
Towards application-specific query processing
systems

Dimitrios Vasilas
Scality

Sorbonne Université - LIP6 & Inria
dimitrios.vasilas@lip6.fr

Marc Shapiro
Sorbonne Université - LIP6 & Inria

marc.shapiro@acm.org

Bradley King
Scality

brad.king@scality.com

Sara S. Hamouda
Sorbonne Université - LIP6 & Inria

sara.hamouda@inria.fr

ABSTRACT
Database systems use query processing sub-systems for en-
abling efficient query-based data retrieval. An essential as-
pect of designing any query-intensive application is tuning
the query system to fit the application’s requirements and
workload characteristics. However, the configuration param-
eters provided by traditional database systems do not cover
the design decisions and trade-offs that arise from the geo-
distribution of users and data. In this paper, we present a
vision towards a new type of query system architecture that
addresses this challenge by enabling query systems to be
designed and deployed in a per use case basis. We propose
a distributed abstraction called Query Processing Unit that
encapsulates primitive query processing tasks, and show
how it can be used as a building block for assembling query
systems. Using this approach, application architects can con-
struct query systems specialized to their use cases, by con-
trolling the query system’s architecture and the placement
of its state. We demonstrate the expressiveness of this ap-
proach by applying it to the design of a query system that
can flexibly place its state in the data center or at the edge,
and show that state placement decisions affect the trade-off
between query response time and query result freshness.

1 INTRODUCTION
Amajor requirement of user-facing services is providing fast
responses to user requests [4, 5]. Serving user requests in-
volves communication from a user’s device to an application
server, and then potentially querying data from a backend
store.
It is well known that achieving good query processing

performance requires tunning the query processing system
to the needs of different use cases. To achieve that, query
systems expose configuration parameters and knobs such as
selecting which indexes to materialize and choosing between
consistent and lazy index maintenance. In addition, query

systems are able to generate query execution plans adapted
to each individual query (query optimization).
However, the users and data of most web services nowa-

days are geographically distributed across the globe. In the
context of geo-distribution, the objectives of fast query re-
sponse, consistent results, and low operational cost are in-
herently conflicting and create trade-offs.

Query response time. In a query processing system in
which data are distributed across multiple data centers, query
execution may involve communication round-trips across
data centers, incurring overhead to query response time.

Query result consistency. Query systems aim at return-
ing up-to-date results, which requires keeping their derived
state (e.g. indexes, materialized views) in sync with the base
data. In the context of geo-distribution this is often not prac-
tical due to the resulting overhead to write operations. The
alternative of updating derived state asynchronously can
lead to returning stale query results.

Operational cost. Network resources across geographi-
cally distributed sites are often limited and costly, therefore
the amount of data transferred by the query system across
sites affects network consumption and hence the system’s
operational cost.

While techniques for reducing query response time have
been studied extensively and applied in commercial data-
base systems, the aspects of query result consistency and
operational cost have not been sufficiently explored.
A crucial design choice that affects the above trade-offs

is the placement of the query processing system’s state and
computations. Existing database systems provide little flexi-
bility for configuring query processing state and computa-
tion placement [2].
We argue that, achieving the right balance between low

response time, up-to-date query results, and low operational
cost, requires additional tunning mechanisms. Moreover, this
balance is different across geo-distributed application due to
their diverse characteristics and requirements.

Dimitrios Vasilas, Marc Shapiro, Bradley King, and Sara S. Hamouda

To address this need, we propose an architectural design
pattern that enables application designers to navigate the
design space of geo-distributed query processing by giving
them control over the placement of the query processing
system’s state and computations. The key idea is that query
processing can be decomposed into basic tasks that can be
encapsulated by independent components. We present an
architecture component abstraction, called Query Processing
Unit (QPU), that embodies this principle. The QPU abstrac-
tion defines a set of interfaces and a communication pro-
tocol. Different instantiations of the abstraction implement
different functionalities while conforming to the common
specification. Query processing systems are constructed by
interconnecting QPU instances in a modular microservice-
like architecture.
We demonstrate the expressiveness of the proposed ap-

proach by applying it to the design of a middleware system
that maintains materialized views in order to speed up query
processing. We show how the proposed approach enables
materialized views to be flexibly placed in the cloud or at
the edge according to the application’s access patterns and
requirements.

