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WHEN THE ALLEE THRESHOLD IS AN EVOLUTIONARY TRAIT:
PERSISTENCE VS. EXTINCTION

MATTHIEU ALFARO, LEO GIRARDIN, FRANCOIS HAMEL, AND LIONEL ROQUES

ABSTRACT. We consider a nonlocal parabolic equation describing the dynamics of a
population structured by a spatial position and a phenotypic trait, submitted to disper-
sion, mutations and growth. The growth term may be of the Fisher-KPP type but may
also be subject to an Allee effect which can be weak (non-KPP monostable nonlinearity,
possibly degenerate) or strong (bistable nonlinearity). The type of growth depends on
the value of a variable 6 : the Allee threshold, which is considered here as an evolutionary
trait. After proving the well-posedness of the Cauchy problem, we study the long time
behavior of the solutions. Due to the richness of the model and the interplay between
the various phenomena and the nonlocality of the growth term, the outcomes (extinction
vs. persistence) are various and in sharp contrast with earlier results of the existing
literature on local reaction-diffusion equations.
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1. INTRODUCTION

1.1. Position of the problem. We consider a population density v = u(t, z, ), which
depends on time ¢t > 0 and is structured by a spatial position z € R and a phenotypic
trait
e = (emina emax)a
where
—00 < Omin < Omax < 1,
and whose evolution is governed by the nonlocal problem

(1.1) U = dugy + augg +u(p—0)(1 —p) forallt >0, z€R, §€0O.

In , d > 0 is the spatial diffusion coefficient, o > 0 is a coefficient which measures
the impact of mutations on the trait (mutation rate x mutation effects, see Appendix A
in [46]). The nonlocal term p = p(t,z) corresponds to the total population density at
spatial position z; it depends on the solution u = u(t, z, 0) itself and is given by

p(t,z) := / u(t,z,0)dd for allt >0, xz € R.
S}

To ensure that mutations have no effect on the population size, the equation (1.1)) is
supplemented with no-flux boundary conditions on the boundary of the interval © of
phenotypic traits, namely

(1.2) up(t, x, Omin) = up(t, z,0max) =0 forallt >0, z € R.

Our first main concern is to perform a detailed analysis of the Cauchy problem obtained
by supplementing to ([1.1))—(1.2)) an initial condition

(1.3) u(0,+,-) = ug € Ce(R x ©, [0, +00)) with sup/ up(z,6)dé € (0, M]
zeR JO

for some real number M > 0. In , C. denotes the space of continuous functions with
compact support. The initial conditions are here assumed moreover to be nonnegative.
Secondly, we will investigate the long time dynamics (persistence vs. extinction) of the
population density w and its mass p, according to the value of the parameters «, Oyin
and 6.y, and according to the initial condition wyg.

1.2. Biological context. A biological invasion is generally considered as a three-stage
process [|16], which begins with the introduction of some individuals into a new environ-
ment, and is followed by the establishment and spreading of the population. This scenario
corresponds to a successful invasion. However, individuals that arrive from a source popu-
lation into a new environment do not necessarily establish a new population [16]. Either
the newly-introduced individuals are well-adapted to the new environment and can readily
establish or the introduced population declines due to a negative growth rate. In the lat-
ter case, evolutionary adaptation can lead to the establishment of such initially declining
populations. This process is known as evolutionary rescue |26].

The success of an invasion depends on several factors that include characteristics of the
species, of the introduction event (initial population size and spatial distribution [37] and

IThe finiteness of the supremum over z of Jo uo(z,0) df is automatic since ug is assumed to be contin-
uous and compactly supported in R x ©. We actually introduce the positive quantity M because it will
play a role in further estimates.
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genotype diversity), and of the new environment (e.g., climate matching or presence of
hosts for biological invasions). Among these factors, several studies have shown that the
presence of an Allee effect, a decreased individual fitness at low population density [5],
plays an important role, as introductions typically involve small populations [28,52}60].
The Allee effect may result from several simultaneous processes [11] that arise at low
densities, such as diminished chances of finding mates or inbreeding [27].

Many spatio-temporal modelling approaches that focused on invasion success in the
presence of an Allee effect adopted a purely demographic viewpoint [29}37,53], thereby
neglecting the effects of genetic adaptation. These studies were based on PDE reaction-
diffusion models with growth functions of the form f(p) = p(p — 0o)(1 — p), with 6y < 1
a given constant representing the Allee threshold [57]. We recall that this function may
account for the presence of a strong Allee effect if 0y > 0, a weak Allee effect if 6y € (—1,0]
and can also take a KPP form without Allee effect if 6y < —1 [59] (see also Table [I)).

Here, we take a different approach to analyze the success of an invasion in the presence
of genetic adaptation when the trait under selection precisely corresponds to the strength 6
of the Allee effect. In the source population, where the introduced individuals come from,
Allee effects may have been promoted by evolution, due to high population sizes [12]. In
such dense populations, where mate finding is easy, individual may indeed acquire traits
that impair fitness at lower densities. Conversely, the selection pressure at low density can
promote traits that reduce the strength of the Allee effect. More generally, this type of
density-dependent selection [9,56] can occur when the fitness associated to a trait value
depends on the population density. Empirical examples include dispersal dimorphism in
several insect species, where individuals with higher dispersal potential (and thus better
mate-finding ability) mostly appear at low population densities [61]. The invasion of
cane toads in Australia is another well-documented example of this dimorphism [50]. Yet
another example of density-dependent selection is the evolution of virulence in spreading
epidemics [45]. Recently, such biological problems and the underlying trade-offs have
attracted a great deal of interest from mathematical modelers [10,31},/45,/49].

As the leading edge of an invasion is by definition a region where the population density
is low, one may expect that important selection pressure on traits that regulate the Allee
effect occurs there. The strength of the Allee effect is known to have important effects
on the persistence/extinction and the spread of invasive organisms, we therefore expect
that the evolution of these traits have important effect on invasion dynamics. Yet, this
question has not been addressed theoretically until the recent work [32], which is based on
individual-based simulations of a model with a trait that governs resistance to the Allee
effect. In [32], the authors focused on the transition from pushed waves to pulled waves
during the course of an invasion. Here, we rather focus on the conditions that lead to a
successful invasion or not.

1.3. Mathematical context. In the last decade, mathematical population models struc-
tured by both a spatial and a trait variable and evolving in an unbounded spatial domain
have received much attention. As far as Fisher-KPP growth terms (the per capita growth
rate is decreasing with respect to the population density) are concerned, let us mention
the works [1,/141[23}43] dealing with constant motility, [7,15,[17-19,121}22,25.142} 58] where
the motility is trait-dependent (cane toad equation) and [4}38-42,44,54] where the trait
structure is discrete. As far as bistable growth terms are concerned, let us mention [20]
where a local bistable-type equation is concerned, and [2] considering a nonlocal model
proposed in [48] for evolutionary rescue.

The model is not only space-trait structured but also includes a trait-dependent
Allee effect in the growth term (possibly threatening small populations). Moreover, due to
the nonlocality of the growth term and its non-monotonicity with respect to u (remember
that p depends on u), the comparison principle does not hold in general for 7,
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0o < —1 |60 (—1,-1/2] | 6o € (=1/2,0] | 60 € (0,1/2) | 60 € [1/2,1)
Outcome P. P. P. E. or P. E.
Strength of the A. E. | No A. E. Weak A. E. Weak A. E. Strong A. E. | Strong A. E.
Nature of the front Pulled Pulled Pushed Pushed Pushed
Spreading speed 2v/—0od 2v/—0od V2d(1/2 — 6o) | V2d(1/2 — 6o) 0

TABLE 1. Standard persistence and spreading results for the equation
pt = dpzz + p(p — 0p)(1 — p) with compactly supported initial condition
po >,%Z 0 (here, g < 1 is a fixed parameter). P.: systematic persistence
independently of py (hair trigger effect); E. or P.: outcome depending on
po; E.: systematic extinction independently of pg; A. E.: Allee effect. The
front refers to the unique front or to the front with minimal speed. Its
pulled/pushed nature is understood in the sense of [36].

that is, even if two initial conditions ug and vy are ordered, the solutions emanating from
them may not be ordered at positive times.

As mentioned above, the main purpose of this work is to determine conditions that
imply persistence or extinction of a population whose density is governed by f.
Since the Allee threshold, or the strength of the Allee effect, is regarded as an evolutionary
trait subject to mutations and selection, the model under consideration may share some
similarities with various classical local reaction-diffusion equations such as Fisher-KPP,
degenerate monostable, or bistable equations. As a result, the model can reveal many
phenomena which are common in the study of local reaction-diffusion equations. Let us
first mention the so-called hair trigger effect [8], meaning that persistence occurs whatever
the size of the initial density. Notice that the hair trigger effect is related to the seminal
blow-up result of Fujita [35]. On the other hand, some threshold phenomena [3,30,55,
62] may occur, meaning that “small” populations typically go extinct whereas “large”
populations typically persist. These classical results are summarized in Table [1| for the
standard model py = dpy. + p(p — 6p)(1 — p), where 6y is a fixed parameter that controls
the occurrence of an Allee effect, see above. For the model (1.1)), we expect a much
more complicated behavior. We distinguish between three possible scenarios: hair trigger
effect, possible persistence or extinction depending on the initial condition, and systematic
extinction whatever the (compactly supported) initial condition. As we will see, the
range (Omin, Omax) over which the trait may vary plays a critical role on the fate of the
population.

If survival occurs, one may like to analyze the propagation phenomena, in particular
to determine the spreading speed which is related to the nature of the traveling front [36].
We believe that the model may exhibit fronts that, in some sense, may switch from pushed
to pulled, as observed through individual-based models [32]. We plan to address such an
issue in a future work.

1.4. Summary of the main results. We here briefly comment our main results, which
will be clarified throughout the paper.
We start by proving important a priori estimates and the well-posedness of the Cauchy

problem (1.1)—(1.3). In particular the solutions u of (|1.1)—(1.3)) are understood in the
classical sense, namely of class Ctl,;2 9)((0, +00) X R x ©)NC([0, +0) x R x ©) (and there-

(=,
fore (1.1)) is satisfied in (0, +oc0) x R x ©). The mass p over the trait space will then be of
class C,., ((0, +00) x R) N C([0, +-00) x R).
Then our main goal is to figure out the long time behavior of the solutions. In particular
we prove that the outcome of the population, extinction or persistence, depends on a
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Omin < 0 and | Omin < 0and | 0<Omin<1/2 and | 0<Onmin<1/2 and | 0<Omin <1/2 and | Omin > 1/2
Omin+0max <O | Omin+0max >0 | Omin + Omax <1 | Omin +0max =1 | Omin + Omax > 1
Ao <0 P, P. N/A N/A N/A N/A
Ao =0 N/A P. N/A N/A N/A N/A
Ao >0, a<a” N/A E.or P. E.or P. E.or P. E.or P. E.
Ao >0, a>a" N/A E. or P. E. or P. E. or P. E. E.

