b ∈ B∨

∞ to be the least index d ≥ −1 such
that b ∈ B∨

d . We denote this index by deg(b). (Note that deg(0) = −1.)
Recall that for b ∈ B∨

d and u ∈ B+, we have u ⊲ b ∈ B∨
d−1 (by Lemma 5.5). Thus,

for b ∈ B∨
∞ and u ∈ B+, we have u ⊲ b ∈ B∨

∞. In other words, B+ ⊲ B∨
∞ ⊆ B∨

∞.
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Let us consider non-trivial relations of the form

∑
g∈F

pg ⊛ g = 0 (50)

with a finite subset F of Ξ(B)× and with nonzero coefficients pg ∈ B∨
∞. If there

are no such relations with F 6= ∅, then we are done. Otherwise, we pick one
such relation of type (50) with |F| 6= 0 minimal; among all such minimum-size
relations, we pick one in which ∑

g∈F
deg(pg) is minimal. WLOG, we assume that

ǫ ∈ F (otherwise, pick g0 ∈ F and multiply both sides of the equation (50) by g⊛−1
0 ).

It is impossible that F = {ǫ} (as pǫ 6= 0); thus, we can choose g1 ∈ F \ {ǫ}.
Having chosen this g1, we observe that g1(B+) 6= 0 (since g1(B+) = 0 would imply
g1 = ǫ because of g1 ∈ Ξ(B)); in other words, there exists some u ∈ B+ such that
〈g1 | u〉 6= 0. Choose such a u.

It is easy to see (from the definition) that each character g ∈ Ξ(B) and each
v ∈ B+ satisfy

v ⊲ g = 〈g | v〉 g. (51)

Our plan is now to shift both sides of (50) by u, and rewrite the resulting equality
again as an equality of the form (50) (with new values of pg). To do so, we introduce
a few notations.

Write ∆ (u) as in (46), with u(1), u(2) ∈ B+. For each g ∈ F, let us set

p′g := u ⊲ pg + 〈g | u〉pg +∑
(u)

〈g | u(2)〉(u(1)
⊲ pg) ∈ B∨.

Then, we have

u ⊲ (pg ⊛ g) = p′g ⊛ g (52)

for each g ∈ F, because Lemma 5.4 yields

u ⊲ (pg ⊛ g)

= (u ⊲ pg)⊛ g + pg ⊛ (u ⊲ g) +∑
(u)

(u(1)
⊲ pg)⊛ (u(2)

⊲ g)

= (u ⊲ pg)⊛ g + pg ⊛ (〈g | u〉g) + ∑
(u)

(u(1)
⊲ pg)⊛

(

〈g | u(2)〉g
)

(by (51))

=
(

u ⊲ pg + 〈g | u〉pg + ∑
(u)

〈g | u(2)〉(u(1)
⊲ pg)

)

︸ ︷︷ ︸

=p′g

⊛g

= p′g ⊛ g.

Thus, if we shift both sides of (50) by u, we find

u ⊲

(

∑
g∈F

pg ⊛ g

)

= 0.
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Hence,

0 = u ⊲

(

∑
g∈F

pg ⊛ g

)

= ∑
g∈F

u ⊲ (pg ⊛ g) = ∑
g∈F

p′g ⊛ g (53)

(by (52)).
For each g ∈ F, we have p′g ∈ B∨

∞ (by the definition of p′g, since pg ∈ B∨
∞ and

B+ ⊲ B∨
∞ ⊆ B∨

∞).
It is easy to see that each g ∈ F satisfies

deg
(

p′g
)

≤ deg
(

pg

)
. (54)

(Indeed, Lemma 5.5 shows that any nonzero f ∈ B∨
∞ satisfies deg (u ⊲ f ) < deg f ;

for the same reason, deg
(

u(2)
⊲ f
)

< deg f . Thus, the definition of p′g represents

p′g as a k-linear combination of elements of B∨
∞ having the same degree as pg or

smaller degree. This proves (54).)
But the definition of p′ǫ easily yields

p′ǫ = u ⊲ pǫ (55)