This work includes the following contributions:

• We propose an architectural design pattern for con-
structing and deploying geo-distributed query process-
ing systems tailored to the characteristics and require-
ments of individual applications.

• We realize this design pattern by introducing an ab-
straction termed Query Processing Unit aimed to en-
able the design of modular query processing systems.
We show how a geo-distributed query system can be
constructed using the QPU abstraction (Section 3).

• We demonstrate the expressiveness of the QPU-based
architectural design and the flexibility that can be ob-
tained from its use by applying it to the design of an
application that maintains materialized views at the
edge (Section 4).

2 BACKGROUND
Internet services typically rely on a two-tiered backend ar-
chitecture to serve user requests. Data is stored persistently
in a database (data storage tier). A query processing tier is
used on top of the database to provide the required query
processing capabilities to the service.
The query processing tier can serve two roles. In cases

where the database does not support querying, the query pro-
cessing tier is responsible for providing querying capabilities
to the service, for example by building secondary indexes. Al-
ternatively, the query processing tier’s responsibility may be
to improve query scalability and performance bymaintaining
pre-computed or cached query results. Typically, the query

processing layer maintains derived state (indexes, caches,
materialized views) for serving queries. Changes to the base
data need to be propagated and applied to the derived state
(state maintenance). State maintenance is often asynchro-
nous, and therefore derived state is eventually consistent
relative to the base data.
We model the system as a collection of sites. We define a

site as a group of servers located in the same geographic loca-
tion. Network communication latency among servers within
a site is significantly lower than latency among servers on
different sites (a few milliseconds compared to tens to hun-
dreds of milliseconds). Moreover, network resources within
a site cost significantly less compared to network resources
across sites. This is in accordance with cloud service pricing
models where cross-site data transfer is more expensive than
data transfer within a site. [1]. A site can correspond either
to a data center, or to a collection of edge nodes that form a
tier along with the user devices located geographically close
to them.

In this paper, we examine the challenges and design deci-
sions involved in the design of the query processing tier. We
assume that the query processing tier is deployed on top of
an already existing data storage tier architecture.

3 DESIGN
In this section we present our main contribution, an archi-
tectural design pattern for constructing and deploying geo-
distributed query processing systems. This pattern decouples
the query system from the storage architecture, and shifts
the task of designing and implementing it from the database
designer to the application architect.
In particular, our design is based on the following objec-

tives:
• Declaratively defined architecture. The query sys-
tem architecture should not be predefined. Rather,
system architects should be able to construct query
processing architectures in a per use case basis, and
have control over the query processing techniques
that the system employs. The query system design
process should include decisions such as selecting the
query processing state partitioning and replication
schemes, and whether to use caching. In addition, the
architecture should not make assumptions about the
distribution scheme of the base data.

• Flexible component placement.The system designer
should have fine-grained control over the placement
of the query system’s state and computations.

3.1 The Query Processing Unit abstraction
We enable these objectives using an assembly-based design
strategy. The key idea is that query processing systems can be
constructed by assembling composable building blocks that

Towards application-specific query processing systems

encapsulate primitive query processing tasks. In that way,
complex query processing tasks can be expressed through
composition of simple building blocks. To enable this archi-
tecture design pattern, we introduce an architecture compo-
nent abstraction, termed Query Processing Unit (QPU).

The QPU abstraction has the role of an architecture com-
ponent template: it defines a set of properties including inter-
faces, functionalities, and communication patterns. Different
instantiations (classes) of the QPU abstraction can be defined
and implemented, but all need to conform to the properties
defined by the abstraction. Instances of these QPU classes
are the concrete building blocks that can be composed to
construct query processing systems. In the rest of this sec-
tion we use the terms query processing unit, QPU, and unit
interchangeably.
We define the query processing unit as a long-running

process with the following properties:

• Query processing state (optional). A QPU can ei-
ther maintain state, or be stateless. Stateful QPUs can
express query processing tasks such as indexing (in
which case the state is an indexing data structure),
caching, and aggregation computations. Stateless QPUs
can express tasks such as filtering and projections.