TABLE 2. Summary of the main results. E.: systematic extinction inde-
pendently of ug satisfying ; P.. systematic persistence independently
of ug satisfying ; E. or P.: outcome depending on ug; colored cells:
the possibility of extinction is proved, the possibility of persistence is con-
jectured but not proved; N/A: not applicable, i.e. impossible case. The
threshold o* > 0 depends on M, Oy and Op.x.

subtle combination of the sign of an underlying principal eigenvalue A, of the linearized
operator around the trivial steady state 0, the range of admissible phenotypic traits © =
(Omin, Omax ), and the initial density ug, as summarized in Table [2 By extinction (E.), we
mean that [[u(t, -, )|/ L~ ®xe) — 0 as t — +o0o. By persistence (P.), we mean the opposite,
that is, limsup;_, ;o [[u(t, -, )|z ®mxe) > 0. We will also see that these definitions have
equivalent formulations for the mass p.

As will be seen in Section the map a — A, is an increasing concave bijection
from (0,400) onto the open interval (fmin, (Omin + Omax)/2). Therefore, the nonpositivity
of A, implies that f,;,, < 0, and the last four boxes of lines 2 and 3 of Table [2| are
impossible. Similarly, the nonpositivity of @pin + Omax yvields Ay < 0, hence the last three
boxes of column 2 of Table [2| are impossible.

Let us observe from Table [2[ that f may behave like, at least, five different
classical reaction—diffusion equations.

(1) When A, < 0 (line 2 of Table, then Onin < 0 and the zero steady state is linearly
unstable. We are then facing a non-degenerate monostable situation: persistence
occurs whatever the size of the initial density (hair trigger effect).

Whereas the critical case A\, = 0 leads to extinction in classical Fisher-KPP equa-
tions (see e.g. [13] for such results in a periodic framework), (1.1)—(1.3)) still en-
joys the hair trigger effect when A\, = 0 (line 3 of Table [2[ where, necessarily,
Omin < 0 < Omin + Omax). The reason is that then “escapes” from the non-
degenerate regime and “switches” to a (slightly) degenerate monostable situation,
for which the hair trigger effect still holds.

When A\, > 0 and the center (Oyin + Omax)/2 of the interval © is smaller than, or
equal to, 1/2 (columns 3, 4 and 5), we are typically facing a bistable situation,
for which the outcome may be the extinction or the persistence of the population
according to the initial density, as for local bistable reaction-diffusion equations
admitting a traveling front invading the trivial state 0.

When A\, > 0 and the center (fmin + Omax)/2 of the interval © is larger than 1/2
while Op,in < 1/2 (column 6), we are typically facing a situation similar to that of
local bistable reaction-diffusion equations admitting a traveling front that, accord-
ing to the amplitude of «, is retracting, standing, or possibly invading.

When Ay > 0 and Oy, > 1/2 (column 7), we are typically facing a bistable
situation for which all solutions go extinct, as for local bistable reaction-diffusion
equations admitting a standing or retracting front.

(2)
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Our work effectively shows the possibility of evolutionary rescue in this model: an
initial condition that would be, for instance, concentrated around 6y > 1/2 should lead to
extinction in the absence of mutations but might persist in the presence of mutations. As
a matter of fact, it will automatically persist if, for instance, 0 + Omax < 0. However, we
also observe that in the whole Table 2] the higher the mutation rate « is, the higher the
chances of extinction are. This phenomenon is known as “lethal mutagenesis” [24]. There
is therefore an interesting trade-off: evolutionary rescue is made possible by the presence
of mutations but is made difficult by large mutation rates, which is consistent with the
findings of [6].

1.5. The “E. or P. conjecture”. When 0 < 0, < 1/2 and Onyin + Omax > 1, the
situation is very intricate and seems to depend dramatically on the coefficient . When «
is large (o > o), we prove systematic extinction in the case Opin + Omax > 1. However,
the three colored cells in Table 2| remain unclear:

(1) Omin + Omax = 1 with A, > 0 and a < o*;

(2) Omin + Omax = 1 with A, > 0 and a > o*;

(3) Omin + Omax > 1 and Oppin < 1/2 with Ay > 0 and a < o*.
Although we will prove in Section [3] that extinction is possible in these three cases, the
possibility of persistence remains an open question. Additionally, the existence of a “sharp
threshold” a* is not proved. Namely, for increasing values of o (below a*), the outcome
could alternate between “P.” and “E. or P.”. Nevertheless, in view of our numerical
simulations (see Section , we conjecture that the threshold o* is sharp and that in each
one of these three cases (the colored cells in Table , the outcome is “E. or P.”, namely
both extinction and persistence are possible, depending on the initial condition. This
means that:

(1) we expect the critical case Opin + Omax = 1 to be exactly similar to the sub-critical
case Omin + Omax < 1, Omin > 0;

(2) we expect that in the super-critical case Omin + Omax > 1, Omin < 1/2, persistence is
possible if and only if the mutation rate « is smaller than or equal to a threshold o*.
More precisely, we expect that when i +Omax > 1, Omin < 1/2 and o < o*, some
populations concentrate around 6,;, < 1/2 and by doing so escape extinction.

1.6. Organization of the paper. We start with some a priori estimates and the well-
posedness of the Cauchy problem ((1.1)—(1.3) in Section [2| In Section [3[ we prove all the

extinction and persistence results of Table [2] by combining Theorems
and Lastly, in Section [ we present some numerical results supporting the aforemen-

tioned E. or P. conjecture.

2. PRELIMINARIES

This section is devoted to the analysis of the Cauchy problem (1.1))—(1.3]). Before doing
so in Section [2.2] we first derive in Section [2.I]some a priori estimates and bounds for any

classical solution of (|1.1)—(L.3]).

2.1. Global bounds and comparison between the population density u and its
mass p. In this section, we consider a classical solution u € Ctl; ;(2179)((0,T*) xR x 0)N
C([0,T*) x R x ©) of (LI)—(L.3) in some time interval [0,7*) with 0 < T* < +oo0. We
also assume that v is locally bounded in time, that is, u is bounded in [0,7] x R x © for
every T € (0,T*). The mass p is then of class C2((0,T*) x R) N C([0,T*) x R) and it is
locally bounded in time. ,

Let us first begin with the positivity of the population density u and its mass p. For
any T € (0,7*), considering temporarily p as a fixed function in L*°([0,7] x R) and
denoting A(t,z,0) = (p(t,x) — 0)(1 — p(t,z)), we find that the solution u satisfies the
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equation u; — dugz, — augg = Au in (0,T] x R x ©, which is a local and linear parabolic
equation with bounded space-time heterogeneous coefficients. Since v = 0 is a solution
of this equation and since uy > u with ug #Z u in R x ©, we deduce from the parabolic
maximum principle and Hopf lemma that

u(t,z,0) >0 for all (t,z,0) € (0,7] xR x ©.

This implies in turn that p(t,z) = [gu(t,z,0)df > 0 for all (¢,z) € (0,T] x R. Finally,
as T is arbitrary in (0,7), one gets that

u>0in (0,T*) x Rx O, and p>0in (0,77) x R.

From the positivity of u and p, we then easily derive the global boundedness of the
mass p. To do so, we integrate equation ([L.1]) over 6 € (Omin, Omax) and, using the no-flux
boundary conditions ([1.2)), we reach

pt:dpm+(,02—/911(25,:5,0)&9) (1—p) forall0 <t <T*and x € R.
©

The previous equation can be rewritten as

(2.1) pt:dpm—i—p(p—é) (1—p) forall 0 <t<T* and xz € R,

/Huta;Q
ta:

represents the mean trait at time ¢ € (O T*) and spatial position z € R (remember that p
is pointwise positive in (0,7%) x R). Since u is pointwise positive, one has

(2.2) Omin < O(t, ) < Omax < 1 forall t € (0,7%) and = € R.

where

o(t,x)

Hence, together with (|1.3), the continuity of p in [0,7™) x R, and the comparison principle
applied to (2.1)), it follows that

(2.3) sup p(t,x) < max(M,1).
(t,x)€[0,T*) xR

As a immediate consequence of (2.3)) and the positivity of p, the nonlinear term in ([1.1])
satisfies

(2.4) lu(p—0)(1 —p)| < Cu in [0,T*) x Rx O
for some constant C' > 0. The maximum principle then implies that
(2.5) [t -, )| oo (rxm) < eCt||u0||Loo(RX@) for all t € [0, 7).

In particular, the solution u is immediately bounded if T* < +o00. On the other hand,
if T* = 400, then the standard Harnack inequality together with (2.4)) yields the existence
of a constant C’ > 0 such that

u(t+1,2,0) > C'u(t,2’,0") forallt>1,0,0 €O, and |x — 2/| < 1.

Together with the global boundedness of p (which holds whether 7™ be finite or
not), one infers that u is globally bounded too if 7% = +oo. To sum up, u is bounded
in [0,7*) x R x ©, whether T* be finite or not.

From , we also infer the limit of w and p at spatial infinity. Indeed, from the
inequality u; < dugz: + augg + Cu in (0,7%) x R x © and the comparison principle, it
follows that the nonnegative solution u(t, x, #) is dominated from above by the nonnegative
solution v = v(t,x) of v; = dvgy + Cv with initial condition vy defined by vo(z) =
max, g uo(z,0) for all z € R. Thus, as vy € Cc(R, [0,400)), one infers that

(2.6) ll)rin u(t,z,0) = 0, uniformly in § €O, and locally uniformly in t€ [0, 7).
T oo
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As a consequence, one also gets that p(t,z) — 0 as x — 400, locally uniformly with
respect to ¢t € [0, 7).

From , we can also reproduce the argument in [21, Section 2] to compare the
population density v and its mass p. For the sake of completeness, we briefly recall this
argument. The inequalities —Cu < u; — dug, — augg < Cu imply

uf —duf, —audy >0 and u; —dug, —oug, <0 in (0,7%) x R x O,

where
ut(t, x, 0) := eFCu(t, x, 0).
Then, on the one hand, denoting wt] = w(t](7, z, #) the solution of the heat equation w, =

dwzy + awgg in (0, 4+00) X R x © with no-flux boundary conditions on (0, +00) X R x 9©
and with initial condition wlt](0,-,) := u(t,-,-), it follows from the comparison principle

that for every 0 < 7 <t<T*, x € Rand § € O,
wlt —7](1,2,0) e " < u(t,z,0) < wlt — 7)(,x,0) 7.

On the other hand, from the global boundedness of v in [0, 7*) x R x © and the local-in-time
Harnack inequality proved in [21, Theorem 1.2]EL we deduce that, for every 7 € (0,7*) and
p > 1, there exists a constant C, » > 0 (which also depends on d, « and ||u”L°<>([0 T*)XRX@))
such that

(wlt — 7](r,2",0"))"

6’577-

for all t € [7,T*), 6,6’ € © and |z — 2’| < 1 (notice that the left and right inequalities in
the above formula are actually equivalent since 6, §’ are arbitrary in © and x and 2’ are

arbitrary real numbers such that |z — 2’| < 1). We deduce that, for every 7 € (0,7%*) and
p > 1, there exists a constant C), » > 0 such that

< wlt — 7)(r,,0) < Cpr (wt — 7)(7, 2, 6)) "7

P —

(2.7) “(é,“) < p(t,z) < Cprul/P(t,2,0) for all (t,2,0) € [r,T*) x R x O,
p,T

which leads to

(2.8) i C(ﬁ,‘” <u(t,x,0) < CMPp/P(t,z) for all (t,2,0) € [r,T%) x R x ©.
p,T

This with (2.3) immediately implies that

. sup u(t,x,0) < max ,1).
2.9 0) < Ci/P max(M'/7, 1

(t,x,0)e[T, T*)xRxO

Together with , we retrieve the global boundedness of u in [0, 7%) x R x ©, whether T*
be finite or not. But the interest of this paragraph was to provide the comparison ,
or , between u and p which will be useful in several other parts of this paper, in
particular in Section

We finally derive an explicit upper bound for the mass p at large time if 7% = 4+00. To
do so, observe first that, whether p(t,x) be smaller than 1, equal to 1, or larger than 1,
one has

(p(t, ) — B(t,2)) (1 — p(t, 7)) < (1= (¢, 2)) (1 — p(t,2)) for all (t,2) € (0,T*) x R
From (2.1) and the positivity of p in (0,7%) x R, one gets that
pt —dpzz < p(1—=0)(1—p) in (0,T%) x R.

