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WHEN THE ALLEE THRESHOLD IS AN EVOLUTIONARY TRAIT:

PERSISTENCE VS. EXTINCTION

MATTHIEU ALFARO, LÉO GIRARDIN, FRANÇOIS HAMEL, AND LIONEL ROQUES

Abstract. We consider a nonlocal parabolic equation describing the dynamics of a
population structured by a spatial position and a phenotypic trait, submitted to disper-
sion, mutations and growth. The growth term may be of the Fisher-KPP type but may
also be subject to an Allee effect which can be weak (non-KPP monostable nonlinearity,
possibly degenerate) or strong (bistable nonlinearity). The type of growth depends on
the value of a variable θ : the Allee threshold, which is considered here as an evolutionary
trait. After proving the well-posedness of the Cauchy problem, we study the long time
behavior of the solutions. Due to the richness of the model and the interplay between
the various phenomena and the nonlocality of the growth term, the outcomes (extinction
vs. persistence) are various and in sharp contrast with earlier results of the existing
literature on local reaction-diffusion equations.

Contents

1. Introduction 2
1.1. Position of the problem 2
1.2. Biological context 2
1.3. Mathematical context 3
1.4. Summary of the main results 4
1.5. The “E. or P. conjecture” 6
1.6. Generalizations of the model (1.1) and open questions 7
1.7. Organization of the paper 7
2. Preliminaries 8
2.1. Global bounds and comparison between the population density u and its

mass ρ 8
2.2. The well-posedness of the Cauchy problem (1.1)–(1.3) 10
3. Persistence versus extinction 13
3.1. A principal eigenvalue problem 14
3.2. θmin ≥ 1/2 makes persistence impossible 15
3.3. λα ≤ 0 makes extinction impossible 18
3.4. λα > 0 makes extinction possible 22
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1. Introduction

1.1. Position of the problem. We consider a population density u = u(t, x, θ), which
depends on time t ≥ 0 and is structured by a spatial position x ∈ R and a phenotypic
trait

θ ∈ Θ := (θmin, θmax),

where
−∞ < θmin < θmax < 1,

and whose evolution is governed by the nonlocal problem

(1.1) ut = duxx + αuθθ + u(ρ− θ)(1− ρ) for all t > 0, x ∈ R, θ ∈ Θ.

In (1.1), d > 0 is the spatial diffusion coefficient, α > 0 is a coefficient which measures
the impact of mutations on the trait (mutation rate × mutation effects, see Appendix A
in [52]). The nonlocal term ρ = ρ(t, x) corresponds to the total population density at
spatial position x; it depends on the solution u = u(t, x, θ) itself and is given by

ρ(t, x) :=

∫
Θ
u(t, x, θ) dθ for all t > 0, x ∈ R.

To ensure that mutations have no effect on the population size, the equation (1.1) is
supplemented with no-flux boundary conditions on the boundary of the interval Θ of
phenotypic traits, namely

(1.2) uθ(t, x, θmin) = uθ(t, x, θmax) = 0 for all t > 0, x ∈ R.
Our first main concern is to perform a detailed analysis of the Cauchy problem obtained

by supplementing to (1.1)–(1.2) an initial condition

(1.3) u(0, ·, ·) = u0 ∈ Cc(R×Θ, [0,+∞)) with M := sup
x∈R

∫
Θ
u0(x, θ) dθ > 0.

In (1.3), Cc denotes the space of continuous functions with compact support (hence, M is
necessarily finite). The initial conditions are here assumed moreover to be nonnegative.
Secondly, we will investigate the long time dynamics (persistence vs. extinction) of the
population density u and its mass ρ, according to the value of the parameters α, θmin

and θmax, and according to the initial condition u0.

1.2. Biological context. A biological invasion is generally considered as a three-stage
process [18], which begins with the introduction of some individuals into a new environ-
ment, and is followed by the establishment and spreading of the population. This scenario
corresponds to a successful invasion. However, individuals that arrive from a source popu-
lation into a new environment do not necessarily establish a new population [18]. Either
the newly-introduced individuals are well-adapted to the new environment and can readily
establish or the introduced population declines due to a negative growth rate. In the lat-
ter case, evolutionary adaptation can lead to the establishment of such initially declining
populations. This process is known as evolutionary rescue [30].

The success of an invasion depends on several factors that include characteristics of the
species, of the introduction event (initial population size and spatial distribution [41] and
genotype diversity), and of the new environment (e.g., climate matching or presence of
hosts for biological invasions). Among these factors, several studies have shown that the



ALLEE THRESHOLD AS PHENOTYPIC TRAIT: PERSISTENCE VS. EXTINCTION 3

presence of an Allee effect, a decreased individual fitness at low population density [5],
plays an important role, as introductions typically involve small populations [32, 60, 70].
The Allee effect may result from several simultaneous processes [11] that arise at low
densities, such as diminished chances of finding mates or inbreeding [31].

Many spatio-temporal modelling approaches that focused on invasion success in the
presence of an Allee effect adopted a purely demographic viewpoint [33, 41, 61], thereby
neglecting the effects of genetic adaptation. These studies were based on PDE reaction-
diffusion models with growth functions of the form f(ρ) = ρ(ρ − θ0)(1 − ρ), with θ0 < 1
a given constant representing the Allee threshold [67]. We recall that this function may
account for the presence of a strong Allee effect if θ0 > 0, a weak Allee effect if θ0 ∈ (−1, 0]
and can also take a KPP form without Allee effect if θ0 ≤ −1 [69] (see also Table 1).

Here, we take a different approach to analyze the success of an invasion in the presence
of genetic adaptation when the trait under selection precisely corresponds to the strength θ
of the Allee effect. In the source population, where the introduced individuals come from,
Allee effects may have been promoted by evolution, due to high population sizes [12]. In
such dense populations, where mate finding is easy, individual may indeed acquire traits
that impair fitness at lower densities. Conversely, the selection pressure at low density can
promote traits that reduce the strength of the Allee effect. More generally, this type of
density-dependent selection [9, 65] can occur when the fitness associated to a trait value
depends on the population density. Empirical examples include dispersal dimorphism in
several insect species, where individuals with higher dispersal potential (and thus better
mate-finding ability) mostly appear at low population densities [71]. The invasion of
cane toads in Australia is another well-documented example of this dimorphism [57]. Yet
another example of density-dependent selection is the evolution of virulence in spreading
epidemics [49]. Recently, such biological problems and the underlying trade-offs have
attracted a great deal of interest from mathematical modelers [10,35,49,56].

As the leading edge of an invasion is by definition a region where the population density
is low, one may expect that important selection pressure on traits that regulate the Allee
effect occurs there. The strength of the Allee effect is known to have important effects
on the persistence/extinction and the spread of invasive organisms, we therefore expect
that the evolution of these traits have important effect on invasion dynamics. Yet, this
question has not been addressed theoretically until the recent work [36], which is based on
individual-based simulations of a model with a trait that governs resistance to the Allee
effect. In [36], the authors focused on the transition during the course of an invasion from
pushed waves, namely steep waves where the whole bulk of the wave pushes the invasion
forward and the spreading speed is nonlinearly determined, to pulled waves, namely flatter
waves that are driven only by the exponential tail ahead of the front and whose spreading
speed is linearly determined. Here, we rather focus on the conditions that lead to a
successful invasion or not.

1.3. Mathematical context. In the last decade, mathematical population models struc-
tured by both a spatial and a trait variable and evolving in an unbounded spatial domain
have received much attention. As far as Fisher-KPP growth terms (the per capita growth
rate is decreasing with respect to the population density) are concerned, let us mention
the works [1,16,27,47] dealing with constant motility, [7,17,21–23,25,26,29,46,68] where
the motility is trait-dependent (cane toad equation) and [4, 42–46, 48, 62] where the trait
structure is discrete. As far as bistable growth terms are concerned, let us mention [24]
where a local bistable-type equation is concerned, and [2] considering a nonlocal model
proposed in [55] for evolutionary rescue.

The model (1.1) is not only space-trait structured but also includes a trait-dependent
Allee effect in the growth term (possibly threatening small populations). Moreover, due to
the nonlocality of the growth term and its non-monotonicity with respect to u (remember



4 ALLEE THRESHOLD AS PHENOTYPIC TRAIT: PERSISTENCE VS. EXTINCTION

θ0 ≤ −1 θ0 ∈ (−1,−1/2] θ0 ∈ (−1/2, 0] θ0 ∈ (0, 1/2) θ0 ∈ [1/2, 1)

Outcome P. P. P. E. or P. E.

Strength of the A. E. No A. E. Weak A. E. Weak A. E. Strong A. E. Strong A. E.

Nature of the front Pulled Pulled Pushed Pushed Pushed

Spreading speed 2
√
−θ0d 2

√
−θ0d

√
2d(1/2− θ0)

√
2d(1/2− θ0) 0

Table 1. Standard persistence and spreading results for the equation
ρt = dρxx + ρ(ρ − θ0)(1 − ρ) with compactly supported initial condition
ρ0 ≥, 6≡ 0 (here, θ0 < 1 is a fixed parameter). P.: systematic persistence
independently of ρ0 (hair trigger effect); E. or P.: outcome depending on
ρ0; E.: systematic extinction independently of ρ0; A. E.: Allee effect. The
front refers to the unique front or to the front with minimal speed. Its
pulled/pushed nature is understood in the sense of [40].

that ρ depends on u), the comparison principle does not hold in general for (1.1)–(1.3),
that is, even if two initial conditions u0 and v0 are ordered, the solutions emanating from
them may not be ordered at positive times.

As mentioned above, the main purpose of this work is to determine conditions that
imply persistence or extinction of a population whose density is governed by (1.1)–(1.3).
Since the Allee threshold, or the strength of the Allee effect, is regarded as an evolutionary
trait subject to mutations and selection, the model under consideration may share some
similarities with various classical local reaction-diffusion equations such as Fisher-KPP,
degenerate monostable, or bistable equations. As a result, the model can reveal many
phenomena which are common in the study of local reaction-diffusion equations. Let us
first mention the so-called hair trigger effect [8], meaning that persistence occurs whatever
the size of the initial density. Notice that the hair trigger effect is related to the seminal
blow-up result of Fujita [39]. On the other hand, some threshold phenomena [3, 34, 64,
72] may occur, meaning that “small” populations typically go extinct whereas “large”
populations typically persist. These classical results are summarized in Table 1 for the
standard model ρt = dρxx + ρ(ρ− θ0)(1− ρ), where θ0 is a fixed parameter that controls
the occurrence of an Allee effect, see above. For the model (1.1), we expect a much
more complicated behavior. We distinguish between three possible scenarios: hair trigger
effect, possible persistence or extinction depending on the initial condition, and systematic
extinction whatever the (compactly supported) initial condition. As we will see, the
range (θmin, θmax) over which the trait may vary plays a critical role on the fate of the
population.

If survival occurs, one may like to analyze the propagation phenomena, in particular
to determine the spreading speed which is related to the nature of the traveling front [40].
We believe that the model may exhibit fronts that, in some sense, may switch from pushed
to pulled, as observed through individual-based models [36]. We plan to address such an
issue in a future work.

1.4. Summary of the main results. We here briefly comment our main results, which
will be clarified throughout the paper.

We start by proving important a priori estimates and the well-posedness of the Cauchy
problem (1.1)–(1.3). In particular the solutions u of (1.1)–(1.3) are understood in the

classical sense, namely of class C1;2
t;(x,θ)((0,+∞)×R×Θ)∩C([0,+∞)×R×Θ) (and there-

fore (1.1) is satisfied in (0,+∞)×R×Θ). The mass ρ over the trait space will then be of

class C1;2
t;x ((0,+∞)× R) ∩ C([0,+∞)× R).
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θmin < 0 and θmin < 0 and 0≤θmin<1/2 and 0≤θmin<1/2 and 0≤θmin<1/2 and θmin ≥ 1/2

θmin+θmax≤0 θmin+θmax>0 θmin + θmax < 1 θmin + θmax = 1 θmin + θmax > 1

λα < 0 P. P. N/A N/A N/A N/A

λα = 0 N/A P. N/A N/A N/A N/A

λα > 0 N/A E. or P. E. or P. E. or P.

∃α? > 0,

E. or P. if α ≤ α?

E. if α > α?

E.

Table 2. Summary of the main results. E.: systematic extinction inde-
pendently of u0 satisfying (1.3); P.: systematic persistence independently
of u0 satisfying (1.3); E. or P.: outcome depending on u0; colored cells: the
possibility of extinction is proved, the possibility of persistence is conjec-
tured but not proved; N/A: not applicable, i.e. impossible case.

Then our main goal is to figure out the long time behavior of the solutions. We first
define the Neumann principal eigenpair (λα, ϕα) of the linearized operator around the
trivial steady state 0 corresponding to perturbations that vary only in the θ variable,
namely 

−αϕ′′α + θϕα = λαϕα in Θ,

ϕ′α(θmin) = ϕ′α(θmax) = 0,

ϕα > 0 in Θ.

We prove that the outcome of the population, extinction or persistence, depends on a subtle
combination of the sign of λα, the range of admissible phenotypic traits Θ = (θmin, θmax),
and the initial density u0, as summarized in Table 2. By extinction (E.), we mean that
‖u(t, ·, ·)‖L∞(R×Θ) → 0 as t → +∞. By persistence (P.), we mean the opposite, that is,
lim supt→+∞ ‖u(t, ·, ·)‖L∞(R×Θ) > 0. We will also see that these definitions have equivalent
formulations for the mass ρ.

As will be seen in Section 3.1, the map α 7→ λα is an increasing concave bijection
from (0,+∞) onto the open interval (θmin, (θmin + θmax)/2). Therefore, the nonpositivity
of λα implies that θmin < 0, and the last four boxes of lines 2 and 3 of Table 2 are
impossible. Similarly, the nonpositivity of θmin + θmax yields λα < 0, hence two boxes of
column 2 of Table 2 are impossible.