• Query API. Each QPU exposes an API for receiving
and serving queries. When this API is called, a stream
connection is established between the QPU and the
caller. Query result entries are sent though the stream
as stream records.
The unit implements a query processing computation
that is invoked when the query API is called. The im-
plementation of this computation is different for each
QPU class. However, any implementation can use two
functionalities: reading from the unit’s state and per-
forming downstream queries.

• Downstream queries. Each query processing unit
can invoke the query API of other units.

• Callback computation. When a QPU invokes the
query API of another, a stream connection is estab-
lished between them, as described above. The unit
implements a callback computation that is invoked in
response to receiving a record through that stream.

• Configuration state. Each QPU maintains additional
configuration that specify its query processing capa-
bilities. For example, in the case of an index QPU class
this may include configuration parameters specify-
ing which attribute it is responsible for indexing (and
hence which queries it can process). In addition, it in-
cludes information that enables it to send downstream
queries to other units, such as their endpoints and
query processing capabilities.

Client

 QPU 1

Query
processing

QA

QPU State

QA.1

RA

RA.1 QA.2RA.2

Callback Callback

QPU 0

 QPU 2

Figure 1: A conceptual depiction the QPU abstraction.

A conceptual depiction of the query processing unit ab-
straction is shown in Figure 1. When the QPU’s query API is
called, a response stream (RA) is established between the unit
and the client, and the unit’s query processing computation
is invoked. The query processing computation can read the
QPU’s state, and can perform downstream queries to other
units. For each downstream query, a corresponding stream
is established (QA.1 and QA.2). When a record is received
from one of the streams, the QPU’s callback computation is
invoked. Each callback computation processes the received
record, and returns the result to the query processing compu-
tation. Upon receiving a result from the callback, the query
processing computation can write to the QPU’s state and po-
tentially send a computed query result through the response
stream.

3.2 Query processing system architecture
A query processing system is a directed acyclic graph (DAG)
with QPUs as its nodes. Edges are connections between
QPUs, which represent potential paths of communication
among them: the QPU at a parent node can perform a down-
stream query to the QPU at the child node. Leaf nodes com-
municate with the data storage tier, while clients perform
queries by invoking the query API of root nodes. The global
capabilities of a QPU-based DAG are synthesized from the
individual functionalities of each of the QPU classes at its
nodes, as well as the graph topology.

3.3 Computation model
The QPU graph runs a distributed bidirectional data-flow
computation.

A client performs a queryQc by invoking the query API of
a query processing unit at the root of the graph. As described

Dimitrios Vasilas, Marc Shapiro, Bradley King, and Sara S. Hamouda

in Section 3.1, the QPUs query processing computation can
read from the unit’s state, or perform downstream queries
to QPUs at its child nodes.
When a downstream query is performed, this process is

recursively executed at each unit whose query API is invoked.
Though this mechanism, Qc is incrementally transformed
to sub-queries which flow downwards through the QPU
graph, invoking computations at different nodes. Sub-query
results are returned through the QPU streams established
from query API invocations, and flow upwards through the
graph. These results are incrementally processed, potentially
updating the state of different QPUs, and eventually produce
the initial query results, which are returned to the client.

3.4 Constructing a QPU-based Query
Processing System

In this section we describe the process of constructing and
deploying a QPU-based query processing system, and show
how this design pattern achieves our objectives.
The process of constructing a query processing system

consists of four steps. The first step is selecting the QPU
classes to be used for implementing the query processing
functionalities needed by the application. The second step is
designing the QPU DAG topology by defining the instances
of QPU classes to be used as nodes, and the connections
among them. The third step is defining the placement of each
graph node across the system infrastructure. The final step is
deploying the QPU graph. This step involves deploying each
process that implements a QPU class instance, and passing
to it configuration that defines each functionality and its
children in the QPU graph.
The properties of the query processing unit abstraction,

and the properties that emerge from the composition of
QPUs realize our design objectives.