2The proof can be straightforwardly extended to the cylindrical domain R x © considered here with the
Neumann boundary conditions on R X 90, see also |21} footnote 1].
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One also recalls that O, < 0(t,2) < Opax < 1 for all £ € (0,7*) and z € R. Therefore,
(1= Bin) plt,2) (1= plt,2)) 0 < plt,z) <1,

(1 - 6)max) p(t,.I) (1 - p(t,:c)) if p(t,$) > 1.

If T* = 400, by comparison with a classical Fisher-KPP type equation, it then follows
that

p(t,x) (1—0(t, 7)) (1 - p(t, 7)) <

(2.10) lim sup (sup p(t,x)> <1 (if T* = +00),
t—-+o00 TER
hence, together with (2.8]),
(2.11) limsup< sup  u(t,x, 9)) < (j;/Tp (if T* = +00),
=400 N (z,0)eRxO

for every 7 > 0 and p > 1.

Remark 2.1. Let us point out that similar upper bounds on u could also be deduced
from ([2.3]), (2.10]) and [58 Proposition 2.3]. In both cases though, the upper bound for u
depends on d and a.

2.2. The well-posedness of the Cauchy problem (|1.1)—(1.3). Several arguments used
in the forthcoming sections require a refined knowledge of the functional space which the
solution u belongs to. Therefore, as a mandatory preliminary, we study the well-posedness

of the Cauchy problem (|1.1})—(1L.3]).

Remark 2.2. Hereafter, by a solution of (1.1)—(1.3)), we mean a solution in Tikhonov’s
uniqueness class, that is, a solution u € C, 9)((0, +00) x R x ©) NC([0,+00) x R x O)

7(:E’
for which, for every T > 0, there exists a constant Ar > 0 such that u(t,z,0) = o(eArlel)
as ¢ — to0, uniformly in (¢,0) € [0,T] x ©. Indeed, without any such restriction on the
growth at infinity, solutions of reaction-diffusion Cauchy problems may not be unique.
Proposition 2.3 (Well-posedness). Let
X = {go :Rx O — R: ¢ is bounded and uniformly continuous in R x @}

endowed with the usual sup norm, denoted by || | x. Then the Cauchy problem ([1.1)—(L.3))
admits a unique solution u such that

t s u(t,-,-) € C([0,+00), X)NC((0, +0), X).
Furthermore, u > 0 in (0,+00) x R x ©.

The basic idea is, as usual, to first prove the existence and uniqueness of a local-in-time
solution by a fixed point argument and then to deduce the existence and uniqueness of
a global solution from an a priori L estimate. As such an estimate is proved above
in , we first focus on the local well-posedness. In the sequel, we denote

‘@‘ = Omax — Omin and Oy = max(‘emax’a wmin‘)-

Lemma 2.4 (LocaLwell—posedness). For any 7 > 0, any K > 0 and any ur € X with
0<u, <K inRx 0O, the following problem:

U = dugg + qugg +u(p—0)(1 —p), te(r,7+Tk], z€R, €0,

(2.12) ug(t, 2, Omin) = ug(t, 2, 0max) = 0, te(r,7+Tk], = € R,
u(r,z,0) = u-(z,0), reR, €6,

where

(2.13) Tk ! 0,

= >
3(2K|O0|+6n) (2K |0 +1)
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admits a unique classical C;;(Qx,a)((ﬂ T+ Tr] x Rx ©)NC([r,7 + Tk] x R x O) solution u
such that
(2.14) tu(t,,) €C(r, 7+ Tk], X)NC (1,7 + Tk], X).
Furthermore, u > 0 in [1,7 +Tk] x R x ©.
Proof. Define, for T'> 0 and C' > 0, the sets
Xe={veX:|v[|x <C} and Xpc=C(r,7+T|,Xc).

The set A7 ¢ is a complete metric space, with distance induced by the norm defined
by [|[v|| := max,e(r 17 [[v(t)|x for v € C([7,7 + T], X). The elements of X7 ¢ can also
be considered with a slight abuse of notation as functions of the variables (t,x,60) €
[7,7+T] x R x ©.

Let ® : X ¢ — C([r,7 + T, X) be the mapping that associates to v € X ¢ the unique
mild solution u = ®[v] € C([r,7 + T, X) of

up = dig, + agy +u</
S)

ug(t, , Omin) = ug(t, 2, Omax) = 0, te(r,7+1T], z €R,
u(r,z,0) = ur(z,0), reR, §e0O.

The solution w is indeed well-defined, as the above problem is just a linear parabolic
Cauchy problem: more precisely, letting

pv(t,:c):/@v(t,xﬁ)dé’

for (t,z) € [r,7+T] xR, and G = G(t, z,0; s,y,n) be the Green’s function of the parabolic
operator J; — d0z; — adpg accounting for Neumann boundary conditions for § € 90, one
has, for every (t,z,0) € (1,7 +T] x R x ©,

v—@) (1—/@2}), te(r,7+1T], z€R, 606,

u(t, z,0) = ®[](t,z,0) = G(t,x,0;7,y,m) ur(y,n) dydn
Rx©

t
+/ Gt 2,0: 5., m) B[] (s, 4 ) x
7 JRXO

X (po(8,9) —m) (1 — po(s,y)) dy dn ds.

We aim at showing that ® is a contraction mapping from X7 ¢ into itself when the positive
parameters T and C' are appropriately chosen, so that it admits a unique fixed point.
To do so, first of all, observe that, for any v € X7 ¢, the inequality

[(po(5,9) =) (L= pu(s,y)) | < (O]]Jv]| +0ar) (1O][[0] +1), for all (s,y,n) € [r, 7+ T]xRxO,
yields
J@le]ll < K + T (0llv]l + ) (1O1]1o] + D)][0[]]
<K +T(Cle]+0um) (Cle]+1)[|@[v]].
Assuming that T' > 0 is so small that
(2.15) T(CO|+0y)(ClO|+1) <1,

we deduce

I < -
~1-T(C|8|+0um)(C|6]+1)’

so that & maps X7 ¢ into itself as soon as (2.15) is fulfilled together with

K
(2.16) e PN ICE T

@[]
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Now, assume that the conditions f are indeed satisfied, so that ®(X7¢) C
Xrc. Let v,w € Xp ¢, and denote p, = f®v(-,-,0) df and p, = few(-,',ﬁ) df. After
some straightforward calculations, we find that z = ®[v] — ®[w] € C([r, 7+ T}, X) is a mild
solution of

2t — dzgy — Q2gg = Z(pv - 9) (1 - pv) + (I)[w] (1 +0 — py — pw) (pv - Pw)
in (7,7 + 7] x R x © with Neumann boundary conditions on (7,7 + 7] x R x 90. Using
similarly the Green’s function G, we find that

21l < T (18] +61) (CIO] + 1) 2]+ T'C (1 + 0 +2C10]) O] 1o — w]|

w0 that TC(1+ 0y +2C10)]) O]
M
=l = 120~ ®lull < =7 crori g 612 T

Therefore @ is a contraction mapping as soon as
TC (146 +2C|6|) |0
—T(C|8|+0y) (C|®] +1)

One can easily check that the conditions f are compatible: for instance one
may choose

—w||.

(2.17) <1.

3K 1
C=—>0, T= > 0.
2 3(CIB|+0uM)(C|O]+1)
As a consequence, by virtue of the Banach fixed point theorem, ® admits a unique fixed
point v € Xrc for the above choice of T" and €. By standard parabolic estimates, v

is then a classical Ctl;;(i’e)((T,T +T] xR x ©)NC([r,7 +T] x R x ©) solution of
(the continuity of v in [7,7 + 7] x R x © is actually automatic by construction), and the
map t + v(t,-,-) belongs to C([r,7 +T],X)NC((r,7 + T, X).

Furthermore by picking now

C=2K

and
1

3(2K|©|+ 6x) 2K|O| + 1)
as in ([2.13)), it follows as above that ® admits a unique fixed point u in X, 2, which is a
classical Ct13(2 9)((7' T+ Tk] x RxO)NC([r, 7+ Tk] x R x ©) solution of (2.12)), and the map
t > u(t, -, ) belongs to C([7, 7+Tk], X)NC((1,7+Tk], X). Since the function v restricted

Ty = € (0,7)

to [1, 7+ TK] x R x © solves the same problem as u and since v(t,, ) € Xr..c C X1y 2K
for every t € [1,7+T| D [, 7+ Tk], it follows by uniqueness that u=v TT+TK Ixrx®: On
the other hand, since the left-hand sides of the inequalities (2.15)—(2.17)) are increasing

with respect to T' € [0,Tk], one infers that, for any 77 € (0, TK] <I> has a unique fixed
point in X7 ok, and that this unique fixed point is nothing but the restriction of v and v
in[r,7+T'] xR x ©.

Finally, consider any mild solution U of with

t U(t,-,) € C([r,7 + Tk], X)NC (1,7 + Tk], X)

(U is then also a classical C;;(Z%G)((T, 7+ Tk] x Rx ©)NC([r,7 + Tk] x R x O) solution).
We claim that
U=u in[r,7+Tk] xR x O.

Indeed, first of all, since 0 < U(7,,-) = u, < K in R x ©, there is by continuity a maximal
time Ty € (0, Tk] such that [|U(¢,-,-)||x < 2K for all t € [0,Ty), and |U(Ty, -, -)||x = 2K
if Ty < Tk. By uniqueness, one gets that U = u = v in [r,7 + T'] x R x © for every

"€ (0,Ty), and then in [1,7 + Ty] x R x © by continuity. But since |Jv(t,-,")[|x < C =
3K/2 < 2K forallt € [r,7+T] D [r,7+Tk], it follows that ||U(Ty, -, )||x < 3K/2 < 2K.



12 ALLEE THRESHOLD AS PHENOTYPIC TRAIT: PERSISTENCE VS. EXTINCTION

Hence Ty = Tx and U = u in [7,7 + Tk| x R x ©. Therefore, the constructed solution u

is the unique mild and classical solution of (2.12))—(2.14)).