Let us observe from Table 2 that (1.1)–(1.3) may behave like, at least, five different
classical reaction–diffusion equations.

(1) When λα < 0 (line 2 of Table 2), then θmin < 0 and the zero steady state is linearly
unstable. We are then facing a non-degenerate monostable1 situation: persistence
occurs whatever the size of the initial density (hair trigger effect). This is proved
in Theorem 3.4.

(2) Whereas the critical case λα = 0 leads to extinction in classical Fisher-KPP equa-
tions (see e.g. [15] for such results in a periodic framework), (1.1)–(1.3) still en-
joys the hair trigger effect when λα = 0 (line 3 of Table 2 where, necessarily,

1By a “non-degenerate monostable situation” we mean that the equation behaves like a standard
reaction-diffusion equation with a monostable nonlinearity f with non-zero slope at zero, a typical ex-
ample being f(ρ) = ρ(ρ− θ0)(1− ρ) with θ0 < 0.
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θmin < 0 < θmin + θmax). The reason is that (1.1) then “escapes” from the non-
degenerate regime and “switches” to a (slightly) degenerate monostable situation,
for which the hair trigger effect still holds.2 This is also proved in Theorem 3.4.

(3) When λα > 0 and the center (θmin + θmax)/2 of the interval Θ is smaller than, or
equal to, 1/2 (columns 3, 4 and 5), we are typically facing a bistable situation,
for which the outcome may be the extinction or the persistence of the population
according to the initial density, as for local bistable reaction-diffusion equations
admitting a traveling front invading the trivial state 0. The possibility of extinction
is proved in Theorem 3.9. The possibility of persistence is proved in Theorem 3.10
when θmin + θmax < 1, while it is conjectured in the critical case θmin + θmax = 1
(see subsection 1.5 below).

(4) When λα > 0 and the center (θmin + θmax)/2 of the interval Θ is larger than 1/2
while θmin < 1/2 (column 6), we are typically facing a situation similar to that
of local bistable reaction-diffusion equations admitting a traveling front that, ac-
cording to the amplitude of α, is retracting (meaning that the null state invades
the nontrivial state), standing (meaning that connection from the null state to the
nontrivial state is stationary), or possibly invading (meaning that the nontrivial
state invades the null state). The possibility of extinction is proved in Theorem
3.9. The systematic extinction for α > α? is proved in Theorem 3.13, while the
possibility of persistence is conjectured when α ≤ α? (see subsection 1.5 below).

(5) When λα > 0 and θmin ≥ 1/2 (column 7), we are typically facing a bistable
situation for which all solutions go extinct, as for local bistable reaction-diffusion
equations admitting a standing or retracting front. This is proved in Theorem 3.3.

Our work effectively shows the possibility of evolutionary rescue in this model: an
initial condition that would be, for instance, concentrated around θ0 > 1/2 should lead to
extinction in the absence of mutations but might persist in the presence of mutations. As
a matter of fact, it will automatically persist if, for instance, θmin +θmax ≤ 0. However, we
also observe that in the whole Table 2, the higher the mutation rate α is, the higher the
chances of extinction are. This phenomenon is known as “lethal mutagenesis” [28]. There
is therefore an interesting trade-off: evolutionary rescue is made possible by the presence
of mutations but is made difficult by large mutation rates, which is consistent with the
findings of [6].

From a mathematical point of view, this paper is one of the first to provide rigorous
results on reaction-diffusion equations taking into account diffusion in the spatial and the
trait variables together with selection with respect to the trait and a nonlocal effect in
the reaction. The fact that the trait variable is the Allee threshold is new (to the best of
our knowledge) and mathematically challenging. The proofs include tools from nonlinear
analysis, eigenvalue problems, variational arguments, pointwise comparison principles, and
integral estimates.

1.5. The “E. or P. conjecture”. When 0 ≤ θmin < 1/2 and θmin + θmax ≥ 1, the
situation is very intricate and seems to depend dramatically on the coefficient α. When α
is above some threshold α?, we prove systematic extinction in the case θmin + θmax >
1. We also prove in Section 3 that extinction is always a possible outcome in the case
0 ≤ θmin < 1/2 and θmin + θmax ≥ 1 for some initial conditions. However, the possibility
of defining α? as a “sharp threshold” perfectly separating the “E. or P.” behavior (both
extinction and persistence are possible depending on the initial condition) when α ≤ α?

and the “E.” behavior when α > α? is not proved. Namely, for decreasing values of α,
the outcome could alternate between “E. or P.” and “E”. Nevertheless, in view of our

2By a “(slightly) degenerate monostable situation, for which the hair trigger effect still holds” we mean
a reaction-diffusion equation with a monostable nonlinearity f satisfying f(ρ) ∼ rρ1+p as ρ→ 0, for some
r > 0 and 1 < 1 + p ≤ 3. A typical example is f(ρ) = ρ(ρ− θ0)(1− ρ) with θ0 = 0.
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numerical simulations (see Section 4), we conjecture that there exists sharp threshold α?

and that in each one of the two yellow cells in Table 2, the outcome is “E. or P.”. However,
the possibility of persistence in these two cases remains an open question.

This means that:

(1) we expect the critical case θmin + θmax = 1 to be exactly similar to the sub-critical
case θmin + θmax < 1, θmin ≥ 0;

(2) we expect that in the super-critical case θmin + θmax > 1, 0 ≤ θmin < 1/2, one
can chose α? such that persistence is possible if and only if the mutation rate α is
smaller than or equal to α?. More precisely, we expect that when θmin + θmax > 1,
0 ≤ θmin < 1/2 and α ≤ α?, some populations concentrate around θmin < 1/2 and
by doing so escape extinction.

1.6. Generalizations of the model (1.1) and open questions. Spreading properties
and traveling waves. As mentioned above, we plan to analyze the spreading properties
of the solutions of (1.1) in a future work. We may look for positive traveling waves of
the form u(t, x, θ) = U(x − c t, θ). This would also lead to traveling fronts for the total
population ρ(t, x) =

∫
Θ U(x − c t, θ) dθ. Note that, necessarily, there would be a function

ω such that the mean trait would satisfy θ(t, x) = ω(x− c t). Thus, the equation satisfied
by ρ would take the general form:

(1.4) ρt = dρxx + f(ρ, x− c t).

Several studies have investigated this type of equation when the function f is known
[13, 14, 19, 20, 50, 51]. These results cannot of course be applied as such, since here the
function f itself is not known, as it depends on u. Besides traditional existence and
uniqueness results, one may study the asymptotic behavior of the traveling fronts at ±∞,
the limit of the mean fitness at ±∞, the monotonicity of U and of ω and the pulled
nature (linear minimal speed c∗ = 2

√
−d λα) or pushed nature (nonlinear minimal speed

c∗ > 2
√
−d λα) of the waves depending on the parameter values.

Evolutionary trade-offs. With the model (1.1) with θmax < 1, having higher values of θ
is always disadvantageous. Not only the growth term becomes negative at low densities,
but even the maximum per capita growth rate maxρ>0(ρ − θ)(1 − ρ) = (1 − θ)2/4 is
decreased. It seems however natural to consider that the need for cooperation between
the individuals which is taken into account when θ is increased would also lead to a higher
per capita growth rate. In other terms, there would be a trade-off between the trait θ and
the maximum per capita growth rate. We propose the following extension of (1.1): the
population density u = u(t, x,y), is structured by an abstract phenotypic trait y ∈ Ω ⊂ Rk
(k ≥ 1), and satisfies:

(1.5) ut = duxx + α∆yu+ r(y)u(ρ− θ(y))(1− ρ) for all t > 0, x ∈ R, y ∈ Ω.

Here, the Allee threshold depends on the phenotype via a function y 7→ θ(y) ∈ (θmin, θmax).
The trade-off is taken into account by assuming that the function θmax − θ(y) and the
maximum per capita growth rate r(y) (1−θ(y))2/4 reach their maximum at different posi-
tions y1 and y2 in Ω. With phenotypes around y1, the Allee threshold is low (cooperation
between the individuals is not required) and the maximum per capita growth rate is also
low. With phenotypes around y2, the Allee threshold is high (cooperation is required),
but also leads to a higher maximum per capita growth rate. With this approach, we
conjecture that the population does not necessarily concentrate on trait values such that
θ(y) ≈ θmin.

1.7. Organization of the paper. We start with some a priori estimates and the well-
posedness of the Cauchy problem (1.1)–(1.3) in Section 2. In Section 3 we prove all the
extinction and persistence results of Table 2 by combining Theorems 3.3, 3.4, 3.9, 3.10,
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and 3.13. Lastly, in Section 4 we present some numerical results supporting the aforemen-
tioned E. or P. conjecture.

2. Preliminaries

This section is devoted to the analysis of the Cauchy problem (1.1)–(1.3). Before doing
so in Section 2.2, we first derive in Section 2.1 some a priori estimates and bounds for any
classical solution of (1.1)–(1.3).

2.1. Global bounds and comparison between the population density u and its
mass ρ. In this section, we consider a classical solution u ∈ C1;2

t;(x,θ)((0, T
∗) × R × Θ) ∩

C([0, T ∗) × R × Θ) of (1.1)–(1.3) in some time interval [0, T ∗) with 0 < T ∗ ≤ +∞. We
also assume that u is locally bounded in time, that is, u is bounded in [0, T ]× R×Θ for

every T ∈ (0, T ∗). The mass ρ is then of class C1;2
t;x ((0, T ∗)× R) ∩ C([0, T ∗)× R) and it is

locally bounded in time.
Let us first begin with the positivity of the population density u and its mass ρ. For

any T ∈ (0, T ∗), considering temporarily ρ as a fixed function in L∞([0, T ] × R) and
denoting A(t, x, θ) = (ρ(t, x) − θ)(1 − ρ(t, x)), we find that the solution u satisfies the
equation ut − duxx − αuθθ = Au in (0, T ] × R × Θ, which is a local and linear parabolic
equation with bounded space-time heterogeneous coefficients. Since u = 0 is a solution
of this equation and since u0 ≥ u with u0 6≡ u in R × Θ, we deduce from the parabolic
maximum principle and Hopf lemma that

u(t, x, θ) > 0 for all (t, x, θ) ∈ (0, T ]× R×Θ.

This implies in turn that ρ(t, x) =
∫

Θ u(t, x, θ) dθ > 0 for all (t, x) ∈ (0, T ] × R. Finally,
as T is arbitrary in (0, T ∗), one gets that

u > 0 in (0, T ∗)× R×Θ, and ρ > 0 in (0, T ∗)× R.

From the positivity of u and ρ, we then easily derive the global boundedness of the
mass ρ. To do so, we integrate equation (1.1) over θ ∈ (θmin, θmax) and, using the no-flux
boundary conditions (1.2), we reach

ρt = dρxx +

(
ρ2 −

∫
Θ
θ u(t, x, θ) dθ

)
(1− ρ) for all 0 < t < T ∗ and x ∈ R.

The previous equation can be rewritten as

(2.1) ρt = dρxx + ρ
(
ρ− θ

)
(1− ρ) for all 0 < t < T ∗ and x ∈ R,

where

θ(t, x) :=
1

ρ(t, x)

∫
Θ
θ u(t, x, θ) dθ

represents the mean trait at time t ∈ (0, T ∗) and spatial position x ∈ R (remember that ρ
is pointwise positive in (0, T ∗)× R). Since u is pointwise positive, one has

(2.2) θmin < θ(t, x) < θmax < 1 for all t ∈ (0, T ∗) and x ∈ R.

Hence, together with (1.3), the continuity of ρ in [0, T ∗)×R, and the comparison principle
applied to (2.1), it follows that

(2.3) sup
(t,x)∈[0,T ∗)×R

ρ(t, x) ≤ max(M, 1).

As a immediate consequence of (2.3) and the positivity of ρ, the nonlinear term in (1.1)
satisfies

(2.4) |u(ρ− θ)(1− ρ)| ≤ C u in [0, T ∗)× R×Θ
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for some constant C > 0. The maximum principle then implies that

(2.5) ‖u(t, ·, ·)‖L∞(R×Θ) ≤ eCt‖u0‖L∞(R×Θ) for all t ∈ [0, T ∗).

In particular, the solution u is bounded if T ∗ < +∞. On the other hand, if T ∗ = +∞, since
the function u, which is then positive in (0,+∞)×R×Θ, solves a linear reaction-diffusion
equation of the form

ut = duxx + αuθθ + φ(t, x)u,

with |φ(t, x)| ≤ C by (2.4), and with Neumann boundary conditions on (0,+∞)×R×∂Θ,
it follows from the standard Harnack inequality [59,63] that there exists a constant C ′ > 0
such that

u(t+ 1, x, θ) ≥ C ′u(t, x′, θ′) for all t ≥ 1, θ, θ′ ∈ Θ, and |x− x′| ≤ 1.

Integrating the above inequality over θ ∈ Θ and using the global boundedness (2.3) of ρ
(which holds whether T ∗ be finite or not), one infers that u(t, x′, θ′) ≤ max(M, 1)/C ′, and
thus u is globally bounded too if T ∗ = +∞. To sum up, u is bounded in [0, T ∗)×R×Θ,
whether T ∗ be finite or not.

From (2.4), we also infer the limit of u and ρ at spatial infinity. Indeed, from the
inequality ut ≤ duxx + αuθθ + Cu in (0, T ∗) × R × Θ and the comparison principle, it
follows that the nonnegative solution u(t, x, θ) is dominated from above by the nonnegative
solution v = v(t, x) of vt = dvxx + Cv with initial condition v0 defined by v0(x) :=
maxθ∈Θ u0(x, θ) for all x ∈ R. Thus, as v0 ∈ Cc(R, [0,+∞)), one infers that

(2.6) lim
x→±∞

u(t, x, θ) = 0, uniformly in θ∈Θ, and locally uniformly in t∈ [0, T ∗).