(since u, u(2) ∈ B+ entail u ⊲ pǫ = 0 and u(2)
⊲ pǫ = 0). Therefore, deg (p′ǫ) =

deg (u ⊲ pǫ) < deg (pǫ) (since Lemma 5.5 shows that any nonzero f ∈ B∨
∞ satisfies

deg (u ⊲ f ) < deg f ).
Now, recall the equality (53). This equality (once rewritten as ∑

g∈F
p′g ⊛ g = 0) has

the same structure as (50) (since p′g ∈ B∨
∞ for each g ∈ F), and uses the same set F,

but it satisfies ∑
g∈F

deg
(

p′g
)

< ∑
g∈F

deg
(

pg

)
(because each g ∈ F satisfies (54), but

the specific character g = ǫ satisfies deg (p′ǫ) < deg (pǫ)). Thus, if the coefficients
p′g in (53) are not all 0, then we obtain a contradiction to our choice of relation
(which was to minimize ∑

g∈F
deg

(
pg

)
). Hence, all coefficients p′g must be 0. In

particular, we must have p′g1
= 0. Therefore,

0 = p′g1
= u ⊲ pg1 + 〈g1 | u〉pg1 + ∑

(u)

〈g1 | u(2)〉(u(1)
⊲ pg1)

(by the definition of p′g1
), so that

〈g1 | u〉pg1 = −u ⊲ pg1 − ∑
(u)

〈g1 | u(2)〉(u(1)
⊲ pg1) ∈ B∨

deg(pg1)−1

(by Lemma 5.5, since u, u(2) ∈ B+ and pg1 ∈ B∨
deg(pg1)

). In other words, 〈g1 | u〉pg1

is orthogonal to Bdeg(pg1)
+ . Since11 〈g1 | u〉 6= 0, this entails that pg1 is orthogonal

11We recall that we have chosen u ∈ B+ such that 〈g1 | u〉 6= 0.

20-09-2020 04:53



Variations on linear independence of grouplikes page 38

to Bdeg(pg1)
+ as well (since its target k is an integral domain). This means that

pg1 ∈ B∨
deg(pg1)−1

, or, equivalently, deg
(

pg1

)
≤ deg

(
pg1

)
− 1. But this is absurd.

This is the contradiction we were looking for. Thus, Theorem 5.3 (b) is proved.

Remark 5.6. i) The invertible characters in Ξ(B)× are also right B∨
∞-linearly in-

dependent. This can be proven similarly, using right shifts in the proof.

ii) The reader should beware of supposing that the standard decreasing filtration
is necessarily Hausdorff12 (i.e., satisfies

⋂

n≥0
Bn
+ = {0}). A counterexample

can be obtained by taking the universal enveloping bialgebra of any simple
Lie algebra (or, more generally, of any perfect Lie algebra); it will satisfy
⋂

n≥0
Bn
+ = B+.

iii) The property (i.e., the linear independence) does not hold if we consider the
set of all characters (that is, Ξ(B)) instead of Ξ(B)× . For example, let B be

the univariate q-infiltration bialgebra
(

k [x] , ∆↑q
, ǫ
)

from Example 2.3, and
assume that q ∈ k is invertible. Define two k-linear maps f : B → k and
g : B → k by

f (xn) = δn,1 and g (xn) =

(

−1
q

)n

for all n ∈ N

(where the δn,1 is a Kronecker delta). Note that g is a character of B, while
f ∈ B∨

1 ⊆ B∨
∞.

We claim that f ⊛ g = 0. In fact, it is easy to see (by induction on m) that

∆↑q
(xm) = ∑

(i,j,k)∈N3;
i+j+k=m

(
m

i, j, k

)

qjxi+j ⊗ xj+k (56)

holds in B for every m ∈ N. Using this equality, it is straightforward to see
that ( f ⊛ g) (xm) = 0 for each m ∈ N; thus, f ⊛ g = 0. Since f is nonzero, this
shows that the set Ξ(B) is not left B∨

∞-linearly independent.

Note that our above proof of Theorem 5.3 is somewhat similar to the standard
(Artin) proof of the linear independence of characters in Galois theory ([Artin71,
proof of Theorem 12]). Shifting by u in the former proof corresponds to replacing
x by αx in the latter.