Lastly, the nonnegativity of u in [0,Tk] x R x © follows from the nonnegativity of u,
in R x © and from the comparison of u with the trivial solution 0, as in Section The
proof of Lemma [2.4]is thereby complete. O

Proof of Proposition 2.3 From Lemma there exist a maximal existence time T €
(0, +0o0] and a unique mild and classical solution u € Ctlf(i 0)((0, T*) xR x0©)NC([0,T) x
R x 0O) of (T.1)-(T.3) such that ¢ +— u(t, -, ) EE([O,T*),X)OCl((O,T*),X) (in particular, u
is locally bounded in time in [0,7*) x R x ©). Furthermore, v > 0 in [0,7%) x R x ©.
Lemma and the quantitative estimate (2.13)) in terms of K also imply that

et Nl = ult, )l oo oy = +00 as S T* i T* < +oo.

But the classical solution u is necessarily globally bounded in [0,7*) x R x O, from the
arguments of Section 2.1} Therefore, T* = +o00 and u satisfies all desired prrties stated

in Proposition including its positivity in (0, +00) x R x © by Section [2.1, The proof
of Proposition [2.3]is thereby complete. O

3. PERSISTENCE VERSUS EXTINCTION
In this section, we consider the Cauchy problem (1.1)—(1.3) and we figure out whether

solutions are persistent or go extinct in long time. Hereafter, extinction is defined as

sup u(t,az,@)) =0
(z,0)ERxO

lim (
t——4o00

and persistence is the opposite statement, namely

limsup( sup  u(t,x, 9)) > 0.
t—=+00 * (z,0)eRxO

From the comparison (with here T* = 400, any 7 > 0 and any p > 1), these two
properties are equivalent to the similar ones obtained by replacing SUD(, 9)cR O u(t,z,0)
with sup,cp p(t, ).

It turns out that there are several different answers to the question of persistence or
extinction, according to the trait range © = (Omin, fmax), to the initial conditions, and
to the principal eigenvalue A, of the linearized operator around the trivial state 0 in the
trait variables. We start by studying the properties of this eigenvalue A, in Section [3.1
Then we prove in Section the systematic (independently of the initial conditions ug
satisfying (L.3))) extinction when 6pin > 1/2 (column 7 of Table [2)), and in Section
the systematic persistence when A\, < 0 (lines 2 and 3 of Table . We then show in
Section the possibility of extinction when A, > 0 for small initial data (columns 3, 4, 5
and 6 of Table , and we discuss in Section the possibility of persistence when A\, > 0
and Omin < 1/2 (columns 3, 4, 5 and 6 of Table [2).

3.1. A principal eigenvalue problem. For a given o > 0, we consider the Neumann
principal eigenproblem

—ap” +0p = \p in O,
(31) @/(emin) = Sol(emax) = 07
>0 in ©,
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and denote (Aq, o) the principal eigenpair, normalized by maxg ¢, = 1. We have the
variational formula

(3.2) Aq = min {Qa(go) = /@ (ap(0) + 00*(0)) db : p € E} ,

with
E:={pe H(O):|¢lr2e) =1}
Lemma 3.1 (On the principal eigenvalue \,). The principal eigenvalue N\, enjoys the
following properties:
(i) for all a > 0,

Omin + 0
Omin < Ao < w;
(ii) the function o — A\ is increasing and concave in (0,+00), and
. . . o Omin + Omax .
g‘% )\oc - 011111’17 agr—ll-loo )\oc - fa
(i) if
3 /mlan\1/3 w2a\1/3
5 (T) + Omin <0 and (T) + Omin < Omax,
then

2.\ 1/3
)\a < g <7T205) + gmin-

Proof. We start with (7). From , the lower bound follows directly, while the upper
bound with large inequality follows by testing the Rayleigh formula with the constant
function ¢ = 1/v0max — Omin € E. Furthermore, since the minimum of @, over E is
known to be reached only by some multiples of ¢, (one positive multiple and one negative
multiple), and since the constant function ¢ = 1/v/0max — Omin is not an eigenfunction,
one infers that Ay < (fmin + Omax)/2.

We pursue with (47). From and the fact that the principal eigenfunctions of
are not constant and are, up to multiplication, the only minimizers of @), over E, it follows
that the map a — A, is increasing in (0, +00). Additionally, since Ao = mingeg Qa(y)
for each a > 0 and since the map a — Q4 () is linear (hence concave) in (0, +00) for each
¢ € E, one gets that the map a — ), is concave in (0,400), and therefore continuous.

Next, consider a function p € C*([0,+0c0)) satisfying p’(0) = 0, p = 0 in [1,+0)
and f0+oo p?(y)dy = 1. Then, for 0 < & < (Omax — Omin)?*, we use the test function

1 0 — Oumin
@0 p(0) = a1/8p< i >

which belongs to F, and for which

—+o00 —+o0
Qalp) = 041/2/0 P?(y) dy + a1/4/0 y p*(y) Ay + Omin — Omin, as @ — 0.

Thus Ay — Omin as a — 0.
Lastly, take an arbitrary sequence (au,)nen such that «, — 400, and consider the

sequence (Ap, ©n)nen of principal eigenpairs solving (3.1)—(3.2). We observe that

6 A =
—ol'+ — =", in O, for any n € N.
(7% (679

Since the sequence (A, )nen is bounded from point (), there holds A, /ay, — 0 as n — +o0.
Thus, standard elliptic estimates and Sobolev injections imply that, up to the extraction
of some subsequence, the sequence of functions (¢,,),en converges to a nonnegative func-
tion o in C>#(O) (for all 0 < B < 1), such that —pZ = 0 in O, maxgpe = 1, and
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@ (Omin) = ¢ (Omax) = 0. Thus poo = 1 in ©. By uniqueness of this limit, we deduce
that the whole sequence (p,)nen converges to 1 in C>#(0) for all 0 < B < 1 (and even
in C¥(©) for every k € N by bootstrapping the estimates and differentiating the equation
with respect to €). Multiplying by ¢, and integrating over O, we get

f@990% < f@(@;z)2+f@9@%
Jo? =" [ov?

Using the inequality proved in point (i), we obtain

f@ewi <\ < Hmin +9max

Joeh 2
Passing to the limit as n — +o00, and using that ¢, — 1 at least uniformly in ©, we get
that Ay — (Omin + Omax)/2 as n — +oo.

We conclude with the proof of (iii), which is slightly more subtle. Notice first that the
condition (3/2) x (m2a/2)'/3 4 Opin < 0 implies that Oy, < 0. We shall use the solution
of a related eigenproblem (with constant coefficients) on an interval [fyin, Omin + 7], Wwhose
size 7 € (0, —Omin] is to be optimized. Precisely, observe that the Neumann-Dirichlet
principal eigenproblem

= A\
f@ en

—a@” + (Oin + 1) = Ap in [Omin, Omin + 1),
@l(gmin) = 07 QP(Qmin + 77) = 07
©p > 0 in [Hmina Hmin + 77)7

is explicitly solved as

7T2C¥

4n?

SD(H) = 9017(9) = sin (ﬂ(emin +n— 0)) for 6 € [Qmina Omin +77L A= Xn +9min+77-

2n

Notice that the infimum info<,<_g_; Ay is reached by choosing

min

7T2(Jé 1/3
1 = Topt ‘= (2> € (07 _Hmin)a

and is equal to

. ~ 3 /m2an1/3 ~
0<n1<n_fe : Ay = 2 (T) + Omin = Aopt;

which is nonpositive by assumption. We denote (Aopt, @opt) the eigenpair associated with
1N = Nopt and with [[@opt || £2(0,,50 0min Hrope) = 1+ We use @opt (extended by zero in (Opyin +
Nopt Omax), notice that Omin + Nopt < Omax by assumption) as a test function in E and
obtain

9min+770pt 9 9
Qulpopt) = / (g2, (6) + 0,52,,(6)) A6

emin

IN

9min+"70pt .
/9 (a2 (0) + (Bmin + Topt)Popt (0)) A6 = Agps
and thus A\, < Xopt = (3/2) x (72a/2)"/3 4 Oin. The proof of Lemma is thereby
complete. O

Lemma 3.2 (On the principal eigenfunction ¢,). For each o > 0, the principal eigen-
function oo of (3.1) is decreasing in [Omin, Omax|, strictly concave in [Omin, A\a), and strictly
convez in (A, Omax] -



ALLEE THRESHOLD AS PHENOTYPIC TRAIT: PERSISTENCE VS. EXTINCTION 15

Proof. Remember first that Oyin < Ao < (Omin + Omax)/2 < Omax from Lemma The
strict concavity/convexity properties follow from the equation a¢’(8) = (0 — \o)@a(6)
and the positivity of ¢, in [Omin, Omax]- Next, @, (0min) = 0 and the strict concavity in
[Omin, Ao) enforce ¢, to decrease on this interval and then in [fin, Aa|. A similar argument
applies in [Ay, Omax]- O

To complete this section, let us observe that Lemma gives all the impossible boxes
in Table [2 whereas all other boxes are truly possible. The outcome of the solutions
of f in the possible boxes may or may not depend on the initial data and on the
parameter «, as we are going to see in the next subsections.

3.2. Omin > 1/2 makes persistence impossible. When 6,;, > 1/2 (column 7 of Ta-
ble , no population can escape from extinction, as the following result shows.

Theorem 3 3 (Systematic extinction). If Omin > 1/2, then all solutions of the Cauchy

problem (1.1] . ) go extinct. -

Proof. We begin with the simpler and more telling case
1
emin > 5

For any ¢ > 0, define

and observe that, as € — 0,
1+e

[ s = 5 o)
We then fix ¢ > 0 small enough so that Gmm > 1/2 4 2¢ and f 1+€ )ds < 0. Consider

now any solution w of . . From and the positivity of p in (0,400) x R,
there exists T, > 0 such that 0 < p(¢,z) < 1 + ¢ for all t > T, and x € R. Then, recalling

that 0(t,z) € (Omin, Omax) C (1/2 + 2¢,1), we claim that
p(t,z) (p(t,z) — 0(t,x)) (1 — p(t,z)) < [ (p(t,z)) forallt >T., = eR.
Indeed, for every (t,z) € [T;, +00) x R, the quadratic polynomial function
s> f(s)—s(s—0(t,x))(1—s)

vanishes at s = 0, is positive at s = 1+¢, and is negative at large s since 0(t, ) > 1/2+2¢;
hence, this function is positive in (0,1 + ¢]. From and the comparison principle, it
follows that 0 < p(t,z) < p(t,z) for all t > T, and = € R, where p = p(¢, x) is the solution
of the bistable Cauchy problem

Py =dpye + [ (p) in (Te,+00) X R, p(T%,) = p(T-,-) in R,

But since f~ is a bistable function in [0, 1+&] with negative integral over [0, 1+¢], and since
p(T.,z) = p(Tz,z) — 0 as & — Fo0 by (2.6), together with supg p(71%, ) = maxg p(1%, ") <
1 + ¢, one concludes from [33] that p(t,z) — 0 as t — +oo, uniformly in = € R. Hence,
p(t,x) — 0 as t — +oo, uniformly in z € R.
Now we consider the critical case
1

Omin = 9"
In this case, the preceding argument does not work anymore and more care is needed. On
the one hand, for any (t,z) € (0,+00) x R such that p(t,z) € [0, 1], one has

plt,2) (1= plt, ) (plt, 2) — B(t,2) < plt,2) (1= plt, ) (plt,7) — 5)
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since O(t,z) > Omin = 1/2. On the other hand, for any (¢,z) € (0,4+0o0) x R such
that p(t,x) > 1, one has (recall 0(t,7) < Opax < 1)

p(t, .%')(1 - p(t, l’))(p(t, x) - 9(t7 iL')) S _(1 - 9(t7 J?))(p(t, .%') - 1) S _(1 - HmaX)(p(t7 iL') - 1)'
Therefore, for any (¢,x) € (0,+00) x R, there holds
p(t,a}) (1 - p(t,a:)) (p(t, .%') - §<t7x)> < 7(p(t,a:)),
where
F(s) += 51— )(5 = 3 ) 1o(s) = (1~ Bma) (5 — 111 1oy 9).