As a consequence, one also gets that ρ(t, x) → 0 as x → ±∞, locally uniformly with
respect to t ∈ [0, T ∗).

From (2.4), we can also reproduce the argument in [25, Section 2] to compare the
population density u and its mass ρ. For the sake of completeness, we briefly recall this
argument. The inequalities −Cu ≤ ut − duxx − αuθθ ≤ Cu imply

u+
t − du+

xx − αu+
θθ ≥ 0 and u−t − du−xx − αu

−
θθ ≤ 0 in (0, T ∗)× R×Θ,

where

u±(t, x, θ) := e±Ctu(t, x, θ).

Then, on the one hand, denoting w[t] = w[t](τ, x, θ) the solution of the heat equation wτ =
dwxx + αwθθ in (0,+∞)×R×Θ with no-flux boundary conditions on (0,+∞)×R× ∂Θ
and with initial condition w[t](0, ·, ·) := u(t, ·, ·), it follows from the comparison principle
that for every 0 ≤ τ ≤ t < T ∗, x ∈ R and θ ∈ Θ,

w[t− τ ](τ, x, θ) e−Cτ ≤ u(t, x, θ) ≤ w[t− τ ](τ, x, θ) eCτ .

On the other hand, from the global boundedness of u in [0, T ∗)×R×Θ and the local-in-time
Harnack inequality proved in [25, Theorem 1.2]3, we deduce that, for every τ ∈ (0, T ∗) and

p > 1, there exists a constant C̃p,τ > 0 (which also depends on d, α and ‖u‖L∞([0,T ∗)×R×Θ))

such that

(w[t− τ ](τ, x′, θ′))p

C̃pp,τ
≤ w[t− τ ](τ, x, θ) ≤ C̃p,τ

(
w[t− τ ](τ, x′, θ′)

)1/p
for all t ∈ [τ, T ∗), θ, θ′ ∈ Θ and |x− x′| ≤ 1 (notice that the left and right inequalities in
the above formula are actually equivalent since θ, θ′ are arbitrary in Θ and x and x′ are

3The proof can be straightforwardly extended to the cylindrical domain R×Θ considered here with the
Neumann boundary conditions on R× ∂Θ, see also [25, footnote 1].
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arbitrary real numbers such that |x− x′| ≤ 1). We deduce that, for every τ ∈ (0, T ∗) and
p > 1, there exists a constant Cp,τ > 0 such that

(2.7)
up(t, x, θ)

Cp,τ
≤ ρ(t, x) ≤ Cp,τ u1/p(t, x, θ) for all (t, x, θ) ∈ [τ, T ∗)× R×Θ,

which leads to

(2.8)
ρp(t, x)

Cpp,τ
≤ u(t, x, θ) ≤ C1/p

p,τ ρ
1/p(t, x) for all (t, x, θ) ∈ [τ, T ∗)× R×Θ.

Remark 2.1. The comparison (2.7), or (2.8), between u and ρ is the main estimate of
this subsection, and will be useful in several other parts of this paper, in particular in
Section 3.

We finally derive an explicit upper bound for the mass ρ at large time if T ∗ = +∞. To
do so, observe first that, whether ρ(t, x) be smaller than 1, equal to 1, or larger than 1,
one has

(ρ(t, x)− θ(t, x)) (1− ρ(t, x)) ≤ (1− θ(t, x)) (1− ρ(t, x)) for all (t, x) ∈ (0, T ∗)× R.

From (2.1) and the positivity of ρ in (0, T ∗)× R, one gets that

ρt − dρxx ≤ ρ (1− θ) (1− ρ) in (0, T ∗)× R.

One also recalls that θmin < θ(t, x) < θmax < 1 for all t ∈ (0, T ∗) and x ∈ R. Therefore,

ρ(t, x) (1− θ(t, x)) (1− ρ(t, x)) ≤

 (1− θmin) ρ(t, x) (1− ρ(t, x)) if 0 < ρ(t, x) ≤ 1,

(1− θmax) ρ(t, x) (1− ρ(t, x)) if ρ(t, x) > 1.

If T ∗ = +∞, by comparison with a classical Fisher–KPP type equation, it then follows
that

(2.9) lim sup
t→+∞

(
sup
x∈R

ρ(t, x)
)
≤ 1 (if T ∗ = +∞),

hence, together with (2.8),

(2.10) lim sup
t→+∞

(
sup

(x,θ)∈R×Θ

u(t, x, θ)
)
≤ C1/p

p,τ (if T ∗ = +∞),

for every τ > 0 and p > 1.

Remark 2.2. Let us point out that similar upper bounds on u could also be deduced
from (2.3), (2.9) and [68, Proposition 2.3]. In both cases though, the upper bound for u
depends on d and α.

2.2. The well-posedness of the Cauchy problem (1.1)–(1.3). Several arguments used
in the forthcoming sections require a refined knowledge of the functional space which the
solution u belongs to. Therefore, as a mandatory preliminary, we study the well-posedness
of the Cauchy problem (1.1)–(1.3).

Remark 2.3. Hereafter, by a solution of (1.1)–(1.3), we mean a solution in Tikhonov’s

uniqueness class, that is, a solution u ∈ C1;2
t;(x,θ)((0,+∞) × R × Θ) ∩ C([0,+∞) × R × Θ)

for which, for every T > 0, there exists a constant AT > 0 such that u(t, x, θ) = o(eAT |x|
2
)

as x → ±∞, uniformly in (t, θ) ∈ [0, T ]×Θ. Indeed, without any such restriction on the
growth at infinity, solutions of reaction-diffusion Cauchy problems may not be unique, see,
e.g. [66, Chapter 9].



ALLEE THRESHOLD AS PHENOTYPIC TRAIT: PERSISTENCE VS. EXTINCTION 11

Proposition 2.4 (Well-posedness). Let

X =
{
ϕ : R×Θ→ R : ϕ is bounded and uniformly continuous in R×Θ

}
endowed with the usual sup norm, denoted by ‖ ‖X . Then the Cauchy problem (1.1)–(1.3)
admits a unique solution u such that

t 7→ u(t, ·, ·) ∈ C ([0,+∞), X) ∩ C1 ((0,+∞), X) .

Furthermore, u > 0 in (0,+∞)× R×Θ.

The basic idea is, as usual, to first prove the existence and uniqueness of a local-in-time
solution by a fixed point argument and then to deduce the existence and uniqueness of
a global solution from an a priori L∞ estimate. As such an estimate is proved above in
Subsection 2.1, we first focus on the local well-posedness. In the sequel, we denote

|Θ| = θmax − θmin and θm = max(|θmax|, |θmin|).

Lemma 2.5 (Local well-posedness). For any τ ≥ 0, any K > 0 and any uτ ∈ X with
0 ≤ uτ ≤ K in R×Θ, the following problem:

(2.11)


ut = duxx + αuθθ + u(ρ− θ)(1− ρ), t ∈ (τ, τ + TK ], x ∈ R, θ ∈ Θ,

uθ(t, x, θmin) = uθ(t, x, θmax) = 0, t ∈ (τ, τ + TK ], x ∈ R,

u(τ, x, θ) = uτ (x, θ), x ∈ R, θ ∈ Θ,

where

(2.12) TK =
1

3 (2K|Θ|+ θm) (2K|Θ|+ 1)
> 0,

admits a unique classical C1;2
t;(x,θ)((τ, τ + TK ]×R×Θ) ∩ C([τ, τ + TK ]×R×Θ) solution u

such that

(2.13) t 7→ u(t, ·, ·) ∈ C ([τ, τ + TK ], X) ∩ C1 ((τ, τ + TK ], X) .

Furthermore, u ≥ 0 in [τ, τ + TK ]× R×Θ.

Proof. Define, for T > 0 and C > 0, the sets

XC = {v ∈ X : ‖v‖X ≤ C} and XT,C = C ([τ, τ + T |, XC) .

The set XT,C , endowed with the distance induced by the norm ‖v‖ := maxt∈[τ,τ+T ] ‖v(t)‖X
for v ∈ C([τ, τ + T ], X), is a complete metric space. The elements of XT,C can also
be considered with a slight abuse of notation as functions of the variables (t, x, θ) ∈
[τ, τ + T ]× R×Θ.

Let Φ : XT,C 7→ C ([τ, τ + T ], X) be the mapping that associates to v ∈ XT,C the unique
mild solution u = Φ[v] ∈ C([τ, τ + T ], X) of

ut = duxx + αuθθ + u
(∫

Θ
v − θ

)(
1−

∫
Θ
v
)
, t ∈ (τ, τ + T ], x ∈ R, θ ∈ Θ,

uθ(t, x, θmin) = uθ(t, x, θmax) = 0, t ∈ (τ, τ + T ], x ∈ R,

u(τ, x, θ) = uτ (x, θ), x ∈ R, θ ∈ Θ.

The solution u is indeed well-defined, as the above problem is just a linear parabolic
Cauchy problem: more precisely, letting

ρv(t, x) =

∫
Θ
v(t, x, θ) dθ
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for (t, x) ∈ [τ, τ + T ] × R, and G = G(t, x, θ; s, y, η) be the Green function associated
with the parabolic operator ∂t − d∂xx − α∂θθ in the spatial domain R×Θ with Neumann
boundary conditions on R× ∂Θ, one has, for every (t, x, θ) ∈ (τ, τ + T ]× R×Θ,

u(t, x, θ) = Φ[v](t, x, θ) =

∫
R×Θ

G(t, x, θ; τ, y, η)uτ (y, η) dy dη

+

∫ t

τ

∫
R×Θ

G(t, x, θ; s, y, η) Φ[v](s, y, η)×

× (ρv(s, y)− η) (1− ρv(s, y)) dy dη ds.

We aim at showing that Φ is a contraction mapping from XT,C into itself when the positive
parameters T and C are appropriately chosen, so that it admits a unique fixed point.

To do so, first of all, observe that, for any v ∈ XT,C , the inequality

|(ρv(s, y)−η)(1−ρv(s, y))|≤(|Θ|‖v‖+θm) (|Θ|‖v‖+1), for all (s, y, η)∈ [τ, τ + T ]×R×Θ,

together with ‖G(t, x, θ; s, ·, ·)‖L1(R×Θ) = 1 for all t > s and (x, θ) ∈ R×Θ, yields

‖Φ[v]‖ ≤ K + T (|Θ|‖v‖+ θm) (|Θ|‖v‖+ 1)‖Φ[v]‖
≤ K + T (C|Θ|+ θm) (C|Θ|+ 1)‖Φ[v]‖.

Assuming that T > 0 is so small that

(2.14) T (C|Θ|+ θm) (C|Θ|+ 1) < 1,

we deduce

‖Φ[v]‖ ≤ K

1− T (C|Θ|+ θm) (C|Θ|+ 1)
,

so that Φ maps XT,C into itself as soon as (2.14) is fulfilled together with

(2.15)
K

1− T (C|Θ|+ θm) (C|Θ|+ 1)
≤ C.

Now, assume that the conditions (2.14)–(2.15) are indeed satisfied, so that Φ(XT,C) ⊂
XT,C . Let v, w ∈ XT,C , and denote ρv =

∫
Θ v(·, ·, θ) dθ and ρw =

∫
Θw(·, ·, θ) dθ. After

some straightforward calculations, we find that z = Φ[v]−Φ[w] ∈ C([τ, τ +T ], X) is a mild
solution of

zt − dzxx − αzθθ = z (ρv − θ) (1− ρv) + Φ[w] (1 + θ − ρv − ρw) (ρv − ρw)

in (τ, τ + T ]× R×Θ with Neumann boundary conditions on (τ, τ + T ]× R× ∂Θ. Using
similarly the Green’s function G and ‖G(t, x, θ; s, ·, ·)‖L1(R×Θ) = 1 for all t > s and (x, θ) ∈
R×Θ, we find that

‖z‖ ≤ T (C|Θ|+ θm) (C|Θ|+ 1) ‖z‖+ T C (1 + θm + 2C|Θ|) |Θ| ‖v − w‖,
so that

‖z‖ = ‖Φ[v]− Φ[w]‖ ≤ T C (1 + θm + 2C|Θ|) |Θ|
1− T (C|Θ|+ θm) (C|Θ|+ 1)

‖v − w‖.

Therefore Φ is a contraction mapping as soon as

(2.16)
T C (1 + θm + 2C|Θ|) |Θ|

1− T (C|Θ|+ θm) (C|Θ|+ 1)
< 1.

One can easily check that the conditions (2.14)–(2.16) are compatible: for instance one
may choose

C =
3K

2
> 0, T =

1

3 (C|Θ|+ θm) (C|Θ|+ 1)
> 0.

As a consequence, by virtue of the Banach fixed point theorem, Φ admits a unique fixed
point v ∈ XT,C for the above choice of T and C. By standard parabolic estimates, v

is then a classical C1;2
t;(x,θ)((τ, τ + T ] × R × Θ) ∩ C([τ, τ + T ] × R × Θ) solution of (2.11)
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(the continuity of v in [τ, τ + T ]× R×Θ is actually automatic by construction), and the
map t 7→ v(t, ·, ·) belongs to C([τ, τ + T ], X) ∩ C1((τ, τ + T ], X).