Declaratively defined architecture. The properties of
theQPU abstraction (common queryAPI, downstream queries)
make query processing units composable. This enables a
query processing system to be expressed as a composition of
building blocks (QPUs) that provide basic query processing
functionalities. Different query system architectures can be
expressed by selecting the QPU classes to be used and the
topology of the connections among them.

In addition, the common query API across any QPU class
enables the separation between interface and implementa-
tion. For example, different implementations of an index
QPU class can use different index data structures. More gen-
erally, a graph node is agnostic of the sub-graph below each
of its children and only requires local information about
the query capabilities of its children. For example, a QPU
class that implements query result caching can be transpar-
ently connected to the root of any QPU sub-graph, such as

an individual index QPU or a sub-graph that implements a
partitioned index.

Flexible component placement.Query processing units
act as microservices: each unit manages its internal state,
and communication is performed through API invocations.
Therefore, each individual QPU of the query systemDAG can
be independently placed across the system, without impact-
ing the system’s functionality. This property decouples the
architecture design from the placement of its components,
and gives the system designer control over the placement
the query system’s state and computations.

4 CASE STUDY: MATERIALIZED VIEWS
AT THE EDGE

4.1 Motivation
We consider an application that provides an in-game ad-
vertisement service for mobile game development. Game
applications use this service to query a database for avail-
able advertisement videos (ads), select an ad based on some
criteria, and then request the ad from the service in order
to display it to the user. We are interested in the part of the
application’s architecture responsible for serving queries to
the ad database, and consider the video serving architecture
out of the scope of this study.

Each ad is associated with a set of tags describing its con-
tent, and a price. The ad-serving application and game de-
velopers are paid per-click according to the ad price. Tags
are used to select ads with content that users are likely to
click on.
Advertisers perform writes to the database to add or re-

move ads, and to adjust ad prices. Because the available ads
and their prices are modified frequently, ad selection is per-
formed at the point of the game when an ad needs to be
displayed. Therefore, queries require low latency as they
impact user experience. Additionally, queries require fresh
results, as having the latest information about available ads
and prices enables ad selection to make optimal choices for
maximizing profit.

4.2 Background
The ad-serving application’s storage tier consists of a data-
base that stores the available ads, their associated tags (table
Ads), and their prices (table Prices).

We are interested in the design of the application’s query
processing tier. Our goal is to achieve low query response
time while also providing fresh query results. The common-
case query performed by games has the following character-
istics: (1) it selects ads that contain tags among a given set,
(2) joins the selected ads with the associated prices, and (3)
selects the ads with the K highest prices.

Towards application-specific query processing systems

A technique for providing low query response time is to
use materialized views [5]. However, existing approaches
execute queries in the data center. The ad-serving applica-
tion’s users are distributed worldwide, and therefore, the
communication latency between user devices and the data
center may be significant. Placing data geographically closer
to end users is a common technique for reducing the large
access latencies resulting from geo-distribution [3].

4.3 Design decisions and trade-offs
We assume a system composed of two types of sites: data
centers and edge sites. The storage tier is placed in the data
center, while the query processing tier can be distributed
across data center and edge. For simplicity, for the rest of
this section, we focus on a single data center and edge site.

The query system is queried by clients located at the edge;
it keeps its derived state up to date by asynchronously re-
ceiving updates from the database, which is located in the
data center. As a result, query performance is affected by the
latency between the query system’s state and clients, while
the consistency between base data and the query system’s
state is affected by the latency between them.

There exists thus an inherent trade-off between query per-
formance and freshness which is affected by the placement
of the query system’s state relative to the clients and the base
data. Placement at the edge can improve query performance
at the expense of query result freshness. Therefore, it is more
suitable for parts of the state that are heavily queried. On
the other hand, placement in the data center is better suited
for parts of the state that are more frequently updated.