By the comparison principle, one infers that, for any 7"> 0, £ > 0 and = € R, there holds

(3.3) p(t+T,x) <p"(t ),
where p! denotes the solution of the Cauchy problem
(34) ﬁ? = dﬁgx +?(ET) in (07 +OO) xR, pT(Ov ) = p(T7 ) in R.

This equation is a reaction—diffusion equation with a globally Lipschitz-continuous and
piecewise smooth reaction term f, whose derivative 7 is well-defined except at 1, where
it only has well-defined left-sided and right-sided negative derivatives. For the underlying
ordinary differential equation, the steady state 0 is locally asymptotically stable from
above, the steady state 1/2 is unstable and, even though the flow is not C'! at 1, the steady
state 1 is locally asymptotically stable from above and from below. Moreover, fol f=o.
We only need to find 7' > 0 such that p? converges to 0 as t — +oo uniformly in = € R.
Since the reaction term is not completely standard, we briefly recall how such a fact is
proved.

Let p : R — (0,1) be the standing wave solution of —dp” = f(p) in R with p’ < 0
in R and limits 1 and 0 at —oo and +oo respectively. Since f(s) = s(1 — s)(s — 1/2)
for s € [0,1], the existence and uniqueness (up to shifts) of p is standard. Let s > 0,
1o > 0 and v > 0 to be chosen later, and denote s(t) = spe™" and r(t) = rpe™7*. The
function p(t, z) = p(x + s(t)) + r(t) defined for (¢,z) € [0,400) x R satisfies

Pe(t, ) — dPga(t, @) — F(B(t,2)) = p'(2 + s(t))s'(t) +1'(t) — dp”(z + s(t)) — F(B(t, 2))
= —y(ro + sop'(z + s(t))) et

i Tl ott) = Toto + s0) £ r0)

= e [—(ro + sop/(z + 502)) — 70 G(p(x + 502),702)]

for all t > 0 and = € R, where, on the last line above, z = 2(t) = ¢~7* and one defines

fla+y) - f(a)

Yy
for ¢ > 0 and y > 0. The function G is extended at y = 0 by G(q,0) = f’(q) if g €
[0,1) U (1, +00) and by G(1,0) = lim,_,o+ G(1,y) = —(1 — fmax). The function G is then
continuous in [0,+00)? \ {(1,0)} and it is locally bounded in [0, 4+00)%. Now, we claim
that we can choose the parameters sqg, 9, so that the function

G(q,y) =

H:(x,2) € R x (0,1] = —y(ro + sop’(z + s02)) — roG(p(z + s02),70%)

is nonnegative in R x (0, 1] (which will imply that p, > dp,, + f(P) in [0, +00) x R). To
show the nonnegativity of H, let first select o € (0,1/2) such that f < 0 in [0,0] U[l —
0,1) U (1,+00), and denote

Ty = min —-G(q, > 0,
0= oo g E )
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'y = inf —G(q, >0
! qe[l_o—,u,ye[o,a]( (¢:9)) ﬁ
= sup [G(g,y)] >0,
qG[O,I],yE[O,U}
and
K= min (—p'(y)) > 0.

yelp~'(1-0),p~*(c/2)]
Let us then observe that:
o if p(x+502) < o/2 and 9 < /2, then H(x,z) > ro(I'o — ) (recall that —ysop’ >
0);
o if p(x +802) > 1 — 0 and r¢ < 0, then similarly H(z,2) > ro(T'1 —7);
o if p(z + s02) € [0/2,1 — 0] and ¢ < o, then H(z,z) > ysok —ro(y + ).
Taking for instance
T
o = g >0, y=min(Ty, 1) >0, and s¢ = M
2 YK
the claim is proved, that is, H > 0 in R x (0, 1]. Hence,
Py = APy + f(P) in [0, +00) x R.
Notice that the same inequality holds by replacing the function p by the z-reflected one:
By virtue of (2.6) and (2.10)), together with the positivity of p in (0,+00) x R, there
exist 7% > 0 and z* € R such that
0 < p(T*,z) < min (p(0, z — 2*),p(0, —z — 2*)) for all z € R.

From now on, p = p’ is the solution of (3.4) with 7 = T*. Due to the preceding
calculations and by the comparison principle, the inequality

> 0.

0< ﬁ(t7 :II) < min (ﬁ(ta T — JI*),ﬁ(t, - — .T*))
holds for all £ > 0 and = € R. Therefore there exists T} > 0 such that sup,cr p(T1, ) < 1.
Now, using standard heat kernel estimates [34], we deduce that p(T1,z) = O(e=C7%)

as © — oo for some constant C' > 0. Since p(z) ~ Cle™=/V2 a5 1 — 400, for some
constant C’ > 0, there exists z1 € R such that

0 <p(Th,z) <min(p(x —z1),p(—z —x1)) <1 for all z € R.

Since min(p(z — z1),p(—x — x1)) is a super-solution of the stationary elliptic equation
—dq" = f(q), the solution p of

pr = d Pz + ?(ﬁ) in (Tla +OO) x R,
p(T1,xz) = min(p(z — x1),p(—x — 1)) for all x € R,

is nonincreasing in time (and even decreasing) in [17,400) x R. Hence p(t,-) converges
as t — 400 in C2 .(R), by standard parabolic estimates, to a C?(R) solution ¢ : R — [0, 1]
of —d¢" = f(q) in R with limit 0 at +co. Since f(s) = s(1—s)(s—1/2) in [0, 1] and since it
is well-known that the unique nonnegative solution of the equation —d ¢” = q(1—q)(¢—1/2)
with limit 0 at 400 is ¢ = 0, the long-time limit of p is identically 0. Using again the
stationary super-solution min(p(z — 1), p(—z — x1)) and the locally uniform convergence,
it turns out that the convergence of j(t,-) to 0 is uniform in R as t — +ooc.

Finally, by the comparison principle, 0 < p < p in [T}, +00) X R. Therefore p converges
uniformly in space to 0 as t — +00, and then so does p by . The proof of Theorem
is thereby complete. O

30ne has I'; > 0 since SUP[1 o, 1)U(1,140] 7 <o.
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3.3. Ay < 0 makes extinction impossible. As claimed at the beginning of Section
the sign of the principal eigenvalue A, of decides between systematic persistence
and possible extinctions. Notice that, in typical Fisher-KPP situations, all solutions go
extinct as soon as A\, > 0. Our results on equation are in sharp contrast: first the
critical case A\, = 0 implies persistence (in some sense, it corresponds to a degenerate
monostable situation for which the hair trigger effect [§] does hold); next the case Ao > 0
leads to both possible extinction and possible persistence, see Theorems and in
Sections [3.4]and |3.5| below (in some sense, the situation is similar to that of a local bistable
reaction-diffusion equation). The reason is that, as explained in Section , the underlying
nature of model may vary from Fisher-KPP to bistable, not to mention degenerate
monostable.

We deal in the present Section with the systematic persistence when A\, < 0 (lines 2
and 3 of Table .

Theorem 3.4 (Systematic persistence when A\, < 0). Let A\, be the principal eigenvalue of
the eigenproblem (3.1)—(3.2). If Ao, < 0, then every solution u of the Cauchy problem (1.1)—
(1.3) persists. Furthermore, if Ao < 0, then

(3.5) (x,G;Iéﬂgx@ (ltlinﬁ&fu(t,:n, 0)) >0 and ;Iellﬁ (1t1gigf p(t,x)) > 0.

Lastly, if Omax < 0, then Ay < 0 and

p(t,r) — 1 as t — +o0 locally uniformly in R,
(3.6)

u(t, ) — as t — +oo locally uniformly in R x ©.

gmax - emin

Proof. Step 1: persistence in the case A, < 0. Let us first assume that A, < 0, and consider

a solution u of the Cauchy problem (|1.1)—(1.3]). From (2.3) and (2.7)) (with here T* = 400,

any p > 1 and, say, 7 = 1) the nonlinear term in (|1.1)) satisfies, for times t > 1,
(3.7) w(p — 60)(1 = p) = —0u + pu+ up(l — p) > —6u — Ku'+1/7,

for some positive constant K depending on Omyin, Omax, Cp,1 and M. As a result, we can
compare the nonlocal problem ([1.1)) with a local problem: namely, u = u(t, z, §) satisfies

(3.8)  Lu:=u — dug, — qugg + Ou + Ku'tVP >0 for all + > 1 and (r,0) e R x ©.

Remember also that wug(t, z, Onin) = ’LL@(L Z,0max) = 0 for all t > 1 and = € R, and
that u(1,2z,60) > 0 for all z € R and § € © from Section Now, for R > 0 and € > 0,
consider the compactly supported continuous function w defined in [-R, R] x © by

T

o (@ + R)) ¢a(0),

where ¢, is the unique solution of such that maxgp, = 1, with A = A, given
in . A straightforward computation shows that Lw < 0 in [-R, R] x © as soon as

2
(3.10) 2%2 +da + VP <0,
Due to the negativity of A,, the above inequality is true by selecting R = Ry > 0 large
enough (so that dm?/(4R3) + Ao < 0) and then € = g9 > 0 small enough. Moreover,
up to reducing g9 > 0, we have w(z,0) < u(l,z,6) in [-Rp, Ry] x ©. Observe also
that w(+Rp,0) = 0 < u(t,+Rp,0) for all t > 1 and 6 € O, and that wy(x,bmin) =
wy(z, Omax) = 0 for all z € [— Ry, Ry]. We therefore deduce from the comparison principle
that

(3.9) w(z, ) := esin (

w(z,0) < u(t,z,0) forallt > 1 and (z,0) € [~ Ry, Ro] x O,

and thus u cannot go extinct, that is, persistence necessarily occurs.
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Les us now show the stronger property (3.5)). Consider any sequence (t,)nen of positive
real numbers diverging to +o0o. From standard parabolic estimates, the functions

Up (8, 2,0) = up(t,z,0) == u(t +tn,x,0) and p, : (t,z) = pp(t,z) == p(t + tn, x)
converge up to extraction of a subsequence, in Ctl;;(i’@);loc(R x R x ©) and in szl;f;loc (R xR)
respectively, to some nonnegative bounded functions us, € Ctl; ;(236’9) (R xR x 0) and ps =
Jo too(-5-,0) do € C;uf(R x R) solving (L.1)—(1.2) with ¢ € R. Furthermore, with the same
choice of parameters (g9, Ro) as in the previous paragraph, one has

(3.11) inf <@nuoo(t, 0, -)) > minw(0, ) = o min gq > 0.
teR [e) e S)