Furthermore, by picking now

C̃ = 2K

and

TK =
1

3 (2K|Θ|+ θm) (2K|Θ|+ 1)
∈ (0, T )

as in (2.12), it follows as above that Φ admits a unique fixed point u in XTK ,2K , which is a

classical C1;2
t;(x,θ)((τ, τ+TK ]×R×Θ)∩C([τ, τ+TK ]×R×Θ) solution of (2.11), and the map

t 7→ u(t, ·, ·) belongs to C([τ, τ+TK ], X)∩C1((τ, τ+TK ], X). Since the function v restricted
to [τ, τ + TK ]×R×Θ solves the same problem as u and since v(t, ·, ·) ∈ XTK ,C ⊂ XTK ,2K
for every t ∈ [τ, τ +T ] ⊃ [τ, τ +TK ], it follows by uniqueness that u ≡ v|[τ,τ+TK ]×R×Θ. On

the other hand, since the left-hand sides of the inequalities (2.14)–(2.16) are increasing
with respect to T ∈ [0, TK ], one infers that, for any T ′ ∈ (0, TK ], Φ has a unique fixed
point in XT ′,2K , and that this unique fixed point is nothing but the restriction of u and v

in [τ, τ + T ′]× R×Θ.
Finally, consider any mild solution U of (2.11) with

t 7→ U(t, ·, ·) ∈ C([τ, τ + TK ], X) ∩ C1((τ, τ + TK ], X)

(U is then also a classical C1;2
t;(x,θ)((τ, τ + TK ]×R×Θ) ∩ C([τ, τ + TK ]×R×Θ) solution).

We claim that
U ≡ u in [τ, τ + TK ]× R×Θ.

Indeed, first of all, since 0 ≤ U(τ, ·, ·) = uτ ≤ K in R×Θ, there is by continuity a maximal
time TU ∈ (0, TK ] such that ‖U(t, ·, ·)‖X < 2K for all t ∈ [0, TU ), and ‖U(TU , ·, ·)‖X = 2K
if TU < TK . By uniqueness, one gets that U ≡ u ≡ v in [τ, τ + T ′] × R × Θ for every
T ′ ∈ (0, TU ), and then in [τ, τ + TU ]× R×Θ by continuity. But since ‖v(t, ·, ·)‖X ≤ C =
3K/2 < 2K for all t ∈ [τ, τ +T ] ⊃ [τ, τ +TK ], it follows that ‖U(TU , ·, ·)‖X ≤ 3K/2 < 2K.
Hence TU = TK and U ≡ u in [τ, τ + TK ]× R×Θ. Therefore, the constructed solution u
is the unique mild and classical solution of (2.11)–(2.13).

Lastly, the nonnegativity of u in [0, TK ] × R × Θ follows from the nonnegativity of uτ
in R×Θ and from the comparison of u with the trivial solution 0, as in Section 2.1. The
proof of Lemma 2.5 is thereby complete. �

Proof of Proposition 2.4. From Lemma 2.5, there exist a maximal existence time T ∗ ∈
(0,+∞] and a unique mild and classical solution u ∈ C1;2

t;(x,θ)((0, T
∗)×R×Θ)∩C([0, T ∗)×

R×Θ) of (1.1)–(1.3) such that t 7→ u(t, ·, ·) ∈ C([0, T ∗), X)∩C1((0, T ∗), X) (in particular, u
is locally bounded in time in [0, T ∗) × R × Θ). Furthermore, u ≥ 0 in [0, T ∗) × R × Θ.
Lemma 2.5 and the quantitative estimate (2.12) in terms of K also imply that

‖u(t, ·, ·)‖X = ‖u(t, ·, ·)‖L∞(R×Θ) → +∞ as t
<→T ∗ if T ∗ < +∞.

But the classical solution u is necessarily globally bounded in [0, T ∗) × R × Θ, from the
arguments of Section 2.1. Therefore, T ∗ = +∞ and u satisfies all desired properties stated
in Proposition 2.4, including its positivity in (0,+∞)× R×Θ by Section 2.1. The proof
of Proposition 2.4 is thereby complete. �

3. Persistence versus extinction

In this section, we consider the Cauchy problem (1.1)–(1.3) and we figure out whether
solutions are persistent or go extinct in long time. Hereafter, extinction is defined as

lim
t→+∞

(
sup

(x,θ)∈R×Θ

u(t, x, θ)
)

= 0
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and persistence is the opposite statement, namely

lim sup
t→+∞

(
sup

(x,θ)∈R×Θ

u(t, x, θ)
)
> 0.

From the comparison (2.8) (with here T ∗ = +∞, any τ > 0 and any p > 1), these two
properties are equivalent to the similar ones obtained by replacing sup(x,θ)∈R×Θ u(t, x, θ)

with supx∈R ρ(t, x).
It turns out that there are several different answers to the question of persistence or

extinction, according to the trait range Θ = (θmin, θmax), to the initial conditions, and
to the principal eigenvalue λα of the linearized operator around the trivial state 0 in the
trait variables. We start by studying the properties of this eigenvalue λα in Section 3.1.
Then we prove in Section 3.2 the systematic (independently of the initial conditions u0

satisfying (1.3)) extinction when θmin ≥ 1/2 (column 7 of Table 2), and in Section 3.3 the
systematic persistence when λα ≤ 0 (lines 2 and 3 of Table 2). We then show in Section 3.4
the possibility of extinction when λα > 0 for small initial data (columns 3, 4, 5, 6 and 7
of Table 2), and we discuss in Section 3.5 the possibility of persistence when λα > 0
and θmin < 1/2 (columns 3, 4, 5 and 6 of Table 2).

3.1. A principal eigenvalue problem. For a given α > 0, we consider the Neumann
principal eigenproblem

(3.1)


−αϕ′′ + θϕ = λϕ in Θ,

ϕ′(θmin) = ϕ′(θmax) = 0,

ϕ > 0 in Θ,

and denote (λα, ϕα) the principal eigenpair, normalized by maxΘ ϕα = 1. We have the
variational formula

(3.2) λα = min

{
Qα(ϕ) :=

∫
Θ

(
αϕ′2(θ) + θϕ2(θ)

)
dθ : ϕ ∈ E

}
,

with
E := {ϕ ∈ H1(Θ) : ‖ϕ‖L2(Θ) = 1}.

Lemma 3.1 (On the principal eigenvalue λα). The principal eigenvalue λα enjoys the
following properties:

(i) for all α > 0,

θmin < λα <
θmin + θmax

2
;

(ii) the function α 7→ λα is increasing and concave in (0,+∞), and

lim
α→0

λα = θmin, lim
α→+∞

λα =
θmin + θmax

2
;

(iii) if
3

2

(π2α

2

)1/3
+ θmin ≤ 0 and

(π2α

2

)1/3
+ θmin ≤ θmax,

then

λα ≤
3

2

(
π2α

2

)1/3

+ θmin.

Proof. In (ii), the fact that the function α 7→ λα is increasing in (0,+∞) and the de-
termination of its limits as α → 0 and α → +∞ are classical properties (see e.g. [54,
Lemma 2.1]), that also yield (i). Additionally, since λα = minϕ∈E Qα(ϕ) for each α > 0
and since the map α 7→ Qα(ϕ) is linear (hence concave) in (0,+∞) for each ϕ ∈ E, one
gets that the map α 7→ λα is concave in (0,+∞), and therefore continuous.
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Let us now turn to the proof of (iii), which is slightly more subtle. Notice first that the

condition (3/2)× (π2α/2)1/3 + θmin ≤ 0 implies that θmin < 0. We shall use the solution
of a related eigenproblem (with constant coefficients) on an interval [θmin, θmin +η], whose
size η ∈ (0,−θmin] is to be optimized. Precisely, observe that the Neumann-Dirichlet
principal eigenproblem

−αϕ′′ + (θmin + η)ϕ = λϕ in [θmin, θmin + η],

ϕ′(θmin) = 0, ϕ(θmin + η) = 0,

ϕ > 0 in [θmin, θmin + η),

is explicitly solved as

ϕ(θ) = ϕη(θ) = sin

(
π

2η
(θmin + η − θ)

)
for θ ∈ [θmin, θmin +η], λ = λ̃η =

π2α

4η2
+θmin +η.

Notice that the infimum inf0<η≤−θmin
λ̃η is reached by choosing

η = ηopt :=

(
π2α

2

)1/3

∈ (0,−θmin),

and is equal to

inf
0<η≤−θmin

λ̃η =
3

2

(π2α

2

)1/3
+ θmin =: λ̃opt,

which is nonpositive by assumption. We denote (λ̃opt, ϕopt) the eigenpair associated with
η = ηopt and with ‖ϕopt‖L2(θmin,θmin+ηopt) = 1. We use ϕopt (extended by zero in (θmin +

ηopt, θmax], notice that θmin + ηopt ≤ θmax by assumption) as a test function in E and
obtain

Qα(ϕopt) =

∫ θmin+ηopt

θmin

(
αϕ′2opt(θ) + θϕ2

opt(θ)
)

dθ

≤
∫ θmin+ηopt

θmin

(
αϕ′2opt(θ) + (θmin + ηopt)ϕ

2
opt(θ)

)
dθ = λ̃opt

and thus λα ≤ λ̃opt = (3/2) × (π2α/2)1/3 + θmin. The proof of Lemma 3.1 is thereby
complete. �

Lemma 3.2 (On the principal eigenfunction ϕα). For each α > 0, the principal eigen-
function ϕα of (3.1) is decreasing in [θmin, θmax], strictly concave in [θmin, λα), and strictly
convex in (λα, θmax].

Proof. Remember first that θmin < λα < (θmin + θmax)/2 < θmax from Lemma 3.1. The
strict concavity/convexity properties follow from the equation αϕ′′α(θ) = (θ − λα)ϕα(θ)
and the positivity of ϕα in [θmin, θmax]. Next, ϕ′α(θmin) = 0 and the strict concavity in
[θmin, λα) enforce ϕα to decrease on this interval and then in [θmin, λα]. A similar argument
applies in [λα, θmax]. �

To complete this section, let us observe that Lemma 3.1 gives all the impossible boxes
in Table 2, whereas all other boxes are truly possible. The outcome of the solutions
of (1.1)–(1.3) in the possible boxes may or may not depend on the initial data and on the
parameter α, as we are going to see in the next subsections.

3.2. θmin ≥ 1/2 makes persistence impossible. When θmin ≥ 1/2 (column 7 of Ta-
ble 2), no population can escape from extinction, as the following result shows.

Theorem 3.3 (Systematic extinction). If θmin ≥ 1/2, then all solutions of the Cauchy
problem (1.1)–(1.3) go extinct.
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Proof. We begin with the simpler and more telling case

θmin >
1

2
.

For any ε > 0, define

f
ε
(s) := s

(
s−

(1

2
+ ε
))

(1 + ε− s)

and observe that, as ε→ 0, ∫ 1+ε

0
f
ε
(s)ds = − ε

12
+ o(ε).

We then fix ε > 0 small enough so that θmin > 1/2 + 2ε and
∫ 1+ε

0 f
ε
(s)ds < 0. Consider

now any solution u of (1.1)–(1.3). From (2.9) and the positivity of ρ in (0,+∞)×R, there
exists Tε > 0 such that 0 < ρ(t, x) < 1 + ε for all t ≥ Tε and x ∈ R. Then, recalling that
θ(t, x) ∈ (θmin, θmax) ⊂ (1/2 + 2ε, 1), we claim that

ρ(t, x) (ρ(t, x)− θ(t, x)) (1− ρ(t, x)) < f
ε
(ρ(t, x)) for all t ≥ Tε, x ∈ R.

Indeed, for every (t, x) ∈ [Tε,+∞)× R, the quadratic polynomial function

s 7→ f
ε
(s)− s (s− θ(t, x)) (1− s)

vanishes at s = 0, is positive at s = 1+ε, and is negative at large s since θ(t, x) > 1/2+2ε;
hence, this function is positive in (0, 1 + ε]. From (2.1) and the comparison principle, it
follows that 0 < ρ(t, x) ≤ ρ(t, x) for all t ≥ Tε and x ∈ R, where ρ = ρ(t, x) is the solution
of the bistable Cauchy problem

ρt = d ρxx + f
ε
(ρ) in (Tε,+∞)× R, ρ(Tε, ·) = ρ(Tε, ·) in R.

But since f
ε

is a bistable function in [0, 1+ε] with negative integral over [0, 1+ε], and since
ρ(Tε, x) = ρ(Tε, x)→ 0 as x→ ±∞ by (2.6), together with supR ρ(Tε, ·) = maxR ρ(Tε, ·) <
1 + ε, one concludes from [37] that ρ(t, x) → 0 as t → +∞, uniformly in x ∈ R. Hence,
ρ(t, x)→ 0 as t→ +∞, uniformly in x ∈ R.

Now we consider the critical case

θmin =
1

2
.

In this case, the preceding argument does not work anymore and more care is needed. On
the one hand, for any (t, x) ∈ (0,+∞)× R such that ρ(t, x) ∈ [0, 1], one has

ρ(t, x) (1− ρ(t, x)) (ρ(t, x)− θ(t, x)) ≤ ρ(t, x) (1− ρ(t, x))
(
ρ(t, x)− 1

2

)
since θ(t, x) > θmin = 1/2. On the other hand, for any (t, x) ∈ (0,+∞) × R such
that ρ(t, x) > 1, one has (recall θ(t, x) < θmax < 1)

ρ(t, x)(1− ρ(t, x))(ρ(t, x)− θ(t, x)) ≤ −(1− θ(t, x))(ρ(t, x)− 1) ≤ −(1− θmax)(ρ(t, x)− 1).

Therefore, for any (t, x) ∈ (0,+∞)× R, there holds

ρ(t, x) (1− ρ(t, x)) (ρ(t, x)− θ(t, x)) ≤ f(ρ(t, x)),

where

f(s) := s(1− s)
(
s− 1

2

)
1[0,1](s)− (1− θmax)(s− 1)1(1,+∞)(s).