Corollary 5.7. We suppose that B is cocommutative, and k is an integral domain.
Let (gx)x∈X be a family of elements of Ξ(B)× (the set of invertible characters of B), and let
ϕX : k[X] → (B∨,⊛, ǫ) be the k-algebra morphism that sends each x ∈ X to gx. In order
for the family (gx)x∈X (of elements of the commutative ring (B∨,⊛, ǫ)) to be algebraically

12“Separated” in [Bourba72].
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independent over the subring (B∨
∞,⊛, ǫ), it is necessary and sufficient that the monomial

map

m : N(X) → (B∨,⊛, ǫ),

α 7→ ϕX(X
α) = ∏

x∈X

gαx
x (57)

(where αx means the x-th entry of α) be injective.

Proof. Indeed, as B is cocommutative (and k commutative), (B∨,⊛, ǫ) is a commu-
tative algebra (see, e.g., [GriRei20, Exercise 1.5.5] or [Bourba89, Chapter III, §11.2,
Proposition 2]). Thus, the algebraic independence of the family (gx)x∈X is equiva-

lent to the statement that the family
(

∏
x∈X

gαx
x

)

α∈N(X)

be B∨
∞-linearly independent.

In other words, it is equivalent to the claim that the family (m(α))α∈N(X) (with m

as in (57)) be B∨
∞-linearly independent (since m(α) = ∏

x∈X
gαx

x for each α ∈ N(X)).

It suffices to remark that the elements m(α) are invertible characters (since they
are products of invertible characters). Therefore, in view of Theorem 5.3 (b), the
(m(α))α∈N(X) are B∨

∞-linearly independent if they are distinct; but this amounts to
saying that m is injective.

Example 5.8. i) Let k be an integral domain, and let us consider the bialgebra
B = (k[x], ∆, ǫ) from Example 2.2 (the standard univariate polynomial bial-
gebra). As it is a particular case of the situation of the free algebra13, we will
let ⊔⊔ denote the convolution ⊛ on its dual k-module B∨ = k[x]∨ ∼= k[[x]];
thus, (k[[x]], ⊔⊔ , 1) becomes a commutative k-algebra.

For every α ∈ k, there exists only one character of k[x] sending x to α; we
will denote this character by (α.x)∗ ∈ k[[x]] (see [Eil74, DuMiNg19, DucTol09,
DGM2-20] for motivations about this notation). Thus, Ξ (B) = {(α.x)∗ | α ∈ k}.
It is easy to check that (α.x)∗ ⊔⊔(β.x)∗ =

(
(α + β).x

)∗ for any α, β ∈ k. Thus,
any c1, c2, . . . , ck ∈ k and any α1, α2, . . . , αk ∈ N satisfy

(
(c1.x)∗

)⊔⊔ α1 ⊔⊔
(
(c2.x)∗

)⊔⊔ α2 ⊔⊔ · · · ⊔⊔
(
(ck.x)∗

)⊔⊔ αk

=
(
(α1c1 + α2c2 + · · ·+ αkck).x

)∗ . (58)

The monoid Ξ (B) is thus isomorphic to the abelian group (k,+, 0); in partic-
ular, it is a group, so that Ξ (B)× = Ξ (B).
The decreasing filtration of B is given by Bn

+ = k[x]≥n (the ideal of polyno-
mials of degree ≥ n). Hence, the reader may check easily that B∨

n = k[x]≤n

(the module of polynomials of degree ≤ n), whence B∨
∞ = k[x].

Now, let ((ci.x)∗)i∈I be a family of elements of Ξ (B)×. Taking X = I and gi =
ci.x for each i ∈ I, we can then apply Corollary 5.7, and we conclude that the

13See [GriRei20, Proposition 1.6.7] and [Reuten93, Section 1.4].
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family ((ci.x)∗)i∈I of elements of the power series ring k[[x]] is algebraically
independent over the subring (B∨

∞,⊛, ǫ) = k[x] if and only if the monomial
map (57) is injective.

But (58) shows that the monomial map (57) is injective if and only if the family
(ci)i∈I is Z-linearly independent in k.