Since the function (t,z,6) — (poo(t,z) — 0)(1 — poo(t,z)) is globally bounded in R X
R x ©, the Harnack inequality yields, for each compact set X C R x O, the existence
of a constant 1 > 0 such that ue(t + 1,2,0) > pteo(t,0, (Omin + Omax)/2) for all t € R
and (z,0) € K. Hence, together with (3.11)), one gets that

(3.12) tlglg ((a:I,II;;I'EllC uoo(t,x,Q)) >0

for each compact set IC C R x ©. Consider now any zo € R, and define

w*(x,0) = sin (27%0 (x —x0+ R0)> ©va(0)

for all (z,0) € [z0 — Ro,z0 + Ro] x ©, with Ry > 0 (and g9 > 0) satisfying (3.10).
From ([3.12)) with K = [zo — Ro, 2o + Ro] X ©, the quantity

e’ = sup{e € [0,e0] : ew™ < up in R X [xg — Ro, xo + Rp] X @}
is a positive real number, that is 0 < €* < 5. We claim that
e* = gp.
Assume not. Then €* < gp and, using again, there exist a point
(2*,0%) € (20 — Ro,z0 + Ro) x ©
and a sequence (¢ )nen in R such that the functions

(t,2,0) = uoo(t +t,,,2,0) and (t,z) — poo(t + 1., )

converge in Ctlé 0):loc (R xR x ©) and in C;f,lo (R x R) respectively, to some nonnegative
bounded functions Uy € Ctl_;é 9)(]R xR x0)and 900 = [ Uso(:,-,0)dl € CI}IQ(R x R)

solving f with ¢ € R, and such that e*w® < Uy, in R x [zg — Ro, x0 + Ro] X ©
with equality at (0,z*,60%). But since Uy satisfies in R x R x © (it is a super-
solution), whereas e*w?®™ is a (stationary) sub-solution in R x [xg — Ry, g + Ro] x © (from
the choice Ry and eg), the strong parabolic maximum principle and the Hopf lemma
imply that e*w® = Uy in (—o0,0] X [vg — Ro,z0 + Ro] X ©, which is impossible on
(—00,0] x {wg+ Ry} x ©. Therefore, e* = &g, and egw™ < Uy in R x [29— Ro, 2o+ Ro] x O.
In particular, one infers that . (¢, zg,0) > €9 ming ¢, for all t € R and 6 € ©. Since
was arbitrary in R, one concludes that
inf  Uoo > egmin g, > 0.
RxRx© ©

Since the sequence (t,)nen diverging to +oo was arbitrary, one finally gets for the
function u, and then also for the mass p by definition of p and the local uniform convergence
of the functions u, as n — +oo.

To complete this step 1, let us show the long-time behavior in the case O.x < 0.
First of all, Lemma implies that A, < 0 in this case. With the same notations (¢, )nen
and (uco, Poo) as in the previous paragraph, there is 7 > 0 such that poo > nin R x R
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(without loss of generality, one can assume that 0 < n < 1). Furthermore, poo < 1in RxR
by (2.10). On the other hand, as in (2.1 in Section the function p, obeys

(poo)t =d (poo)xa: + Poo (poo - éoo) (1 — poo) in R x R,

with
— 1

Goo(tz) = | /@ O tao(t,7,0) A0 € (Oumim; Oun)

Poo(t,
for all (t,z) € R x R. Since poo(l — poo) > 0 in R x R and Opax < 0, one gets that
—Pooboo (1 — po) > 0in R x R, hence

(Poo)t = d (poc)az + P2(l — poo) N R X R.

Let ¢ : R — R be the solution of ¢’(s) = ((s)?(1 — ¢(s)) with ¢(0) = € (0,1). Notice
that ((s) — 1 as s — +00. The maximum principle implies that, for any real numbers ty <
t, one has p(t,-) > ((t — tp) in R. The passage to the limit as t) — —oo implies that
Poo(t,+) > 1 for every t € R, and finally poo = 1 in R x R. From the equation satisfied
by the pair (U, poo) With ¢ € R, one then gets that the bounded function wu., satisfies
the linear heat-like equation (teo): = d (Uso)zz + @ (Uso)ge in R x R x © with Neumann
boundary conditions on R x R x 90. Therefore, it is standard to conclude that us, is then
constant in R x R x @ﬁ Since po = 1 in R x R, one then infers that ueo = 1/(0max — Omin)
in R x R x ©. Finally, the limits (tso, poo) do not depend on the original sequence (t,)nen
nor on any subsequence, and follows.

Step 2: persistence in the case A, = 0. By Lemma one has 0 = Ay < (Omin + Omax)/2,
so that necessarily i > —0max > —1. Then we define

_ emin +1
2
and, without loss of generality, we assume the existence of a real number ¢ty > 1 such that

supg p(to, ) < v (otherwise, we would have lim inf;_, o supg p(¢,-) > v > 0 and we would
have obtained the desired result). Define

>0

T = sup {t >ty : VT € [to,t), supp(T,-) < I/}.
R

By continuity of p with respect to t in the sense of the uniform topology in € R (by
Proposition , one knows that T' > 3. Let us then prove that T" < 400, which will end
the proof, from the arbitrariness of ¢y > 1 with supg p(to,-) < v.

To show that T' < 400, notice first that

U — dugg — atigg + Ou = Opu + pu(l — p) = (0 + 1 — v)pu + pu(v — p)
in (0,+00) x Rx O. Since §+1—v = (14+6)/2+ (0 — Omin)/2 > v > 0, we deduce directly
from (2.7)) (with, say, 7 =1 and any p > 1) and the positivity of u and p, that
Vet
p,1

U — digy — augg +0u = (0 +1 —v)pu+ pu(v — p) >

470 get this property, notice first that, from standard parabolic estimates, the function uc is of
class C*° (R x R x ©) with bounded derivatives at any order. The function (us)e satisfies the same equation
as Uoo, but with homogeneous Dirichlet boundary condition on R xR x 90. If Mo := supg,pyo(Usc)o > 0,
then there is a sequence (tn, Tn,0n)ney in R X R X O such that the functions (too)o (- +tn, -+ Tn, ) converge
in Ctl;;(i 0);loc(R x R x ©) to a bounded solution v of the same equation, with Dirichlet boundary condition
on R x R x 90, and v(0,0,0c) = Mo = Supg, x5 v > 0 for some 0o € ©. This contradicts the strong
parabolic maximum principle and Hopf lemma. Therefore, (us)s < 0in RxR x O, and similarly (ueo)s > 0
in R x R x ©. Finally, the function 1., does not depend on 6 and it is a bounded entire solution of the
heat equation (teo)t = d(Uoo)ze in R X R. It is then well known that it must be constant.
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for all t € [tg,T) and (x,0) € R x ©. Let now ¢ > 0 and let v = v(t,z) be the solution of

v — dUpy = Yt in (to,t1) X R,
Cp1
v(tp,x) =& x (minu(to,x, )) for x € R,
©

with maximal existence time-interval [to,¢1) with tg < t; < 4+00. From Section one
knows that v(tg,z) > 0 for each x € R. Then, define
u(t, z,0) = e u(t, x) pa(0)

for (t,7,0) € [to,t1) x R x ©. By construction,

14

Uy — du,, — augy + Ou(t, z,0) — . u(t,z,0)PT! =

o(0 t.p)PtLi 1 — P, (0)P
—~ s el et )t [L=pa 0]

in (tg,t1) x R x ©. Up to decreasing the value of £, we can assume that 1 —e Py, (0)? <0
for all # € © (more precisely, it suffices to assume that 0 < & < ming ¢,), so that the
right-hand side above is nonpositive. Moreover,
u(to, x,0) = £ *o(in, ) @a(6) = (minulto, z,)) x @a(8) < minulto,z,") < u(to, v.0)

for all (z,0) € R x ©. In the end, the nonnegative functions u and u are respec-
tively a subsolution and a supersolution of the same local reaction—diffusion equation
in (tg, min(t1,T)) x R x © with ordered values at time tg, so that 0 < u(t,-,-) < u(t,-,-)
in R x © for all times t € [tg, min(t1,T)). From the seminal blow-up result of Fujita [35]
(the critical case being later completed by [47] and [51], see also [8]), v blows up as soon
as p+1 <3, that is, [[v(t, )|z w) — +00 as t — t1. Therefore, picking any p € (1,2], we
deduce from the global boundedness of u that T" < +oc.

As already noticed, this shows the persistence of p, and then that of w. The proof of
Theorem is thereby complete. O

Remark 3.5. As a consequence of Lemma [3.1] and Theorem some typical situations
yielding to evolutionary rescue (systematic persistence, even for small initial data) are the
following:

e when the phenotypic space “leans to the left”, that is Opin + Omax < 0, and this
whatever the mutation coefficient o > 0;

e when O, < 0 and the mutation coefficient o > 0 is small enough compared with
—0Bmin, a sufficient condition being

2.\ 1/3
2(50) b <o

and this whatever the maximal phenotypic trait fpax.

In the above two cases, one has A\, < 0 and the solutions of ((1.1)—(1.3)) escape from a
3.5).

uniform-in-(z, ) neighborhood of 0 at large times, in the sense of (|

Remark 3.6. From Lemma the condition A\, < 0 implies that 6,;, < 0. If one further
assumes that Op.x < 0, then A, is necessarily negative and in that case the population
density has a well-characterized limit at long time, by Theorem [3.4] For sign-changing
traits (Omin < 0 < Omax) With Opin + Omax > 0, the situation is more complex and A\, may
be nonpositive or positive, according to the value of a. Small populations may manage to
stay mainly in the zone of negative traits, where they have a chance to escape extinction.
A consequence of Theorem [3.4] above and Theorem [3.9 below is that what decides whether
this evolutionary rescue happens or not is the sign of A,.
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3.4. Ao > 0 makes extinction possible. In contrast with the previous section which was
concerned with the case A, < 0 and the systematic persistence, we consider in this section
the case Ay > 0 and we show the possibility of extinction in this case, that is, persistence
is not systematic (this corresponds to the intersection of lines 4-5 and columns 3-6 of
Table .

From Lemma the condition A, > 0 implies that O, + Omax > 0, hence O, > 0.
The traits may then be nonnegative, or sign-changing. We first consider in Proposition 3.7
below the case of nonnegative traits, that is, 0, > 0. In this case, there is no “refuge”
for small enough populations and therefore it is natural to guess that these populations
go extinct: in other words, extinction is possible. Actually, the condition 6, > 0 yields
Ao > 0 by Lemma [3.1} and Proposition [3.7] can then be viewed as a particular case of the
following Theorem which deals with the more general case A, > 0. But we chose to
first consider separately the case Oy > 0 in Proposition since it is easier to deal with,
and since the proof involves some different arguments as those of Theorem below.

Proposition 3.7 (Possible extinctions when Opnin > 0). If Omin > 0, then sufficiently small
initial data of the Cauchy problem (1.1)—(L.3|) lead to extinction.

Proof. On the one hand, by (2.3), one has 0 < p < max(M,1) in [0,+00) x R. On the
other hand, Opin < 0(t,2) < Omax < 1 by (2.2)), and

(p(t.2) — B(t.2)) (1 - plt.)) < ‘9flt’x>>2 _a —Zmin)Q

for all ¢t > 0 and = € R. By comparison with a linear ordinary differential equation, we
get

(3.13) 0<p(l,")<Me® inR.