By the comparison principle, one infers that, for any T ≥ 0, t ≥ 0 and x ∈ R, there holds

(3.3) ρ(t+ T, x) ≤ ρT (t, x),

where ρT denotes the solution of the Cauchy problem

(3.4) ρTt = d ρTxx + f(ρT ) in (0,+∞)× R, ρT (0, ·) = ρ(T, ·) in R.
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This equation is a reaction–diffusion equation with a globally Lipschitz-continuous and

piecewise smooth reaction term f , whose derivative f
′

is well-defined except at 1, where
it only has well-defined left-sided and right-sided negative derivatives. For the underlying
ordinary differential equation, the steady state 0 is locally asymptotically stable from
above, the steady state 1/2 is unstable and, even though the flow is not C1 at 1, the steady

state 1 is locally asymptotically stable from above and from below. Moreover,
∫ 1

0 f = 0.

We only need to find T ≥ 0 such that ρT converges to 0 as t → +∞ uniformly in x ∈ R.
Since the reaction term is not completely standard, we briefly recall how such a fact is
proved.

Let p : R → (0, 1) be the standing wave solution of −d p′′ = f(p) in R with p′ < 0
in R and limits 1 and 0 at −∞ and +∞ respectively. Since f(s) = s(1 − s)(s − 1/2)
for s ∈ [0, 1], the existence and uniqueness (up to shifts) of p is standard. Let s0 > 0,
r0 > 0 and γ > 0 to be chosen later, and denote s(t) = s0 e−γt and r(t) = r0 e−γt. The
function p(t, x) = p(x+ s(t)) + r(t) defined for (t, x) ∈ [0,+∞)× R satisfies

pt(t, x)− d pxx(t, x)− f(p(t, x)) = p′(x+ s(t))s′(t) + r′(t)− d p′′(x+ s(t))− f(p(t, x))

= −γ
(
r0 + s0 p

′(x+ s(t))
)

e−γt

+
f(p(x+ s(t)))− f(p(x+ s(t)) + r(t))

r(t)
r(t)

= e−γt
[
−γ(r0 + s0p

′(x+ s0z))− r0G(p(x+ s0z), r0z)
]

for all t ≥ 0 and x ∈ R, where, on the last line above, z = z(t) = e−γt and one defines

G(q, y) =
f(q + y)− f(q)

y

for q ≥ 0 and y > 0. The function G is extended at y = 0 by G(q, 0) = f
′
(q) if q ∈

[0, 1) ∪ (1,+∞) and by G(1, 0) = limy→0+ G(1, y) = −(1− θmax). The function G is then

continuous in [0,+∞)2 \ {(1, 0)} and it is locally bounded in [0,+∞)2. Now, we claim
that we can choose the parameters s0, r0, γ so that the function

H : (x, z) ∈ R× (0, 1] 7→ −γ(r0 + s0p
′(x+ s0z))− r0G(p(x+ s0z), r0z)

is nonnegative in R× (0, 1] (which will imply that pt ≥ d pxx + f(p) in [0,+∞)× R). To

show the nonnegativity of H, let first select σ ∈ (0, 1/2) such that f
′
< 0 in [0, σ] ∪ [1 −

σ, 1) ∪ (1,+∞), and denote

Γ0 = min
q∈[0,σ/2], y∈[0,σ/2]

(−G(q, y)) > 0,

Γ1 = inf
q∈[1−σ,1], y∈[0,σ]

(−G(q, y)) > 0, 4

Γ = sup
q∈[0,1], y∈[0,σ]

|G(q, y)| > 0,

and

κ = min
y∈[p−1(1−σ),p−1(σ/2)]

(−p′(y)) > 0.

Let us then observe that:

• if p(x+ s0z) ≤ σ/2 and r0 ≤ σ/2, then H(x, z) ≥ r0(Γ0− γ) (recall that −γs0p
′ ≥

0);
• if p(x+ s0z) ≥ 1− σ and r0 ≤ σ, then similarly H(x, z) ≥ r0(Γ1 − γ);
• if p(x+ s0z) ∈ [σ/2, 1− σ] and r0 ≤ σ, then H(x, z) ≥ γs0κ− r0(γ + Γ).

4One has Γ1 > 0 since sup[1−σ,1)∪(1,1+σ] f
′
< 0.
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Taking for instance

r0 =
σ

2
> 0, γ = min(Γ0,Γ1) > 0, and s0 =

r0(γ + Γ)

γκ
> 0.

the claim is proved, that is, H ≥ 0 in R× (0, 1]. Hence,

pt ≥ d pxx + f(p) in [0,+∞)× R.

Notice that the same inequality holds by replacing the function p by the x-reflected one:
(t, x) 7→ p(t,−x).

By virtue of (2.6) and (2.9), together with the positivity of ρ in (0,+∞)×R, there exist
T ? ≥ 0 and x? ∈ R such that

0 < ρ(T ?, x) ≤ min (p(0, x− x?), p(0,−x− x?)) for all x ∈ R.

From now on, ρ = ρT
?

is the solution of (3.4) with T = T ?. Due to the preceding
calculations and by the comparison principle, the inequality

0 < ρ(t, x) ≤ min (p(t, x− x?), p(t,−x− x?))

holds for all t ≥ 0 and x ∈ R. Therefore there exists T1 > 0 such that supx∈R ρ(T1, x) < 1.

Now, using standard heat kernel estimates [38], we deduce that ρ(T1, x) = O(e−Cx
2
)

as x → ±∞ for some constant C > 0. Since p(x) ∼ C ′e−x/
√

2d as x → +∞, for some
constant C ′ > 0, there exists x1 ∈ R such that

0 < ρ(T1, x) ≤ min(p(x− x1), p(−x− x1)) < 1 for all x ∈ R.

Since min(p(x−x1), p(−x−x1)) is a super-solution of the stationary elliptic equation−d q′′ =
f(q), the solution ρ̂ of{

ρ̂t = d ρ̂xx + f(ρ̂) in (T1,+∞)× R,
ρ̂(T1, x) = min(p(x− x1), p(−x− x1)) for all x ∈ R,

is nonincreasing in time (and even decreasing) in [T1,+∞) × R. Hence ρ̂(t, ·) converges
as t→ +∞ in C2

loc(R), by standard parabolic estimates, to a C2(R) solution q : R→ [0, 1]

of −d q′′ = f(q) in R with limit 0 at ±∞. Since f(s) = s(1−s)(s−1/2) in [0, 1] and since it
is well-known that the unique nonnegative solution of the equation−d q′′ = q(1−q)(q−1/2)
with limit 0 at ±∞ is q ≡ 0, the long-time limit of ρ̂ is identically 0. Using again the
stationary super-solution min(p(x−x1), p(−x−x1)) and the locally uniform convergence,
it turns out that the convergence of ρ̂(t, ·) to 0 is uniform in R as t→ +∞.

Finally, by the comparison principle, 0 < ρ ≤ ρ̂ in [T1,+∞)×R. Therefore ρ converges
uniformly in space to 0 as t→ +∞, and then so does ρ by (3.3). The proof of Theorem 3.3
is thereby complete. �

3.3. λα ≤ 0 makes extinction impossible. As claimed at the beginning of Section 3,
the sign of the principal eigenvalue λα of (3.1) decides between systematic persistence
and possible extinctions. Notice that, in typical Fisher-KPP situations, all solutions go
extinct as soon as λα ≥ 0. Our results on equation (1.1) are in sharp contrast: first the
critical case λα = 0 implies persistence (in some sense, it corresponds to a degenerate
monostable situation for which the hair trigger effect [8] does hold); next the case λα > 0
leads to both possible extinction and possible persistence, see Theorems 3.9 and 3.10 in
Sections 3.4 and 3.5 below (in some sense, the situation is similar to that of a local bistable
reaction-diffusion equation). The reason is that, as explained in Section 1, the underlying
nature of model (1.1) may vary from Fisher-KPP to bistable, not to mention degenerate
monostable.

We deal in the present Section 3.3 with the systematic persistence when λα ≤ 0 (lines 2
and 3 of Table 2).
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Theorem 3.4 (Systematic persistence when λα ≤ 0). Let λα be the principal eigenvalue of
the eigenproblem (3.1)–(3.2). If λα ≤ 0, then every solution u of the Cauchy problem (1.1)–
(1.3) persists. Furthermore, if λα < 0, then

(3.5) inf
(x,θ)∈R×Θ

(
lim inf
t→+∞

u(t, x, θ)
)
> 0 and inf

x∈R

(
lim inf
t→+∞

ρ(t, x)
)
> 0.

Lastly, if θmax ≤ 0, then λα < 0 and

(3.6)


ρ(t, ·) −→ 1 as t→ +∞ locally uniformly in R,

u(t, ·, ·) −→ 1

θmax − θmin
as t→ +∞ locally uniformly in R×Θ.

Proof. Step 1: persistence in the case λα < 0. Let us first assume that λα < 0, and consider
a solution u of the Cauchy problem (1.1)–(1.3). From (2.3) and (2.7) (with here T ∗ = +∞,
any p > 1 and, say, τ = 1) the nonlinear term in (1.1) satisfies, for times t ≥ 1,

(3.7) u(ρ− θ)(1− ρ) = −θu+ θρu+ uρ(1− ρ) ≥ −θu−Ku1+1/p,

for some positive constant K depending on θmin, θmax, Cp,1 and M . As a result, we can
compare the nonlocal problem (1.1) with a local problem: namely, u = u(t, x, θ) satisfies

(3.8) Lu := ut − duxx − αuθθ + θu+Ku1+1/p ≥ 0 for all t ≥ 1 and (x, θ) ∈ R×Θ.

Remember also that uθ(t, x, θmin) = uθ(t, x, θmax) = 0 for all t ≥ 1 and x ∈ R, and
that u(1, x, θ) > 0 for all x ∈ R and θ ∈ Θ from Section 2.1. Now, for R > 0 and ε > 0,
consider the compactly supported continuous function w defined in [−R,R]×Θ by

(3.9) w(x, θ) := ε sin
( π

2R
(x+R)

)
ϕα(θ),

where ϕα is the unique solution of (3.1) such that maxΘ ϕα = 1, with λ = λα given

in (3.2). A straightforward computation shows that Lw ≤ 0 in [−R,R]×Θ as soon as

(3.10)
dπ2

4R2
+ λα +Kε1/p ≤ 0.

Due to the negativity of λα, the above inequality is true by selecting R = R0 > 0 large
enough (so that dπ2/(4R2

0) + λα < 0) and then ε = ε0 > 0 small enough. Moreover,
up to reducing ε0 > 0, we have w(x, θ) ≤ u(1, x, θ) in [−R0, R0] × Θ. Observe also
that w(±R0, θ) = 0 < u(t,±R0, θ) for all t ≥ 1 and θ ∈ Θ, and that wθ(x, θmin) =
wθ(x, θmax) = 0 for all x ∈ [−R0, R0]. We therefore deduce from the comparison principle
that

w(x, θ) ≤ u(t, x, θ) for all t ≥ 1 and (x, θ) ∈ [−R0, R0]×Θ,

and thus u cannot go extinct, that is, persistence necessarily occurs.
Les us now show the stronger property (3.5). Consider any sequence (tn)n∈N of positive

real numbers diverging to +∞. From standard parabolic estimates, the functions

un : (t, x, θ) 7→ un(t, x, θ) := u(t+ tn, x, θ) and ρn : (t, x) 7→ ρn(t, x) := ρ(t+ tn, x)

converge up to extraction of a subsequence, in C1;2
t;(x,θ);loc(R×R×Θ) and in C1;2

t;x;loc(R×R)

respectively, to some nonnegative bounded functions u∞ ∈ C1;2
t;(x,θ)(R× R×Θ) and ρ∞ =∫

Θ u∞(·, ·, θ) dθ ∈ C1;2
t;x (R×R) solving (1.1)–(1.2) with t ∈ R. Furthermore, with the same

choice of parameters (ε0, R0) as in the previous paragraph, one has

(3.11) inf
t∈R

(
min

Θ
u∞(t, 0, ·)

)
≥ min

Θ
w(0, ·) = ε0 min

Θ
ϕα > 0.

Since the function (t, x, θ) 7→ (ρ∞(t, x) − θ)(1 − ρ∞(t, x)) is globally bounded in R ×
R × Θ, the Harnack inequality yields, for each compact set K ⊂ R × Θ, the existence
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of a constant µ > 0 such that u∞(t + 1, x, θ) ≥ µu∞(t, 0, (θmin + θmax)/2) for all t ∈ R
and (x, θ) ∈ K. Hence, together with (3.11), one gets that

(3.12) inf
t∈R

(
min

(x,θ)∈K
u∞(t, x, θ)

)
> 0

for each compact set K ⊂ R×Θ. Consider now any x0 ∈ R, and define

wx0(x, θ) = sin
( π

2R0
(x− x0 +R0)

)
ϕα(θ)

for all (x, θ) ∈ [x0 − R0, x0 + R0] × Θ, with R0 > 0 (and ε0 > 0) satisfying (3.10).
From (3.12) with K = [x0 −R0, x0 +R0]×Θ, the quantity

ε∗ = sup
{
ε ∈ [0, ε0] : εwx0 ≤ u∞ in R× [x0 −R0, x0 +R0]×Θ

}
is a positive real number, that is 0 < ε∗ ≤ ε0. We claim that

ε∗ = ε0.