To illustrate this, take k = Q (the algebraic closure of Q) and cn =
√

pn ∈ N,
where pn is the n-th prime number. What precedes shows that the fam-
ily of series

(
(
√

pnx)∗
)

n≥1 is algebraically independent over the polynomials

(i.e., over Q[x]) within the commutative Q-algebra
(
Q[[x]], ⊔⊔ , 1

)
. This exam-

ple can be double-checked using partial fractions decompositions as, in fact,

(
√

pnx)∗ =
1

1 −√
pnx

(this time, the inverse is taken within the ordinary

product in k[[x]]) and
( 1

1 −√
pnx

)⊔⊔ n
=

1
1 − n

√
pnx

.

ii) The preceding example can be generalized as follows: Let k still be an integral

domain; let V be a k-module, and let B =
(

T(V), conc, 1T(V), ∆⊠, ǫ
)

be the

standard tensor conc-bialgebra14 For every linear form ϕ ∈ V∨, there is an

unique character ϕ∗ of
(

T(V), conc, 1T(V)

)

such that all u ∈ V satisfy

〈ϕ∗ | u〉 = 〈ϕ | u〉. (59)

Again, it is easy to check15 that (ϕ1)
∗ ⊔⊔(ϕ2)

∗ =
(

ϕ1 + ϕ2
)∗ for any ϕ1, ϕ2 ∈

V∨, because, from Lemma 4.10, both sides are characters of
(

T(V), conc, 1T(V)

)

so that the equality has only to be checked on V. Again, from this, any
ϕ1, ϕ2, . . . , ϕk ∈ V∨ and any α1, α2, . . . , αk ∈ N satisfy

(
(ϕ1)

∗)⊔⊔ α1 ⊔⊔
(
(ϕ2)

∗)⊔⊔ α2 ⊔⊔ · · · ⊔⊔
(
(ϕk)

∗)⊔⊔ αk

=
(
α1ϕ1 + α2ϕ2 + · · ·+ αkϕk

)∗ . (60)

The decreasing filtration of B is given by Bn
+ =

⊕

k≥n Tk(V) (the ideal of
tensors of degree ≥ n) and the reader may check easily that, in this case, B∨

∞

is the shuffle algebra of finitely supported linear forms – i.e., for each Φ ∈ B∨,
we have the equivalence

Φ ∈ B∨
∞ ⇐⇒ (∃N ∈ N)(∀k ≥ N)(Φ(Tk(V)) = {0}).

14The one defined by

∆⊠(1) = 1 ⊗ 1 and ∆⊠(u) = u ⊗ 1 + 1 ⊗ u ; ǫ(u) = 0 for all u ∈ V.

15For this bialgebra ⊔⊔ stands for ⊛ on the space Hom(B, k).
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Then, Corollary 5.7 shows that (ϕ∗
i )i∈I are B∨

∞-algebraically independent within
(T(V)∨, ⊔⊔ , ǫ) if the corresponding monomial map is injective, and (60) shows
that it is so iff the family (ϕi)i∈I of linear forms is Z-linearly independent in
V∨.

5.3. Appendix: Remarks on the dual of a tensor product

In Subsection 5.1, we have mentioned the difficulties of defining the dual coalgebra
of a k-algebra in the general case when k is not necessarily a field. As we said,
these difficulties stem from the fact that the canonical map M∨ ⊗ N∨ → (M ⊗ N)∨

(for two k-modules M and N) is not generally an isomorphism, and may fail to be
injective even if k is an integral domain. Even worse, the k-module M∨ ⊗ N∨ may
fail to be torsionfree (which automatically precludes any k-linear map M∨⊗ N∨ →
(M ⊗ N)∨, not just the canonical one, from being injective). We shall soon give an
example where this happens (Example 5.10). First, let us prove a positive result:

Proposition 5.9. Let k be an integral domain. Let M and N be two k-modules. Consider
the canonical k-linear map

Φ : M∨ ⊗k N∨ −→ (M ⊗k N)∨

defined by

(Φ( f ⊗ g)) (u ⊗ v) = f (u)g(v) for all f ∈ M∨, g ∈ N∨, u ∈ M and v ∈ N.

Then, the following are equivalent:

1. The k-module M∨ ⊗k N∨ is torsionfree.

2. The map Φ is injective.

First proof of Proposition 5.9. 1. =⇒ 2.) Assume that statement 1. holds. Thus, the
k-module M∨ ⊗k N∨ is torsionfree.