= C

Since © C [0, +00) here by assumption, we can choose 7 = 1 and any p > 1 in (2.8]) and
integrate it against € over © to reach

Klpp_l(t, r) <0(t,z) < Kgpl/p_l(t,x) forallt > 1 and v € R,

where K; = K;(p) > 0. By restricting to 1 < p < 2, assuming M < 1 and using the above
estimate, we deduce from ([2.1)) the inequality

pr = dpee < pP(p* 7 — K1) (1= p) in [1,+00) x R.
By direct comparison with the underlying ordinary differential equation, starting from
supg p(1,-) and using (3.13)), we get that sup,cg p(t,z) — 0 as t — 400 as soon as M also
satisfies
Me® < min (Kll/@_p), 1) ,
which concludes the proof. ]

Remark 3.8. It might be tempting to use the same technique to get a persistence result
for large initial data. However, in order to obtain an inequality of the type

Pt — dp:m“ > pl/p(p2—1/p - K2)(1 - p)v

we would need to multiply p — 8 > p — Kop'/? =1 by p(1 — p) > 0. This requires M < 1,
and then we could think of a persistence result by comparison and standard results on
local bistable reaction—diffusion equations only if 0 < K5 < 1 is small enough so that
fol sH/P(s2= 1P — K3)(1 — s)ds > 0, which is typically false as Ky is a large constant.

Theorem 3.9 (Possible extinction when A\, > 0). Let A\, be the principal eigenvalue of
the eigenproblem (3.1)—(3.2)). If Ao, > 0, then sufficiently small initial data of the Cauchy

problem (1.1))—(L.3)) lead to extinction.
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Proof. Let us now assume A\, > 0. Fix p € (0,y), and let 0 < € < (Aq — 1)/ ((Omax —
Omin) (1 + Omax)) be given. Defining

w(t, z,0) = wt, 6) = e M, (0),
where ¢, is as in (3.1)—(3.2]) with A = A\, we find that
(3.14) Hw 1= wy — dwee — qwgy + 0w = e My (0) Ao — 1) = (Ao — )w >0

in R x R x ©. Pick a nontrivial and nonnegative initial condition ug € C.(R x ©) such
that, for every 0 € ©, maxgug(-,0) < €pa(f) (it is therefore sufficient to take uy €
Cc(R x ©,[0,400)) such that maxp, guo = |[uollfrxe) < € ming ¢s). Notice that, by
continuity with respect to 8 € ©, there is 7 > 0 such that maxg ug(-,6) < & 9 () — 1 for
all § € ©. We then define

T := sup {7‘ >0:Vte0,7), VO €O, supu(t,-,0) < w(t,&)}.
R

Notice that, due to the well-posedness (Proposition and more specifically to the
continuity of v when ¢ — 07 in L>°(R x ©), one has T > 0.

We are going to show that 7' = 400 and, to do so, we assume by way of contradiction
that T' < +o00. From the behavior at large |x| and again from the continuity of v with
respect to t in the sense of L°(R x ©), there must be a touching point (zg,60y) € R x ©
such that the function v := w —u satisfies 1 > 0in [0, 7] x R x © and (T, x¢,6p) = 0. In
particular, there holds (T, z¢,00) < 0 and 9., (T, xo,0p) > 0. Moreover, since v satisfies
the no-flux boundary condition on 90, we also have gg(T, zo,00) > 0 whether 6y be in
© or on 00. Then, from and together with the Ctlf 9)((0, +00) x R x O)

(x’
regularity of u, the function v satisfies

wt—dm—awee:w(Aa—u—e—(1—‘”) <p_e)<1_p>)

w
in (0, 4+00) x R x ©. Evaluating at (T, zo, ), we obtain
Ao — i < p(T,x0) (1= p(T,x0) + 6o) < p(T,70) (1 + Omax)-

Since
p(T7 1'()) = / u<T7 Zo, ) < / w(T? ) = Ee_MT/ 9004(9) <e (Qmax - Hmin)a
€] €] €]

and since the assumption A\, > 0 yields O,iy 4+ Omax > 0 by Lemma (and then Op,ax > 0
and 1+ Opax > 0), we end up with

)\a % <e (emax - amin) (1 + emax)a

which is a contradiction from the above choice of €. As a result, for each up small enough
so that maxg uo(-, ) < € ¢q(f) for all § € O, one has T' = 400, and then

0 <u(t,z,0) <w(t,0) =ce "ip,(0)

for all (t,z,0) € [0,+00) x R x ©. Therefore, |lu(t,-,-)||mrxe) = 0 as t — 400, and this
completes the proof. O

Remark 3.10. The preceding argument actually proves that, whenever A\, > 0, any solution
whose initial condition ug satisfies (|1.3) and

Ao Ming Qq
max emin) (1 + Hmax)

[uoll oo (rxo) < @

goes extinct.
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3.5. Is it true that 6,,;, < 1/2 makes persistence possible? Finally, we focus on the
last remaining question, that is the possibility of persistence when Oy, < 1/2. It turns
out to be a challenging problemﬁ with several cases to be distinguished according to the
sign of Omin + Omax — 1. That corresponds to columns 3, 4, 5 and 6 of Table

3.5.1. The sub-critical case Omin + Omax < 1.

Theorem 3.11 (Possible persistence in the sub-critical case). If Opin + Omax < 1, then
there exist initial data of the Cauchy problem (1.1))—(1.3) that lead to persistence.

We begin with some preliminary lemmas.

Lemma 3.12 (On the preservation of monotonicity in ). Assume that M <1 and that ug

is nonnegative, of class CL(R x ©) and nonincreasing with respect to § € ©. Then, the
solution u(t,z,0) of the Cauchy problem (1.1)—(1.3)) is a nonincreasing function of 6, for
each t > 0 and x € R.

Proof. First of all, from standard parabolic estimates and bootstrap arguments, the func-
tion u is of class C*°((0, +00) x R x ©) and, from the regularity of uy and similar arguments
as in Section it follows that v := wup is continuous in [0,4+00) x R x © and locally
bounded with respect to t. Moreover, we have v(t, z, Onin) = v(t, &, Omax) = 0 for all t > 0
and x € R, and differentiating with respect to 0, we get

v = dvgy + awgg + v(p — 0)(1 — p) —u(l — p)
in (0, 4+00) x R x ©. From (2.3)) and the assumption M < 1, one has p < 1in [0, +00) x R,
thus —u (1 — p) <0 and
v < dugy + avgg +v(p — 0)(1 — p)

in (0,400) x R X ©. But since ug = v is nonpositive at initial time by assumption,
the parabolic maximum principle implies that wug(t,z,0) = v(t,2,0) < 0 for all t > 0
and (z,0) € R x ©. O

Lemma 3.13 (An upper bound for the mean trait). Under the assumptions of Lemma
we have

g(t7 x) < Hmin ‘|2' gmax7
for allt >0 and x € R.

Proof. Set

(3.15)  a(t,x) := 1/ u(t,z,0)do = p(t,z), fort>0, x €R,
Qmax - emin C) 0

max Hmin
and observe that the mean trait (¢, z) satisfies, for t > 0 and z € R,
- 1

o(t,z) = ) /@9u(t,x,8) dé,
1 _ 1 _
(3.16) = ot 7) /@9u(t, x)db + o(7) /@0(u(t,x,9) —u(t,z))de,
. Hmin —+ emax 1 —ult. x
R ) /@ 0 (u(t, 2, 0) — T(t, z)) do.

5Note that the case Ao < 0 (which includes the case Omin + Omax < 0) is already solved, since it implies
systematic persistence. However we will not use this observation.
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From Lemma we know that, for each (¢,z) € [0, 4+00) xR, the function 6 — wu(t,z,0)—
u(t,x) is nonincreasing with mean value 0 over ©. Since 6 — 6 is of course increasing in
O, Chebyshev’s integral inequality implies that

(Hmax—ﬁmin)x/ 0 (u(t, z,0) —a(t,z))dd < (/@0d9> x (/@(u(t,x, 9)—ﬂ(t,:c))d9> = 0.

(C]
With (3.16)), this completes the proof of Lemma O

We are now in the position to complete the proof of Theorem [3.11

Proof of Theorem [3.11] Assume that Onin + Omax < 1, and take ug as in Lemmas
and Using Lemma [3.13] we have

7 min max 1
0(t,z) < 0* ::¥<§ forall ¢ >0 and z € R.

Thus, we deduce from (2.1) and the comparison principle (recall that, here, 0 < p <1
in [0, +00) x R since M < 1), that p(t,z) > p(t,z) for allt > 0 and 2 € R, where p denotes
the solution of the Cauchy problem

(3.17) p,=dp +plp—0)(1-p), t>0, xR,

starting from p(0,-) = p(0,-) in R. As 6* < 1/2, standard results of [8] imply the existence
of initial conditions pj € C.(R, [0,1)) such that the solution p* = p*(£, x) of starting
from p§ satisfies p*(¢t,2) — 1 as t — 400, locally uniformly in z € R. It is then sufficient
to choose a nonnegative initial condition uy € C}(R x ©), which is nonincreasing in § and
such that 1 > p(0,-) > pf in ]RH to get that 1 > p(t,z) > p(t,z) > p*(t,z) - 1l ast — +o0
locally uniformly in z € R. Then p(t,z) — 1 as t — 400 locally uniformly in = € R and
such a solution u then persists (and it even satisfies (3.6, as in the last part of Step 1 of
the proof of Theorem . The proof of Theorem thereby complete. O

3.5.2. The super-critical case Opin < 1/2 < (Omin + Omax)/2. This case corresponds to
column 6 of Table [2] Since Opax < 1, one then has Oy, > 0 in this case, hence A, > 0 by
Lemma [3.1} Therefore, by Theorem sufficiently small initial data ug of the Cauchy
problem f lead to extinction. Although the assumption 6, > 1/2 leads to
systematic extinction by Theorem the case Omin < 1/2 < (Omin+0max)/2 is more subtle
and is handled with different techniques, leading to the identification of new parameter
regimes.

Theorem 3.14 (Systematic extinction in the super-critical case with large a). If Opin <
1/2 and Opin + Omax > 1, then all solutions of the Cauchy problem (1.1))—(1.3)) go extinct,
provided o > o, for some o* > 0 that depends only on M, Opin and Omax-

Proof. As already underlined, one here has 6,;, > 0. Consider for the moment any o > 0
and any solution u of 7. Define
v =1y
and, for t > 0 and x € R,
Vit2) = gl ) Bage.