Assume not. Then ε∗ < ε0 and, using (3.12) again, there exist a point

(x∗, θ∗) ∈ (x0 −R0, x0 +R0)×Θ

and a sequence (t′n)n∈N in R such that the functions

(t, x, θ) 7→ u∞(t+ t′n, x, θ) and (t, x) 7→ ρ∞(t+ t′n, x)

converge in C1;2
t;(x,θ);loc(R×R×Θ) and in C1;2

t;x;loc(R×R) respectively, to some nonnegative

bounded functions U∞ ∈ C1;2
t;(x,θ)(R × R × Θ) and %∞ =

∫
Θ U∞(·, ·, θ) dθ ∈ C1;2

t;x (R × R)

solving (1.1)–(1.2) with t ∈ R, and such that ε∗wx0 ≤ U∞ in R × [x0 − R0, x0 + R0] × Θ
with equality at (0, x∗, θ∗). But since U∞ satisfies (3.8) in R × R × Θ (it is a super-
solution), whereas ε∗wx0 is a (stationary) sub-solution in R× [x0−R0, x0 +R0]×Θ (from
the choice R0 and ε0), the strong parabolic maximum principle and the Hopf lemma
imply that ε∗wx0 ≡ U∞ in (−∞, 0] × [x0 − R0, x0 + R0] × Θ, which is impossible on
(−∞, 0]×{x0±R0}×Θ. Therefore, ε∗ = ε0, and ε0w

x0 ≤ u∞ in R× [x0−R0, x0 +R0]×Θ.
In particular, one infers that u∞(t, x0, θ) ≥ ε0 minΘ ϕα for all t ∈ R and θ ∈ Θ. Since x0

was arbitrary in R, one concludes that

inf
R×R×Θ

u∞ ≥ ε0 min
Θ
ϕα > 0.

Since the sequence (tn)n∈N diverging to +∞ was arbitrary, one finally gets (3.5) for the
function u, and then also for the mass ρ by definition of ρ and the local uniform convergence
of the functions un as n→ +∞.

To complete this step 1, let us show the long-time behavior (3.6) in the case θmax ≤ 0.
First of all, Lemma 3.1 implies that λα < 0 in this case. With the same notations (tn)n∈N
and (u∞, ρ∞) as in the previous paragraph, there is η > 0 such that ρ∞ ≥ η in R × R
(without loss of generality, one can assume that 0 < η < 1). Furthermore, ρ∞ ≤ 1 in R×R
by (2.9). On the other hand, as in (2.1) in Section 2.1, the function ρ∞ obeys

(ρ∞)t = d (ρ∞)xx + ρ∞ (ρ∞ − θ∞) (1− ρ∞) in R× R,
with

θ∞(t, x) =
1

ρ∞(t, x)

∫
Θ
θ u∞(t, x, θ) dθ ∈ (θmin, θmax)

for all (t, x) ∈ R × R. Since ρ∞(1 − ρ∞) ≥ 0 in R × R and θmax ≤ 0, one gets that
−ρ∞ θ∞ (1− ρ∞) ≥ 0 in R× R, hence

(ρ∞)t ≥ d (ρ∞)xx + ρ2
∞(1− ρ∞) in R× R.

Let ζ : R → R be the solution of ζ ′(s) = ζ(s)2(1 − ζ(s)) with ζ(0) = η ∈ (0, 1). Notice
that ζ(s)→ 1 as s→ +∞. The maximum principle implies that, for any real numbers t0 <
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t, one has ρ∞(t, ·) ≥ ζ(t − t0) in R. The passage to the limit as t0 → −∞ implies that
ρ∞(t, ·) ≥ 1 for every t ∈ R, and finally ρ∞ ≡ 1 in R×R. From the equation (1.1) satisfied
by the pair (u∞, ρ∞) with t ∈ R, one then gets that the bounded function u∞ satisfies
the linear heat-like equation (u∞)t = d (u∞)xx + α (u∞)θθ in R × R × Θ with Neumann
boundary conditions on R×R×∂Θ. Therefore, it is standard to conclude that u∞ is then
constant in R×R×Θ.5 Since ρ∞ ≡ 1 in R×R, one then infers that u∞ ≡ 1/(θmax− θmin)
in R×R×Θ. Finally, the limits (u∞, ρ∞) do not depend on the original sequence (tn)n∈N
nor on any subsequence, and (3.6) follows.

Step 2: persistence in the case λα = 0. By Lemma 3.1, one has 0 = λα < (θmin + θmax)/2,
so that necessarily θmin > −θmax > −1. Then we define

ν =
θmin + 1

2
> 0

and, without loss of generality, we assume the existence of a real number t0 ≥ 1 such that
supR ρ(t0, ·) < ν (otherwise, we would have lim inft→+∞ supR ρ(t, ·) ≥ ν > 0 and we would
have obtained the desired result). Define

T = sup
{
t ≥ t0 : ∀τ ∈ [t0, t), sup

R
ρ(τ, ·) ≤ ν

}
.

By continuity of ρ with respect to t in the sense of the uniform topology in x ∈ R (by
Proposition 2.4), one knows that T > t0. Let us then prove that T < +∞, which will end
the proof, from the arbitrariness of t0 ≥ 1 with supR ρ(t0, ·) < ν.

To show that T < +∞, notice first that

ut − duxx − αuθθ + θu = θρu+ ρu(1− ρ) = (θ + 1− ν)ρu+ ρu(ν − ρ)

in (0,+∞)×R×Θ. Since θ+ 1−ν = (1 + θ)/2 + (θ− θmin)/2 ≥ ν > 0, we deduce directly
from (2.7) (with, say, τ = 1 and any p > 1) and the positivity of u and ρ, that

ut − duxx − αuθθ + θu = (θ + 1− ν)ρu+ ρu(ν − ρ) ≥ ν

Cp,1
up+1

for all t ∈ [t0, T ) and (x, θ) ∈ R×Θ. Let now ε > 0 and let v = v(t, x) be the solution of
vt − dvxx =

ν

Cp,1
vp+1 in (t0, t1)× R,

v(t0, x) = ε×
(

min
Θ
u(t0, x, ·)

)
for x ∈ R,

with maximal existence time-interval [t0, t1) with t0 < t1 ≤ +∞. From Section 2.1, one
knows that v(t0, x) > 0 for each x ∈ R. Then, define

u(t, x, θ) = ε−1v(t, x)ϕα(θ)

for (t, x, θ) ∈ [t0, t1)× R×Θ. By construction,

ut − duxx − αuθθ + θu(t, x, θ)− ν

Cp,1
u(t, x, θ)p+1 =

ν

εCp,1
ϕα(θ) v(t, x)p+1

[
1− ε−pϕα(θ)p

]
5To get this property, notice first that, from standard parabolic estimates, the function u∞ is of

class C∞(R×R×Θ) with bounded derivatives at any order. The function (u∞)θ satisfies the same equation
as u∞, but with homogeneous Dirichlet boundary condition on R×R×∂Θ. If M∞ := supR×R×Θ(u∞)θ > 0,

then there is a sequence (tn, xn, θn)n∈N in R×R×Θ such that the functions (u∞)θ(·+ tn, ·+xn, ·) converge

in C1;2
t;(x,θ);loc(R×R×Θ) to a bounded solution v of the same equation, with Dirichlet boundary condition

on R × R × ∂Θ, and v(0, 0, θ∞) = M∞ = supR×R×Θ v > 0 for some θ∞ ∈ Θ. This contradicts the strong

parabolic maximum principle and Hopf lemma. Therefore, (u∞)θ ≤ 0 in R×R×Θ, and similarly (u∞)θ ≥ 0

in R × R × Θ. Finally, the function u∞ does not depend on θ and it is a bounded entire solution of the
heat equation (u∞)t = d(u∞)xx in R× R. It is then well known that it must be constant.
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in (t0, t1)×R×Θ. Up to decreasing the value of ε, we can assume that 1− ε−pϕα(θ)p ≤ 0
for all θ ∈ Θ (more precisely, it suffices to assume that 0 < ε ≤ minΘ ϕα), so that the
right-hand side above is nonpositive. Moreover,

u(t0, x, θ) = ε−1v(t0, x)ϕα(θ) =
(

min
Θ
u(t0, x, ·)

)
× ϕα(θ) ≤ min

Θ
u(t0, x, ·) ≤ u(t0, x, θ)

for all (x, θ) ∈ R × Θ. In the end, the nonnegative functions u and u are respec-
tively a subsolution and a supersolution of the same local reaction–diffusion equation
in (t0,min(t1, T )) × R × Θ with ordered values at time t0, so that 0 ≤ u(t, ·, ·) ≤ u(t, ·, ·)
in R × Θ for all times t ∈ [t0,min(t1, T )). From the seminal blow-up result of Fujita [39]
(the critical case being later completed by [53] and [58], see also [8]), v blows up as soon
as p+ 1 ≤ 3, that is, ‖v(t, ·)‖L∞(R) → +∞ as t→ t1. Therefore, picking any p ∈ (1, 2], we
deduce from the global boundedness of u that T < +∞.

As already noticed, this shows the persistence of ρ, and then that of u. The proof of
Theorem 3.4 is thereby complete. �

Remark 3.5. As a consequence of Lemma 3.1 and Theorem 3.4, some typical situations
leading to evolutionary rescue (systematic persistence, even for small initial data) are the
following:

• when the phenotypic space “leans to the left”, that is θmin + θmax ≤ 0, and this
whatever the mutation coefficient α > 0;
• when θmin < 0 and the mutation coefficient α > 0 is small enough compared with
−θmin, a sufficient condition being

3

2

(
π2α

2

)1/3

+ θmin < 0,

and this whatever the maximal phenotypic trait θmax.

In the above two cases, one has λα < 0 and the solutions of (1.1)–(1.3) escape from a
uniform-in-(x, θ) neighborhood of 0 at large times, in the sense of (3.5).

Remark 3.6. From Lemma 3.1, the condition λα ≤ 0 implies that θmin < 0. If one further
assumes that θmax ≤ 0, then λα is necessarily negative and in that case the population
density has a well-characterized limit at long time, by Theorem 3.4. For sign-changing
traits (θmin < 0 < θmax) with θmin + θmax > 0, the situation is more complex and λα may
be nonpositive or positive, according to the value of α. Small populations may manage to
stay mainly in the zone of negative traits, where they have a chance to escape extinction.
A consequence of Theorem 3.4 above and Theorem 3.9 below is that what decides whether
this evolutionary rescue happens or not is the sign of λα.

3.4. λα > 0 makes extinction possible. In contrast with the previous section which was
concerned with the case λα ≤ 0 and the systematic persistence, we consider in this section
the case λα > 0 and we show the possibility of extinction in this case, that is, persistence is
not systematic (this corresponds to the intersection of line 4 and columns 3-7 of Table 2).

From Lemma 3.1, the condition λα > 0 implies that θmin + θmax > 0, hence θmax > 0.
The traits may then be nonnegative, or sign-changing. We first consider in Proposition 3.7
below the case of nonnegative traits, that is, θmin ≥ 0. In this case, there is no “refuge”
for small enough populations and therefore it is natural to guess that these populations
go extinct: in other words, extinction is possible. Actually, the condition θmin ≥ 0 yields
λα > 0 by Lemma 3.1, and Proposition 3.7 can then be viewed as a particular case of the
following Theorem 3.9, which deals with the more general case λα > 0. But we chose to
first consider separately the case θmin ≥ 0 in Proposition 3.7 since it is easier to deal with,
and since the proof involves some different arguments as those of Theorem 3.9 below.
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Proposition 3.7 (Possible extinctions when θmin ≥ 0). If θmin ≥ 0, then sufficiently small
initial data of the Cauchy problem (1.1)–(1.3) lead to extinction.

Proof. On the one hand, by (2.3), one has 0 ≤ ρ ≤ max(M, 1) in [0,+∞) × R. On the
other hand, θmin < θ(t, x) < θmax < 1 by (2.2), and

(ρ(t, x)− θ(t, x)) (1− ρ(t, x)) ≤ (1− θ(t, x))2

4
≤ (1− θmin)2

4
=: C

for all t > 0 and x ∈ R. By comparison with a linear ordinary differential equation, we
get

(3.13) 0 < ρ(1, ·) ≤MeC in R.
Since Θ ⊂ [0,+∞) here by assumption, we can choose τ = 1 and any p > 1 in (2.8) and
integrate it against θ over Θ to reach

K1ρ
p−1(t, x) ≤ θ(t, x) ≤ K2ρ

1/p−1(t, x) for all t ≥ 1 and x ∈ R,
where Ki = Ki(p) > 0. By restricting to 1 < p < 2, assuming M ≤ 1 and using the above
estimate, we deduce from (2.1) the inequality

ρt − dρxx ≤ ρp(ρ2−p −K1) (1− ρ) in [1,+∞)× R.
By direct comparison with the underlying ordinary differential equation, starting from
supR ρ(1, ·) and using (3.13), we get that supx∈R ρ(t, x)→ 0 as t→ +∞ as soon as M also
satisfies

MeC < min
(
K

1/(2−p)
1 , 1

)
,

which concludes the proof. �

Remark 3.8. It might be tempting to use the same technique to get a persistence result
for large initial data. However, in order to obtain an inequality of the type

ρt − dρxx ≥ ρ1/p(ρ2−1/p −K2)(1− ρ),

we would need to multiply ρ − θ ≥ ρ −K2ρ
1/p−1 by ρ(1 − ρ) ≥ 0. This requires M ≤ 1,

and then we could think of a persistence result by comparison and standard results on
local bistable reaction–diffusion equations only if 0 < K2 < 1 is small enough so that∫ 1

0 s
1/p(s2−1/p −K2)(1− s) ds > 0, which is typically false as K2 is a large constant.

Theorem 3.9 (Possible extinction when λα > 0). Let λα be the principal eigenvalue of
the eigenproblem (3.1)–(3.2). If λα > 0, then sufficiently small initial data of the Cauchy
problem (1.1)–(1.3) lead to extinction. Furthermore, the condition

(3.14) ‖u0‖L∞(R×Θ) <
λα minΘ ϕα

(θmax − θmin) (1 + θmax)

is a sufficient condition for extinction.

Proof. Let us now assume λα > 0. Fix µ ∈ (0, λα), and then any ε such that

(3.15) 0 < ε <
λα − µ

(θmax − θmin)(1 + θmax)
.