We must prove that the map Φ is injective. Assume the contrary. Thus, ker Φ 6= 0.
Therefore, there exists some nonzero t ∈ M∨ ⊗ N∨ such that Φ(t) = 0. Consider
this t. Consider all choices of nonzero m ∈ k and of elements u1, u2, . . . , ur ∈ M∨

and v1, v2, . . . , vr ∈ N∨ such that

mt =
r

∑
i=1

ui ⊗ vi. (61)

Among all such choices, choose one for which r is minimum.
From the fact that r is minimum, we conclude that the elements v1, v2, . . . , vr

of N∨ are k-linearly independent16. But the map Φ is k-linear; hence, Φ(mt) =

16Here is the proof in detail: Assume the contrary. Thus, λ1v1 + λ2v2 + · · · + λrvr = 0 for some
scalars λ1, λ2, . . . , λr ∈ k, not all of which are zero. Consider these scalars, and assume WLOG
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mΦ(t) = 0 (since Φ(t) = 0). Thus, 0 = Φ(mt) =
r

∑
i=1

Φ(ui ⊗ vi) (by (61)). Hence, for

all x ∈ M and y ∈ N, we have

0 =

(
r

∑
i=1

Φ(ui ⊗ vi)

)

(x ⊗ y) =
r

∑
i=1

ui(x)vi(y) (62)

(by the definition of Φ). This can be rewritten as

0 =
r

∑
i=1

ui(x)vi in N∨ for all x ∈ M. (63)

But this entails that ui(x) = 0 for all 1 ≤ i ≤ r (since v1, v2, . . . , vr are k-linearly
independent). Since this holds for all x ∈ M, we thus find that ui = 0 for all
1 ≤ i ≤ r. Hence, (61) shows that mt = 0, so that t = 0 (since M∨ ⊗ N∨ is
torsionfree). This contradicts t 6= 0. This contradiction completes the proof of 1.
=⇒ 2.

2. =⇒ 1.) The k-module (M ⊗k N)∨ is torsionfree, since the dual of any k-
module is torsionfree. Hence, if Φ is injective, then M∨ ⊗k N∨ is torsionfree (since
a submodule of a torsionfree k-module is always torsionfree).

Second proof of Proposition 5.9 (sketched). 1. =⇒ 2.) Assume that statement 1. holds.
Thus, the k-module M∨ ⊗k N∨ is torsionfree.

We must prove that the map Φ is injective.
Let F be the fraction field of k. For any k-module P, we let PF denote the F-vector

space F ⊗ P (which can also be defined as the localization of P with respect to the
multiplicatively closed subset k \ {0} of k), and we let ιP denote the canonical
k-linear map P → PF. We note that ιP is injective when P is torsionfree.

If V is an F-vector space, then we shall write V∗ for the dual space HomF (V, F)
of V. This should be distinguished from the k-module dual of V, which we denote
by V∨.

that λr 6= 0. Hence, λrm 6= 0 (since k is an integral domain) and λrvr = −
r−1
∑

i=1
λivi (since

λ1v1 + λ2v2 + · · ·+ λrvr = 0). Now, multiplying the equality (61) with λr , we obtain

λrmt = λr

r

∑
i=1

ui ⊗ vi =
r

∑
i=1

ui ⊗ λrvi =
r−1

∑
i=1

ui ⊗ λrvi
︸ ︷︷ ︸

=λrui⊗vi

+ur ⊗ λrvr
︸︷︷︸

=−
r−1
∑

i=1
λivi

=
r−1

∑
i=1

λrui ⊗ vi + ur ⊗
(

−
r−1

∑
i=1

λivi

)

=
r−1

∑
i=1

λrui ⊗ vi −
r−1

∑
i=1

λiur ⊗ vi

=
r−1

∑
i=1

(λrui − λiur)⊗ vi.

This is an equality of the same shape as (61), but with r − 1 instead of r (since λrm 6= 0). Hence,
it contradicts the minimality of r. This contradiction completes our proof.
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For any k-module P, the canonical F-linear map ρP : (P∨)F → (PF)
∗ (which sends

each f ∈ P∨ to the unique F-linear map PF → F that extends f ) is injective. (This is
easily checked by hand, using the fact that the map k → F is injective.) Hence, we
obtain two injective F-linear maps ρM : (M∨)F → (MF)

∗ and ρN : (N∨)F → (NF)
∗.