From standard parabolic estimates and the global boundedness of u and p, the function u
is of class C*°((0, +00) x Rx ©), and uy is bounded in [g, +00) x Rx O for each ¢ > 0. Hence,
the function V is of class C*°((0,+00) x R) and bounded in [, +00) x R for each ¢ > 0.
We derive in this paragraph a partial differential inequality satisfied by V (¢, x) for any
fixed (¢,z) € (0,+00) x R. All quantities below involving p, V' and the partial derivatives

6This inequality is satisfied for instance if uo = 1/(fmax — Omin) in [~ R, R] x ©, with [~ R, R] containing
the support of pg.
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of V, are evaluated at (¢, x). Differentiating (1.1) with respect to 6, multiplying by v and
integrating over O, we get that

Vt:d/vvme—i—a/vvggdG—l—(l—p)/v2(p—6’)d0—(1—p)/uvd@.
© © (C]

)
Integrating by parts (with v = 0 on (0, +00) x R x 90) and using 0 < p(t, ) < max(M, 1)
and p(t,z)(1 — p(t,x)) < 1/4, we obtain

1
v;gd/mmde—a/(ue)2d9+ <2+2(M+1)0max)v+(M+1)/u|v\d9.
© S) S)

Since )
v
vvmdﬁ—/ — d@—/ugdagvm,

the Cauchy—Schwarz inequality leads to
1
Vi < d Vi — af|vgl|72(e) + <2 +2(M + 1)9max> V+(M+1)V2uvav,

where )
U(tv JZ) = §Hu(t7 z, )”%2(6)
Additionally, as v = 0 on (0, +00) x R x 90, the Poincaré inequality yields
lvo(t, 2, )20y = A N0t 2, )20y = 2AYV (¢, ),

with /\]13 > 0 the principal eigenvalue of —dpy in ©® with Dirichlet boundary conditions,
that is,

i {Je % __
(3.18) AP = mm{fgwg .weHé(G)\{O}} R
Therefore,
(3.19) Vi — dVyy < VV (( + 2(M 4 1)8max — 2aA‘f)x/V+ 2(M + 1)\/ﬁ> .

Next, after recalling the definition (3.15)) of w(¢,z), the Poincaré-~Wirtinger inequality
implies that

with AN > 0 the smallest nonzero eigenvalue of —9gy in © with Neumann boundary
conditions, that is

(3.21) AQN::min{f@% o H'(O \{0}/ —0} ——

f@ 90 max - emm)
In particular, we deduce from /2U (¢, z) < [lu(t, z,-) — u(t, z)|| 12(e) + |[@(t, )| L2(0) that
2(M +1) 2(M +1
(3.22) oM + 1) /Ta) < 2MAD gy 2+ D)7

/ max emln

since 0 < u(t,z) < max(M,1)/(Omax — Gmin) < (M + 1)/(0max — Omin) in view of (2.3))
and (3.15). Plugging (3.22) into (3.19)), we end up with

Vi dVi VV (R~ paVV),

where

oM A1) V2(M +1)?

\/E Omax — Omin

(3.23) fto = 2000 — = — 2(M + 100y —

2
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From (3.18]), (3.21]) and (3.23]), there exists aj > 0, depending only on M, Omin and Opax,
such that

fo >0 for all a > af.

From now on, we assume that a > a}. By comparison with the explicit solution V of the
underlying ordinary differential equation starting at time ¢ = 1 from supg V'(1,-) (which
is a nonnegative real number), we get that

2
(3.24) V(t,x) < <R+ (sup V(,-) - E) e““(tl)/2> =V(t) forallt>1, v €R.
Ha R Ha
Next, coming back to (3.16|), namely
- Hmin + gmax 1 / —
O(t,x) = + 0 (u(t,z,0) —u(t,x))do,
(tr) = s s [ 0 (ut.,0) — (e, 2)

we obtain, from the Cauchy—Schwarz inequality together with (3.20) and (3.24]),
— Omin + 6 K —
(3.25) B(t,x) > Jmin T Pmax V(t) forallt>1andz € R,
2 p(t, x)
)/(3AY) > 0 is a constant that only depends on Oy and Opax.

Now, remembering that iy 4+ Omax > 1 and Opin > 0, let n > 0 (only depending on Oy,
and O« ) be small enough so that

max min

where K = \/2(63 — 63

0.

(3.26) Omin + Omax > 1+ 107 and 0<n < rzm.

From (3.23)), there exists then o* > o7 only depending on M, i, and pax, such that
R n?

— < = forall a > ™.
po K

From now on, we assume that
a>ar.

There exists then a time Ty > 1 such that Ky/V(¢t) < n? for all t > T} (notice that T}

depends on « and also of supy V(1,-) and then also on u itself, but this does not matter
since we are only concerned with the extinction, at long time, of u). Observe also that,
defining 6* := % + 21, (3.25) insures that

O i O max 1 "
Omin + Omax 24 yp s v,

(3.27) if t> Ty and p(t,z) >n, then O(t,z) > 5 5

Define

F(s) = (5= 20) (5 — 6) (1 — 8) & 1%(s — 20) (5 — 0" g oy (5), for 5 > 0.
Since 1 4 101 < Opin + Omax < 2, one has n < 1/10, so that

1 1
277<§<9*=§+277<1<1+772

and f is a bistable reaction term with stable steady states 2n and 1 4+ 1% and unstable
steady state 6* = 1/2 + 2n. By straightforward computations, one has

1402 n

/ f(s)ds=—=+o0(n) asn—0.

2n 6

Hence we may assume without loss of generality, up to reducing n > 0 (depending on €,
2

and Opax only), that f;;r” f < 0. Define then

2
TQ:inf{tZT1:VTZt7 Supp(T,-)Sl—l—Z}_
R
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The time 75, which depends on u and the other parameters of the problem, is well-defined
and finite by virtue of (2.10), that is, 1 < 77 < Ty < 4o00. Consider now the solution
p = p(t, x) of the bistable reaction—diffusion equation

(328) Pt = dﬁmx +7(p)a t>Ty, v €R,

starting from p(7T%, z) = max(p(T, z),2n). Notice that 2n < p(Tz, ) < 1+n%/2 <1+ n?
for all x € R, and that p(T3,x) — 21 as © — foo by ([2.6). Therefore, it follows from [33]
(as in the proof of Theorem in the case Opin > 1/2, see Section that

(3.29) p(t,xz) — 2n as t — +o0, uniformly in z € R.
We finally claim that

flt,z,pt,x)) :== p(t,x) (p(t,z) — O(t,z)) (1 — p(t,2)) < f(p(t,z)) forall t > Ty, = €R.

Indeed, for any ¢t > T and z € R, one has on the one hand 0 < Oy < 0(t,7) < Opax < 1
and 0 < p(t,z) <1+n%/2 <1+ n? and on the other hand:

e when 1 < p(t,x) < 1+ UQ/% f(t,z, p(t,x)) — f(p(t,x)) is obviously nonpositive
since f(t,z, p(t,z)) <0 and f(p(t,z)) > 0;
e when 1 < p(t,z) < 1, then

[t @, p(t,x)) = fp(t, ) < ft, @, p(t,x)) — (p(t,z) — 2n) (p(t, x) — 67) (1 = p(t, ))

and the sign of the right-hand side is that of p(t,z)(0* — 0(t, z) +2n) — 2n6*, which
is negative in view of (3.27));

e when 0 < p(t,z) < n, the sign of
f(ta z, ,O(t, l‘)) - 7(p(t7 $)) = (1 - ,O(t, l‘)) [0*(p(tv Zl?) - 277) + ,O(t, l‘)(27] - g(tv :I;))]
is that of 0*(p(t, z) — 2n) + p(t, ) (2n — 0(t,x)); but, since (¢, ) > Omin > 0, there
holds 6*(p(t,x) — 2n) + p(t,z)(2n — O(t,x)) < —nd* 4+ 2n* = —n/2 < 0.
As a result, recalling (2.1]), p is then a subsolution of the equation (3.28|) satisfied by p
for times ¢t > Ty, with 0 < p(Ts,-) < p(T%,) in R, and therefore, 0 < p(t,z) < p(t,x) for
all t > T, and x € R from the maximum principle.

Since 1 < Omin/4 by (3.26)), we deduce from ([3.29) the existence of a time T3 > T3 such
that

: 1
r;m<§<1 forallt > T3, =z €R.

Since O(t,z) > Omin in (0,4+00) x R and Opin < Omax < 1, it then follows from (2.1]) and
the previous inequality that

0<p(t,z) <

pt < dpyy + p(p—Omin)(1 — p) forallt >T5, z € R.

Hence, by comparison with the underlying bistable ordinary differential equation, one
infers that p(t,z) — 0 as t — 400, uniformly in z € R. In other words, u goes extinct,
as soon as a > o, with o > 0 only depending on M, O, and Op.. The proof of
Theorem [3.14] is thereby complete. O

4. NUMERICAL RESULTS

The objective of this section is to get an overview of the shape of the solution wu(t, x, 6)
of and to test the conjectures made in Section We solved the equation
on a rectangular domain (z,0) € I X (Omin,Omax) With a “method of lines”, using the
Matlab® oded5 solver (the source code is available in the Open Science Framework repos-
itory: https://osf.io/w8nuz/). We considered characteristic functions of sets of various
dimensions L X (Omin, fmax) as initial conditions (though they are not continuous, these
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functions can be approximated by continuous functions without changing much the nu-
merics):

1
L po/2)(z) for (z,0) € (—60,60) X (Omin, Omax),
Hmax - Hmln N

=1

(4.1) ug(z,0) =

with 0 < L < 80.

We depict the shape of u(t,x,0) at some fixed positive time in Fig. (1| in the subcri-
tical case (Omin + Omax < 1, panel a) and supercritical case (Omin + Omax > 1, panel b).
Interestingly, the solution takes its highest values when x is close to the leading edge
of the front, i.e., at the transition zones between p =~ 0 and p = 1. At such positions,
the population tends to concentrate on trait values close to 0,;,. This is consistent with
the interpretation of a stronger selection pressure due to the Allee effect at low density
(see the biological motivation part of the Introduction). Conversely, in the “core” of the
population, the solution tends to get flatter, which reflects the convergence of the mass p
towards the value 1, which in turns implies that the reaction term in is close to 0.
Thus, in this central region, the dynamics is mainly driven by diffusion (spatial diffusion
and mutations).

We now test our conjectures. To construct Fig. [2, we solved the equation until
a time T = 103, for increasing values of the mutation parameter a (with step 10~%)
and of the length L of the support of uy (with step 1). Each time, we computed the
total mass N(t) = [, p(t,x)dz for t € [0,T]. We considered that persistence occurred if
N(T) > |I|—1 =119 (p = 1 over the whole domain I X (Omin, Imax)); that persistence was
probable if N(T') > N(T'/2); that extinction was probable if N(T') < N(7'/2); and that
extinction occurred if N(7T') < 1. In the critical case Opin + Omax = 1, we conjectured in
Section that, for any value of the mutation parameter «, extinction or persistence can
both occur according to the initial condition. This is fully consistent with the numerical
results in Fig. . In the supercritical case Opin + Omax > 1, we proved that for « large
enough, extinction was systematic. This corresponds to the region a > o* ~ 7.5- 1073 in
Fig. 2b. In this plot, we also observe that, as conjectured, when « is below this threshold,
extinction or persistence can both occur depending on ug (here L) if o < o*.

Remark 4.1. Close to the critical threshold o* ~ 7.5 - 1072 and for L ~ 15 we observe a
small pink “persistence region” encroached below the cyan “extinction region”. At first
glance, this may appear surprising since larger values of L are expected to lead to higher
chances of persistence (even though the comparison principle does not hold). A closer
look at the solution of (not depicted here) for (o, L) in this region shows that the
solution seems to converge to a stationary state, either by increasing its total mass N (t)
(for small L, pink region) or by decreasing it (for large L, cyan region), which explains
the pattern in Fig. 2.
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