Additionally, placement decisions affect network consump-
tion costs. When the query system’s state is placed in the
data center, costly inter-site communication is required for
sending queries and responses between the query system
and the clients. When it is placed at the edge, inter-site com-
munication is required for propagating updates from base
data to the query system.

4.4 System design
In this section, we present the design of a QPU-based query
processing system for the ad-serving application described
above. We demonstrate how the proposed architectural de-
sign pattern enables flexible placement of the query system’s
state across data center and edge.

QPU Classes. Following the steps defined in Section 3.4,
we first define the QPU classes that will be used for con-
structing the query system.

• Data store driver QPU (DSD-QPU). The DSD-QPU
is responsible for connecting the query processing sys-
tem DAG with the underlying database. Its query API
provides the following functionality. Given a query, the

Ads Prices

Write

Query

D
ata center

E
dge

DS-QPU DS-QPU

I-QPU

J-QPU

TK-QPU

(a)

Ads Prices

Write

Query

D
ata center

E
dge

DS-QPU DS-QPU

I-QPU J-QPU

C-QPU

TK-QPU

(b)

Figure 2: Alternative query system designs and place-
ment schemes for the in-game advertising application,
addressing different workload types.

DSD-QPU initially returns the query result (by send-
ing each result entry through the response stream). It
then continues publishing (as stream records) changes
to the database state that affect the result of the given
query.

• Index QPU (I-QPU). The I-QPU is responsible for
maintaining an index for a database table column.
Upon deployment, the index QPU performs a down-
stream query to a DSD-QPU that is responsible for
the corresponding column. It initially receives the en-
tire column and builds its index. It then incrementally
updates the index by receiving updates for database
writes from the DSD-QPU. Its query processing com-
putation processes a given query by performing an
index lookup.

• Join QPU (J-QPU). The join QPU is responsible for
performing the SQL join operation on two or more
database tables or materialized views. Similarly to the
index QPU, it performs downstream queries to other
QPUs in order to build the join operation result, and
keep up to date by incrementally applying updates.

• Top-K QPU (TK-QPU). The top-K QPU is responsi-
ble for maintaining a materialized view with the K
records of a database table or materialized view with
the highest values in a given column. Similarly to the
index and join QPUs, it uses downstream queries to
implement this functionality.

• Cache QPU (C-QPU). The cache QPU is responsible
for storing recent query results in a cache. When a
cache miss occurs, it forwards the query further down
the graph through a downstream query.

Figure 2 depicts the two query processing system architec-
tures for the application. The index QPU maintains an index

Dimitrios Vasilas, Marc Shapiro, Bradley King, and Sara S. Hamouda

for the ad tags. The join QPU performs a join between the
index and the Prices table. As a result of the join, index en-
tries contain ads and corresponding prices. The top-K QPU
maintains, for each index entry, the K ads with the highest
prices.
We present two alternative query systems, designed to

address different workloads. In Figure 2a, the top-K QPU
is placed at the edge. This design is better suited to query-
heavy workloads, as it favors query performance but sacri-
fices query result freshness. In Figure 2b, the top-K QPU is
placed in the data center, and a cache QPU is placed at the
edge. This design is more suitable for update-heavy work-
loads. Placing the top-K QPU in the data center achieves
better freshness, while the cache QPU placed at the edge can
potentially speed up query processing.

5 RELATEDWORK
CockroachDB, a globally-distributed SQL database, provides
different choices for distributing and placing data across
multiple data centers, termed topology-patterns, aimed at
reducing read and write latency and improving resiliency
[2]. However, these placement options are primarily focused
on the data storage tier, rather that the query processing
system.

The indexing systems in Azure DocumentDB [6] and Diff-
index [7] allow database administrators to choose between
multiple index update modes. While this enables a trade-off
between index consistency and the overhead incurred to
update operations, these works do not consider querying
processing across multiple data centers.
Noria [5] is a middleware system aimed at improving

performance of read-heavyweb applications. Similarly to our
approach, Noria uses data-flow to incrementally apply writes
to materialized views. However, Noria does not consider geo-
distributed data, and is not focused on flexible materialized
view placement.