Their tensor product is an injective F-linear map ρM ⊗F ρN : (M∨)F ⊗F (N∨)F →
(MF)

∗ ⊗F (NF)
∗ (since the tensor product of two injective F-linear maps over F is

injective, because F is a field).
For any k-modules M and N, there is a canonical isomorphism νM,N : (M ⊗ N)F →

MF ⊗F NF. (This is a general property of base change.) Hence, MF ⊗F NF
∼=

(M ⊗ N)F, so that (MF ⊗F NF)
∗ ∼= ((M ⊗ N)F)

∗.
Also, it is known from linear algebra that the canonical map κV,W : V∗ ⊗F W∗ →

(V ⊗F W)∗ is injective whenever V and W are two F-vector spaces.
We assumed that M∨ ⊗ N∨ is torsionfree. Thus, the map ιM∨⊗N∨ is injective. We

have the following commutative diagram of k-modules:

M∨ ⊗ N∨

Φ

!!
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉h

HιM∨⊗N∨

uu❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

(M∨ ⊗ N∨)F

νM∨ ,N∨ ∼=
��

(M∨)F ⊗F (N∨)F
_�

ρM⊗FρN

��

(M ⊗ N)∨

ι
(M⊗N)∨

��

(MF)
∗ ⊗F (NF)

∗
_�

κMF ,NF
��

(
(M ⊗ N)∨

)

F

ρM⊗N

}}④④
④④
④④
④④
④④
④④
④④
④④
④④
④④
④

(MF ⊗F NF)
∗

∼=
))❘

❘❘❘
❘❘❘

❘❘❘
❘❘

❘❘

((M ⊗ N)F)
∗

(64)

All maps along the left boundary of this diagram are injective; thus, their compo-
sition is injective as well. But this composition equals the composition of the maps
along the right boundary of the diagram. Hence, the latter composition is injective.
Thus, Φ (being the initial map in this composition) must be injective. This proves
1. =⇒ 2.

2. =⇒ 1.) As in the First proof above.

We can now give an example (communicated to us by Jeremy Rickard) where
M∨ ⊗ N∨ fails to be torsionfree:

Example 5.10. Let k be a field, I and J infinite sets, and A the k-subalgebra of

k(t)[xi , yj : i ∈ I, j ∈ J]
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generated by
{xi, yj, txi, t−1yj : i ∈ I and j ∈ J}.

Then, A is an integral domain. In this example, all duals are taken with respect to
A (not with respect to k); that is, M∨ means HomA (M, A).

The free A-modules A(I), A(J) and A(I×J) satisfy
(

A(I)
)∨ ∼= AI ,

(

A(J)
)∨ ∼= AJ ,

(

A(I×J)
)∨ ∼= AI×J, and A(I×J) ∼= A(I)⊗A A(J). Moreover, there is a natural A-linear

map

Ψ : AI ⊗A AJ → AI×J,

(ai)i∈I ⊗A

(
bj

)

j∈J
7→
(

aibj

)

(i,j)∈I×J

that forms a commutative diagram

AI ⊗A AJ Ψ
//

∼=
��

AI×J

∼=
��

(

A(I)
)∨

⊗A

(

A(J)
)∨

Φ
//

(

A(I×J)
)∨

(65)

with the canonical map Φ :
(

A(I)
)∨

⊗A

(

A(J)
)∨

→
(

A(I×J)
)∨

defined as in Propo-
sition 5.9.

Now, we define an element

ξ = (txi)i∈I ⊗A (t−1yj)j∈J − (xi)i∈I ⊗A (yj)j∈J ∈ AI ⊗A AJ .

It is clear by computation that Ψ (ξ) = 0. We shall now show that ξ 6= 0.
Indeed, assume the contrary. Thus, ξ = 0. Hence, ξ can be “shown to be zero

using only finitely many elements of A” – i.e., there exists a finitely generated
k-subalgebra B of A such that

(txi)i∈I ⊗B (t−1yj)j∈J − (xi)i∈I ⊗B (yj)j∈J = 0 in AI ⊗B AJ . (66)

(Indeed, AI ⊗A AJ can be viewed as a quotient of AI ⊗Z AJ modulo the Z-submodule
spanned by all the differences ua ⊗Z v − u ⊗Z av for u ∈ AI , v ∈ AJ and a ∈ A.
Thus, ξ = 0 means that the element (txi)i∈I ⊗Z (t−1yj)j∈J − (xi)i∈I ⊗Z (yj)j∈J of
AI ⊗Z AJ is a Z-linear combination of finitely many such differences. Now take
the (finitely many) a’s involved in these differences, and define B to be the k-
subalgebra of A generated by these finitely many a’s. Then, (66) holds, as desired.)