Defining
w(t, x, θ) = w(t, θ) := ε e−µtϕα(θ),

where ϕα is as in (3.1)–(3.2) with λ = λα, we find that

(3.16) Hw := wt − dwxx − αwθθ + θw = ε e−µtϕα(θ) (λα − µ) = (λα − µ)w > 0

in R × R × Θ. Pick a nontrivial and nonnegative initial condition u0 ∈ Cc(R × Θ) such
that, for every θ ∈ Θ, maxR u0(·, θ) < εϕα(θ) (it is therefore sufficient to take u0 ∈
Cc(R × Θ, [0,+∞)) such that maxR×Θ u0 = ‖u0‖L∞(R×Θ) < ε minΘ ϕα). Notice that, by
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continuity with respect to θ ∈ Θ, there is η > 0 such that maxR u0(·, θ) < εϕα(θ)− η for
all θ ∈ Θ. We then define

T := sup

{
τ ≥ 0 : ∀ t ∈ [0, τ), ∀ θ ∈ Θ, sup

R
u(t, ·, θ) ≤ w(t, θ)

}
.

Notice that, due to the well-posedness (Proposition 2.4) and more specifically to the
continuity of u when t→ 0+ in L∞(R×Θ), one has T > 0.

We are going to show that T = +∞ and, to do so, we assume by way of contradiction
that T < +∞. From the behavior (2.6) at large |x| and again from the continuity of u with
respect to t in the sense of L∞(R × Θ), there must be a touching point (x0, θ0) ∈ R × Θ
such that the function ψ := w − u satisfies ψ ≥ 0 in [0, T ] × R × Θ and ψ(T, x0, θ0) = 0.
In particular, there holds ψt(T, x0, θ0) ≤ 0 and ψxx(T, x0, θ0) ≥ 0. Moreover, since ψ
satisfies the no-flux boundary condition on ∂Θ, we also have ψθθ(T, x0, θ0) ≥ 0 whether θ0

be in Θ or on ∂Θ. Then, from (1.1) and (3.16) together with the C1;2
t;(x,θ)((0,+∞)×R×Θ)

regularity of u, the function ψ satisfies

ψt − dψxx − αψθθ = w

(
λα − µ− θ −

(
1− ψ

w

)
(ρ− θ)(1− ρ)

)
in (0,+∞)× R×Θ. Evaluating at (T, x0, θ0), we obtain

λα − µ ≤ ρ(T, x0) (1− ρ(T, x0) + θ0) ≤ ρ(T, x0) (1 + θmax).

Since

ρ(T, x0) =

∫
Θ
u(T, x0, ·) ≤

∫
Θ
w(T, ·) = ε e−µT

∫
Θ
ϕα(θ) ≤ ε (θmax − θmin),

and since the assumption λα > 0 yields θmin +θmax > 0 by Lemma 3.1 (and then θmax > 0
and 1 + θmax > 0), we end up with

λα − µ ≤ ε (θmax − θmin) (1 + θmax),

which is a contradiction from the above choice of ε. As a result, for each u0 small enough
so that

max
R

u0(·, θ) < εϕα(θ)

for all θ ∈ Θ, one has T = +∞, and then

0 ≤ u(t, x, θ) ≤ w(t, θ) = ε e−µtϕα(θ)

for all (t, x, θ) ∈ [0,+∞)× R×Θ. Therefore, ‖u(t, ·, ·)‖L∞(R×Θ) → 0 as t→ +∞. Lastly,
since µ ∈ (0, λα) and ε as in (3.15) were arbitrary, the condition (3.14) is therefore a
sufficient condition for extinction, and this completes the proof. �

3.5. Is it true that θmin < 1/2 makes persistence possible? Finally, we focus on the
last remaining question, that is the possibility of persistence when θmin < 1/2. It turns
out to be a challenging problem,6 with several cases to be distinguished according to the
sign of θmin + θmax − 1. That corresponds to columns 3, 4, 5 and 6 of Table 2.

6Note that the case λα ≤ 0 (which includes the case θmin + θmax ≤ 0) is already solved, since it implies
systematic persistence. However we will not use this observation.
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3.5.1. The sub-critical case θmin + θmax < 1.

Theorem 3.10 (Possible persistence in the sub-critical case). If θmin + θmax < 1, then
there exist initial data of the Cauchy problem (1.1)–(1.3) that lead to persistence.

We begin with some preliminary lemmas.

Lemma 3.11 (On the preservation of monotonicity in θ). Assume that M ≤ 1 and that u0

is nonnegative, of class C1
c (R × Θ) and nonincreasing with respect to θ ∈ Θ. Then, the

solution u(t, x, θ) of the Cauchy problem (1.1)–(1.3) is a nonincreasing function of θ, for
each t ≥ 0 and x ∈ R.

Proof. First of all, from standard parabolic estimates and bootstrap arguments, the func-
tion u is of class C∞((0,+∞)×R×Θ) and, from the regularity of u0 and similar arguments
as in Section 2.1, it follows that v := uθ is continuous in [0,+∞) × R × Θ and locally
bounded with respect to t. Moreover, we have v(t, x, θmin) = v(t, x, θmax) = 0 for all t ≥ 0
and x ∈ R, and differentiating (1.1) with respect to θ, we get

vt = dvxx + αvθθ + v(ρ− θ)(1− ρ)− u(1− ρ)

in (0,+∞)×R×Θ. From (2.3) and the assumption M ≤ 1, one has ρ ≤ 1 in [0,+∞)×R,
thus −u (1− ρ) ≤ 0 and

vt ≤ dvxx + αvθθ + v(ρ− θ)(1− ρ)

in (0,+∞) × R × Θ. But since uθ = v is nonpositive at initial time by assumption,
the parabolic maximum principle implies that uθ(t, x, θ) = v(t, x, θ) ≤ 0 for all t ≥ 0
and (x, θ) ∈ R×Θ. �

Lemma 3.12 (An upper bound for the mean trait). Under the assumptions of Lemma 3.11,
we have

θ(t, x) ≤ θmin + θmax

2
,

for all t > 0 and x ∈ R.

Proof. Set

(3.17) u(t, x) :=
1

θmax − θmin

∫
Θ
u(t, x, θ) dθ =

1

θmax − θmin
ρ(t, x), for t ≥ 0, x ∈ R,

and observe that the mean trait θ(t, x) satisfies, for t > 0 and x ∈ R,

(3.18)

θ(t, x) =
1

ρ(t, x)

∫
Θ
θ u(t, x, θ) dθ,

=
1

ρ(t, x)

∫
Θ
θ u(t, x) dθ +

1

ρ(t, x)

∫
Θ
θ (u(t, x, θ)− u(t, x)) dθ,

=
θmin + θmax

2
+

1

ρ(t, x)

∫
Θ
θ (u(t, x, θ)− u(t, x)) dθ.

From Lemma 3.11 we know that, for each (t, x) ∈ [0,+∞)×R, the function θ 7→ u(t, x, θ)−
u(t, x) is nonincreasing with mean value 0 over Θ. Since θ 7→ θ is of course increasing in
Θ, Chebyshev’s integral inequality implies that

(θmax−θmin)×
∫

Θ
θ (u(t, x, θ)−u(t, x)) dθ ≤

(∫
Θ
θ dθ

)
×
(∫

Θ
(u(t, x, θ)−u(t, x)) dθ

)
= 0.

With (3.18), this completes the proof of Lemma 3.12. �

We are now in the position to complete the proof of Theorem 3.10.
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Proof of Theorem 3.10. Assume that θmin + θmax < 1, and take u0 as in Lemmas 3.11
and 3.12. Using Lemma 3.12, we have

θ(t, x) ≤ θ∗ :=
θmin + θmax

2
<

1

2
for all t > 0 and x ∈ R.

Thus, we deduce from (2.1) and the comparison principle (recall that, here, 0 ≤ ρ ≤ 1
in [0,+∞)×R since M ≤ 1), that ρ(t, x) ≥ ρ(t, x) for all t ≥ 0 and x ∈ R, where ρ denotes
the solution of the Cauchy problem

(3.19) ρ
t

= d ρ
xx

+ ρ(ρ− θ∗) (1− ρ), t > 0, x ∈ R,

starting from ρ(0, ·) = ρ(0, ·) in R. As θ∗ < 1/2, standard results of [8] imply the existence
of initial conditions ρ∗0 ∈ Cc(R, [0, 1)) such that the solution ρ∗ = ρ∗(t, x) of (3.19) starting
from ρ∗0 satisfies ρ∗(t, x)→ 1 as t→ +∞, locally uniformly in x ∈ R. It is then sufficient
to choose a nonnegative initial condition u0 ∈ C1

c (R×Θ), which is nonincreasing in θ and
such that 1 ≥ ρ(0, ·) ≥ ρ∗0 in R,7 to get that 1 ≥ ρ(t, x) ≥ ρ(t, x) ≥ ρ∗(t, x)→ 1 as t→ +∞
locally uniformly in x ∈ R. Then ρ(t, x) → 1 as t → +∞ locally uniformly in x ∈ R and
such a solution u then persists (and it even satisfies (3.6), as in the last part of Step 1 of
the proof of Theorem 3.4). The proof of Theorem 3.10 is thereby complete. �

3.5.2. The super-critical case θmin < 1/2 < (θmin + θmax)/2. This case corresponds to
column 6 of Table 2. Since θmax < 1, one then has θmin > 0 in this case, hence λα > 0 by
Lemma 3.1. Therefore, by Theorem 3.9, sufficiently small initial data u0 of the Cauchy
problem (1.1)–(1.3) lead to extinction. Although the assumption θmin ≥ 1/2 leads to
systematic extinction by Theorem 3.3, the case θmin < 1/2 < (θmin+θmax)/2 is more subtle
and is handled with different techniques, leading to the identification of new parameter
regimes.

Theorem 3.13 (Systematic extinction in the super-critical case with large α). If θmin <
1/2 and θmin + θmax > 1, then all solutions of the Cauchy problem (1.1)–(1.3) go extinct,
provided α > α?, for some α? > 0. Moreover, α? ≤ α], where α] has an explicit form
which depends only on M , θmin and θmax.

Proof. As already underlined, one here has θmin > 0. Consider for the moment any α > 0
and any solution u of (1.1)–(1.3). Define

v = uθ

and, for t > 0 and x ∈ R,

V (t, x) :=
1

2
‖v(t, x, ·)‖2L2(Θ).

From standard parabolic estimates and the global boundedness of u and ρ, the function u
is of class C∞((0,+∞)×R×Θ), and uθ is bounded in [ε,+∞)×R×Θ for each ε > 0. Hence,
the function V is of class C∞((0,+∞)× R) and bounded in [ε,+∞)× R for each ε > 0.

We derive in this paragraph a partial differential inequality satisfied by V (t, x) for any
fixed (t, x) ∈ (0,+∞)×R. All quantities below involving ρ, V and the partial derivatives
of V , are evaluated at (t, x). Differentiating (1.1) with respect to θ, multiplying by v and
integrating over Θ, we get that

Vt = d

∫
Θ
v vxx dθ + α

∫
Θ
v vθθ dθ + (1− ρ)

∫
Θ
v2(ρ− θ) dθ − (1− ρ)

∫
Θ
u v dθ.

7This inequality is satisfied for instance if u0 = 1/(θmax− θmin) in [−R,R]×Θ, with [−R,R] containing
the support of ρ∗0.
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Integrating by parts (with v ≡ 0 on (0,+∞)×R×∂Θ) and using 0 ≤ ρ(t, x) ≤ max(M, 1)
and ρ(t, x)(1− ρ(t, x)) ≤ 1/4, we obtain

Vt ≤ d
∫

Θ
v vxx dθ − α

∫
Θ

(vθ)
2 dθ +

(
1

2
+ 2(M + 1)θmax

)
V + (M + 1)

∫
Θ
u |v| dθ.

Since ∫
Θ
v vxx dθ =

∫
Θ

(v2

2

)
xx

dθ −
∫

Θ
v2
x dθ ≤ Vxx,

the Cauchy–Schwarz inequality leads to

Vt ≤ d Vxx − α‖vθ‖2L2(Θ) +

(
1

2
+ 2(M + 1)θmax

)
V + (M + 1)

√
2U
√

2V ,

where

U(t, x) :=
1

2
‖u(t, x, ·)‖2L2(Θ).

Additionally, as v = 0 on (0,+∞)× R× ∂Θ, the Poincaré inequality yields

‖vθ(t, x, ·)‖2L2(Θ) ≥ λ
D
1 ‖v(t, x, ·)‖2L2(Θ) = 2λD

1 V (t, x),

with λD
1 > 0 the principal eigenvalue of −∂θθ in Θ with Dirichlet boundary conditions,

that is,

(3.20) λD
1 := min

{∫
Θ ϕ

2
θ∫

Θ ϕ
2

: ϕ ∈ H1
0 (Θ) \ {0}

}
=

π2

(θmax − θmin)2
.

Therefore,

(3.21) Vt − dVxx ≤
√
V

((1

2
+ 2(M + 1)θmax − 2αλD

1

)√
V + 2(M + 1)

√
U

)
.

Next, after recalling the definition (3.17) of u(t, x), the Poincaré–Wirtinger inequality
implies that

(3.22) 2V (t, x) = ‖uθ(t, x, ·)‖2L2(Θ) ≥ λ
N
2 ‖u(t, x, ·)− u(t, x)‖2L2(Θ),

with λN
2 > 0 the smallest nonzero eigenvalue of −∂θθ in Θ with Neumann boundary

conditions, that is

(3.23) λN
2 := min

{∫
Θ ϕ

2
θ∫

Θ ϕ
2

: ϕ ∈ H1(Θ) \ {0},
∫

Θ
ϕ = 0

}
=

π2

(θmax − θmin)2
= λD

1 .