Our previous work [8] addressed the problem of building
modular query processing systems and introduced the term
Query Processing Unit. This paper advances this work by
presenting a detailed specification of the QPU abstraction
and demonstrating how it can be used to enable flexibility
in the design of query processing systems.

6 CONCLUSIONS
In the context of geo-distribution, the placement of query
processing state affects query response time, query result
freshness, and operational cost. Different design choices cater
to different use cases due to applications’ diverse require-
ments and characteristics.
To address this challenge, we proposed an architectural

design pattern for constructing query processing systems

in a per use case basis. To realize this, we introduced the
Query Processing Unit abstraction and showed how it can
be used as a building block to enable the construction of
application-specific query systems.
In this work-in-progress paper, we presented the QPU

abstraction and the modular system design pattern that it
enables. We have implemented the proposed approach in
the form of a framework that includes (1) a library of QPU
implementations and (2) deployment, orchestration, and self-
configuration mechanisms aimed to facilitate the construc-
tion of query processing systems. Our prototype implemen-
tation is available at github.com/dvasilas/proteus. We are
currently in the process of experimentally evaluating our
prototype.

In addition, we aim to extend this work with mechanisms
for reducing the complexity exposed to the application de-
veloper. In particular, we are developing a cost model based
approach for generating and deploying query engine archi-
tectures based on use case descriptions that include the topol-
ogy of the underlying storage system, the expected work-
load characteristics, and the application’s requirements in
the form of a target metric (query performance, freshness or
cost) to optimize for.

REFERENCES
[1] Amazon ec2 pricing. https://aws.amazon.com/ec2/pricing/, 2020.
[2] Cockroachdb topology patterns. https://www.cockroachlabs.com/docs/

v19.2/topology-patterns.html, 2020.
[3] Google edge network. https://peering.google.com/#/infrastructure,

2020.
[4] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,

J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages 49–60, San Jose,
CA, 2013. USENIX.

[5] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler,
M. F. Kaashoek, and R. Morris. Noria: dynamic, partially-stateful data-
flow for high-performance web applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 213–
231, Carlsbad, CA, Oct. 2018. USENIX Association.

[6] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah, S. Ziuzin, K. Sun-
daram, M. G. Guajardo, A. Wawrzyniak, S. Boshra, R. Ferreira, M. Nas-
sar, M. Koltachev, J. Huang, S. Sengupta, J. Levandoski, and D. Lomet.
Schema-agnostic indexing with azure documentdb. Proc. VLDB Endow.,
8(12):1668–1679, Aug. 2015.

[7] W. Tan, S. Tata, Y. Tang, and L. L. Fong. Diff-index: Differentiated index
in distributed log-structured data stores. In Proceedings of the 17th
International Conference on Extending Database Technology, EDBT 2014,
Athens, Greece, March 24-28, 2014, pages 700–711. OpenProceedings.org,
2014.

[8] D. Vasilas, M. Shapiro, and B. King. Amodular design for geo-distributed
querying: Work in progress report. In Proceedings of the 5th Workshop
on the Principles and Practice of Consistency for Distributed Data, PaPoC
’18, New York, NY, USA, 2018. ACM.

https://github.com/dvasilas/proteus
https://aws.amazon.com/ec2/pricing/
https://www.cockroachlabs.com/docs/v19.2/topology-patterns.html
https://www.cockroachlabs.com/docs/v19.2/topology-patterns.html
https://peering.google.com/#/infrastructure

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 The Query Processing Unit abstraction
	3.2 Query processing system architecture
	3.3 Computation model
	3.4 Constructing a QPU-based Query Processing System

	4 Case study: Materialized Views At the Edge
	4.1 Motivation
	4.2 Background
	4.3 Design decisions and trade-offs
	4.4 System design

	5 Related Work
	6 Conclusions
	References