Consider this B. Choose r ∈ I and s ∈ J so that

B ⊆ k(t)[xi , yj : i 6= r and j 6= s].

(Such r and s exist, since B is finitely generated.)
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If m is a monomial in the variables {xi, yj : i ∈ I, j ∈ J}, then degx m shall denote
the total degree of m in the variables xi, while degy shall denote the total degree

of m in the variables yj. A good monomial shall mean a product of the form tlm,
where m is a monomial in the variables {xi, yj : i ∈ I, j ∈ J} and l ∈ Z satisfies
− degy m ≤ l ≤ degx m. As a k-vector space, A has a basis consisting of all good
monomials.

A good monomial tlm will be called strict if m is just a power of xr or just a power
of ys. (In particular, the monomial 1 is strict.) The non-strict good monomials span
a proper ideal of A. Let Ā be the corresponding quotient algebra of A; then the
image B̄ of B in Ā is just (a copy of) k (since every element of B is a k-linear
combination of non-strict good monomials and of the monomial 1). For any f ∈ A,
we let f denote the canonical projection of f on the quotient ring Ā.

Now, we have a k-linear map obtained by composing

AI ⊗B AJ → ĀI ⊗B̄ ĀJ ∼=→ ĀI ⊗k ĀJ → Ā ⊗k Ā,

where

• the first arrow sends each tensor u ⊗B v ∈ AI ⊗B AJ to the tensor u ⊗B̄ v ∈
ĀI ⊗B̄ ĀJ (with u denoting the projection of u ∈ AI to ĀI , and with v defined
similarly);

• the second arrow is due to B̄ being (a copy of) k;

• the third arrow is obtained by tensoring

the canonical projection ĀI → Ā, (ai)i∈I 7→ ar

with the canonical projection ĀJ → Ā,
(
bj

)

j∈J
7→ bs.

Applying this k-linear map to both sides of the equation (66), we obtain

txr ⊗k t−1ys − xr ⊗k ys = 0 in Ā ⊗k Ā.

But this contradicts the fact that the four basis elements txr, t−1ys, xr, ys of Ā are
k-linearly independent.

Hence, our assumption (ξ = 0) was false. Thus, ξ 6= 0. In view of Ψ (ξ) =
0, this shows that Ψ is not injective. Due to the commutative diagram (65), this
means that Φ is not injective. Hence, Proposition 5.9 shows that the A-module
(

A(I)
)∨

⊗A

(

A(J)
)∨

is not torsionfree. In view of (65), this means in turn that the

A-module AI ⊗A AJ is not torsionfree (despite being the tensor product of the two
torsionfree, and even torsionless, A-modules AI and AJ).

The presence of torsion in AI ⊗A AJ can also be seen directly using the element
ξ from the above argument: For any s ∈ I, we have

xsξ = xs

(

(txi)i∈I ⊗A (t−1yj)j∈J − (xi)i∈I ⊗A (yj)j∈J

)

= 0,
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since

xs

(

(txi)i∈I ⊗A (t−1yj)j∈J

)

= (txsxi)i∈I ⊗A (t−1yj)j∈J

= (xi)i∈I ⊗A (xsyj)j∈J

= xs

(
(xi)i∈I ⊗A (yj)j∈J

)
.

Another example of a non-injective canonical map AI ⊗A AJ → AI×J (and thus,
of a tensor product of the form M∨ ⊗A N∨ having torsion) can be found in the last
two paragraphs of [Goodea72].

Note that such examples can only exist when A is not Noetherian. Indeed, it has
been shown in [AbGoWi99, Proposition 1.2] that if A is a Noetherian ring, then the
canonical map AI ⊗A AJ → AI×J for any two sets I and J is injective.
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