In particular, we deduce from
√

2U(t, x) ≤ ‖u(t, x, ·)− u(t, x)‖L2(Θ) + ‖u(t, x)‖L2(Θ) that

(3.24) 2(M + 1)
√
U(t, x) ≤ 2(M + 1)√

λN
2

√
V (t, x) +

√
2(M + 1)2

√
θmax − θmin

,

since 0 ≤ u(t, x) ≤ max(M, 1)/(θmax − θmin) ≤ (M + 1)/(θmax − θmin) in view of (2.3)
and (3.17). Plugging (3.24) into (3.21), we end up with

Vt − d Vxx ≤
√
V
(
R− µα

√
V
)
,

where

(3.25) µα = 2αλD
1 −

1

2
− 2(M + 1)θmax −

2(M + 1)√
λN

2

and R =

√
2(M + 1)2

√
θmax − θmin

.

From (3.20), (3.23) and (3.25), there exists α]1 > 0, depending only on M , θmin and θmax,
such that

µα > 0 for all α > α]1.
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A straightforward computation shows that

α]1 =
(θmax − θmin)2

π3

(
(M + 1)(1 + π)θmax − (M + 1)θmin +

π

4

)
.

From now on, we assume that α > α]1. By comparison with the explicit solution V of the
underlying ordinary differential equation starting at time t = 1 from supR V (1, ·) (which
is a nonnegative real number), we get that

(3.26) V (t, x) ≤
(
R

µα
+
(

sup
R
V (1, ·)− R

µα

)
e−µα(t−1)/2

)2

:= V (t) for all t ≥ 1, x ∈ R.

Next, coming back to (3.18), namely

θ(t, x) =
θmin + θmax

2
+

1

ρ(t, x)

∫
Θ
θ (u(t, x, θ)− u(t, x)) dθ,

we obtain, from the Cauchy–Schwarz inequality together with (3.22) and (3.26),

(3.27) θ(t, x) ≥ θmin + θmax

2
− K

ρ(t, x)

√
V (t) for all t ≥ 1 and x ∈ R,

where K =
√

2(θ3
max − θ3

min)/(3λN
2 ) > 0 is a constant that only depends on θmin and θmax.

Now, remembering that θmin +θmax > 1 and θmin > 0, let η > 0 (only depending on θmin

and θmax) be small enough so that

(3.28) θmin + θmax > 1 + 10η and 0 < η <
θmin

4
.

From (3.25), it follows that there exists α] ≥ α]1 only depending on M , θmin and θmax,
such that

(3.29)
R

µα
<
η2

K
for all α > α].

This threshold can be computed explicitly:

(3.30) α] =
(θmax − θmin)2

π3

(
(M + 1)(1 + π)θmax − (M + 1)θmin +

π

4

+
(M + 1)2

(η∗)2
√

3

√
(θ3

max − θ3
min)(θmax − θmin)

)
,

with η∗ = min
(
(θmax + θmin − 1)/10, θmin/4

)
. From now on, we assume that

α > α].

From (3.26) and (3.29), it follows that there exists a time T1 ≥ 1 such that K
√
V (t) < η2

for all t ≥ T1 (notice that T1 depends on α and also of supR V (1, ·) and then also on u
itself, but this does not matter since we are only concerned with the extinction, at long
time, of u). Observe also that, defining θ∗ := 1/2 + 2η, (3.27) insures that

(3.31) if t ≥ T1 and ρ(t, x) ≥ η, then θ(t, x) ≥ θmin + θmax

2
− η > 1

2
+ 4η > θ∗.

Define

f(s) = (s− 2η) (s− θ∗) (1− s) + η2(s− 2η)(s− θ∗)1[θ∗,1+η2](s), for s ≥ 0.

Since 1 + 10η < θmin + θmax < 2, one has η < 1/10, so that

2η <
1

2
< θ∗ =

1

2
+ 2η < 1 < 1 + η2
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and f is a bistable reaction term with stable steady states 2η and 1 + η2 and unstable
steady state θ∗ = 1/2 + 2η. By straightforward computations, one has∫ 1+η2

2η
f(s)ds = −η

6
+ o(η) as η → 0.

Hence we may assume without loss of generality, up to reducing η > 0 (depending on θmin

and θmax only), that
∫ 1+η2

2η f < 0. Define then

T2 = inf

{
t ≥ T1 : ∀ τ ≥ t, sup

R
ρ(τ, ·) ≤ 1 +

η2

2

}
.

The time T2, which depends on u and the other parameters of the problem, is well-defined
and finite by virtue of (2.9), that is, 1 ≤ T1 ≤ T2 < +∞. Consider now the solution
ρ = ρ(t, x) of the bistable reaction–diffusion equation

(3.32) ρt = dρxx + f(ρ), t > T2, x ∈ R,
starting from ρ(T2, x) = max(ρ(T2, x), 2η). Notice that 2η ≤ ρ(T2, x) ≤ 1 + η2/2 < 1 + η2

for all x ∈ R, and that ρ(T2, x)→ 2η as x→ ±∞ by (2.6). Therefore, it follows from [37]
(as in the proof of Theorem 3.3 in the case θmin > 1/2, see Section 3.2) that

(3.33) ρ(t, x)→ 2η as t→ +∞, uniformly in x ∈ R.

We finally claim that

f(t, x, ρ(t, x)) := ρ(t, x) (ρ(t, x)− θ(t, x)) (1− ρ(t, x)) ≤ f(ρ(t, x)) for all t ≥ T2, x ∈ R.

Indeed, for any t ≥ T2 and x ∈ R, one has on the one hand 0 < θmin < θ(t, x) < θmax < 1
and 0 < ρ(t, x) ≤ 1 + η2/2 < 1 + η2, and on the other hand:

• when 1 ≤ ρ(t, x) ≤ 1 + η2/2, f(t, x, ρ(t, x)) − f(ρ(t, x)) is obviously nonpositive
since f(t, x, ρ(t, x)) ≤ 0 and f(ρ(t, x)) ≥ 0;
• when η ≤ ρ(t, x) < 1, then

f(t, x, ρ(t, x))− f(ρ(t, x)) ≤ f(t, x, ρ(t, x))− (ρ(t, x)− 2η) (ρ(t, x)− θ∗) (1− ρ(t, x))

and the sign of the right-hand side is that of ρ(t, x)(θ∗−θ(t, x)+2η)−2ηθ∗, which
is negative in view of (3.31);
• when 0 < ρ(t, x) < η, the sign of

f(t, x, ρ(t, x))− f(ρ(t, x)) = (1− ρ(t, x))
[
θ∗(ρ(t, x)− 2η) + ρ(t, x)(2η − θ(t, x))

]
is that of θ∗(ρ(t, x)− 2η) + ρ(t, x)(2η− θ(t, x)); but, since θ(t, x) > θmin > 0, there
holds θ∗(ρ(t, x)− 2η) + ρ(t, x)(2η − θ(t, x)) < −ηθ∗ + 2η2 = −η/2 < 0.

As a result, recalling (2.1), ρ is then a subsolution of the equation (3.32) satisfied by ρ
for times t ≥ T2, with 0 < ρ(T2, ·) ≤ ρ(T2, ·) in R, and therefore, 0 < ρ(t, x) ≤ ρ(t, x) for
all t ≥ T2 and x ∈ R from the maximum principle.

Since η < θmin/4 by (3.28), we deduce from (3.33) the existence of a time T3 ≥ T2 such
that

0 < ρ(t, x) <
θmin

2
<

1

2
< 1 for all t ≥ T3, x ∈ R.

Since θ(t, x) > θmin in (0,+∞) × R and θmin < θmax < 1, it then follows from (2.1) and
the previous inequality that

ρt ≤ dρxx + ρ(ρ− θmin)(1− ρ) for all t ≥ T3, x ∈ R.
Hence, by comparison with the underlying bistable ordinary differential equation, one
infers that ρ(t, x)→ 0 as t→ +∞, uniformly in x ∈ R. In other words, u goes extinct, as
soon as α > α], with α] > 0 given by (3.30) and thus only depending on M , θmin and θmax.
The proof of Theorem 3.13 is thereby complete. �
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4. Numerical results

The objective of this section is to get an overview of the shape of the solution u(t, x, θ)
of (1.1) and to test the conjectures made in Section 1.5. We solved the equation (1.1)
on a rectangular domain (x, θ) ∈ I × (θmin, θmax) with a “method of lines”, using the
Matlabr ode45 solver (the source code is available in the Open Science Framework repo-
sitory: https://osf.io/w8nuz/). We considered characteristic functions of sets of var-
ious dimensions L × (θmin, θmax) as initial conditions (though they are not continuous,
these functions can be approximated by continuous functions without changing much the
numerics):

(4.1) u0(x, θ) =
1

θmax − θmin
1(−L/2,L/2)(x) for (x, θ) ∈ (−60, 60)︸ ︷︷ ︸

=:I

×(θmin, θmax),

with 0 < L ≤ 80.

(a)

(b)

Figure 1. Numerical solution u(t, x, θ) of (1.1) at some fixed time.
In panel (a), we have taken θmin = 0.2 and θmax = 0.7, and the solution
is computed at t = 200. In panel (b), θmin = 0.2 and θmax = 0.9 and the
solution is computed at t = 400. In both cases, the initial condition is given
by (4.1) with L = 20. The other parameter values are: d = 1 and α =
4 · 10−3.

We depict the shape of u(t, x, θ) at some fixed positive time in Fig. 1 in the subcri-
tical case (θmin + θmax < 1, panel (a) and supercritical case (θmin + θmax > 1, panel (b).
Interestingly, the solution takes its highest values when x is close to the leading edge
of the front, i.e., at the transition zones between ρ ≈ 0 and ρ ≈ 1. At such positions,
the population tends to concentrate on trait values close to θmin. This is consistent with
the interpretation of a stronger selection pressure due to the Allee effect at low density
(see the biological motivation part of the Introduction). Conversely, in the “core” of the
population, the solution tends to get flatter, which reflects the convergence of the mass ρ
towards the value 1, which in turns implies that the reaction term in (1.1) is close to 0.

https://osf.io/w8nuz/
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Thus, in this central region, the dynamics is mainly driven by diffusion (spatial diffusion
and mutations).

We now test our conjectures. To construct Fig. 2, we solved the equation (1.1) until
a time T = 103, for increasing values of the mutation parameter α (with step 10−4)
and of the length L of the support of u0 (with step 1). Each time, we computed the
total mass N(t) =

∫
I ρ(t, x) dx for t ∈ [0, T ]. We considered that persistence occurred if

N(T ) > |I|−1 = 119 (ρ ≈ 1 over the whole domain I× (θmin, θmax)); that persistence was
probable if N(T ) > N(T/2); that extinction was probable if N(T ) < N(T/2); and that
extinction occurred if N(T ) < 1. In the critical case θmin + θmax = 1, we conjectured in
Section 1.5 that, for any value of the mutation parameter α, extinction or persistence can
both occur according to the initial condition. This is fully consistent with the numerical
results in Fig. 2a. In the supercritical case θmin + θmax > 1, we proved that for α large
enough, extinction was systematic. This corresponds to the region α > α? ≈ 7.5 · 10−3 in
Fig. 2b. In this plot, we also observe that, as conjectured, when α is below this threshold,
extinction or persistence can both occur depending on u0 (here L) if α ≤ α?. Note that,
with the parameter values in Fig. 2b, the formula (3.30) leads to α] ≈ 259 which is far
from optimal.

Remark 4.1. Close to the critical threshold α? ≈ 7.5 · 10−3 and for L ≈ 15 we observe a
small pink “persistence region” encroached below the cyan “extinction region”. At first
glance, this may appear surprising since larger values of L are expected to lead to higher
chances of persistence (even though the comparison principle does not hold). A closer
look at the solution of (1.1) (not depicted here) for (α,L) in this region shows that the
solution seems to converge to a stationary state, either by increasing its total mass N(t)
(for small L, pink region) or by decreasing it (for large L, cyan region), which explains
the pattern in Fig. 2b.

(a) (b)

Figure 2. Persistence at large times, in terms of the mutation
parameter α and of the size L of the support of u0. Panel (a)
corresponds to θmin = 0.2 and θmax = 0.8, so that θmin+θmax = 1. Panel (b)
corresponds to θmin = 0.2 and θmax = 0.9, so that θmin + θmax = 1.1 >
1. In both cases, the initial condition is given by (4.1) and the solution
u(t, x, θ) of (1.1) is evaluated at T = 103. The red region corresponds
to persistence; the pink region to probable persistence; the cyan region to
probable extinction; the blue region corresponds to extinction. The spatial
diffusion coefficient was fixed at d = 1.
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We also checked the dependence of the persistence/extinction behavior with respect to

the value of the dominant trait θ̃ in the initial population. Namely, we considered initial
conditions that are non-uniform with respect to θ:

(4.2) u0(x, θ) = Cθ̃ exp

(
−(θ − θ̃)2

2σ2

)
1(−L/2,L/2)(x) for (x, θ) ∈ I × (θmin, θmax),

with again I = (−60, 60), θ̃ ∈ Θ and Cθ̃ such that
∫

Θ u0(x, θ) dθ = 1 for all x ∈ (−L/2, L/2)
as in the previous example (4.1). We worked here with a single value of the mutation
parameter α = 5 · 10−3 such that both extinction and persistence were observed with
initial conditions of the form (4.1), depending on L. We chose here L = 5 and σ = 0.1.
The other parameters were the same as in Fig. 2b, in particular θmin = 0.2 and θmax = 0.9.
This time, with the same criteria as above, we observed that persistence occurred for θ̃
below some critical threshold θ̃? ≈ 0.5 and extinction occurred for θ̃ above this threshold.
Note that, with L = 5 and the same other parameter values, extinction occurred with a
uniform initial distribution (Fig. 2b). Thus, keeping the same initial population size, the
outcomes depends on the initial distribution of the trait, and persistence becomes more
likely when the initial distribution is concentrated around θmin. Video files illustrating
the dynamics of u and ρ with initial conditions (4.2) for several values of θ̃ are available
in the Open Science Framework repository: https://osf.io/w8nuz/, together with the
corresponding Matlabr source code.
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