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MASS THRESHOLD FOR INFINITE-TIME BLOWUP IN A CHEMOTAXIS

MODEL WITH SPLITTED POPULATION

PHILIPPE LAURENÇOT AND CHRISTIAN STINNER

Abstract. We study the chemotaxis model

∂tu = div(∇u − u∇w) + θv − u in (0,∞)× Ω,

∂tv = u− θv in (0,∞)× Ω,

∂tw = D∆w − αw + v in (0,∞)× Ω,

with no-flux boundary conditions in a bounded and smooth domain Ω ⊂ R
2, where u and v represent

the densities of subpopulations of moving and static individuals of some species, respectively, and
w the concentration of a chemoattractant. We prove that, in an appropriate functional setting, all
solutions exist globally in time. Moreover, we establish the existence of a critical mass Mc > 0 of
the whole population u+ v such that, for M ∈ (0,Mc), any solution is bounded, while, for almost all
M > Mc, there exist solutions blowing up in infinite time. The building block of the analysis is the
construction of a Liapunov functional. As far as we know, this is the first result of this kind when the
mass conservation includes the two subpopulations and not only the moving one.

1. Introduction

We investigate the dynamics of a chemotaxis model describing the space and time evolution of a
species including moving and static individuals, as well as that of a chemoattractant produced by
the latter. More precisely, on the one hand, the motion of moving individuals is due to diffusion
with a bias towards regions of high concentrations of the chemoattractant. On the other hand, the
chemoattractant is produced only by the static individuals, while its spatial fluctuations result from
standard diffusion. Finally, the total population in the species is assumed to be constant throughout
time evolution, with a linear exchange between the two subpopulations. Denoting the densities of
moving and static individuals by u and v, respectively, and the concentration of chemoattractant by
w, the mathematical model reads, after a suitable rescaling of the parameters,

∂tu = div(∇u− u∇w) + θv − u in (0,∞)× Ω, (1.1a)

∂tv = u− θv in (0,∞)× Ω, (1.1b)

∂tw = D∆w − αw + v in (0,∞)× Ω, (1.1c)
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supplemented with no-flux boundary conditions

∇u · n = ∇w · n = 0 on (0,∞)× ∂Ω (1.1d)

and initial conditions
(u, v, w)(0) = (u0, v0, w0) in Ω. (1.2)

We assume that Ω ⊂ R
2 is a bounded domain with smooth boundary and the constants D, α, and

θ are positive.
The system (1.1) can be seen as a particular case or a variant of chemotaxis models derived

in [9,22,24,25,29], with different interpretations of the species and its two subpopulations. In [9], it
is some building material (such as soil) which is, either carried by insects, or deposited on the ground.
Proliferation of cancer cells is considered in [24], separating migrating cells from proliferating cells,
while the spreading of mountain pine beetles is studied in [22, 25, 29], dividing the population into
flying and nesting beetles.
As far as mathematical analysis is concerned, the model introduced in [9], which also is a simplified

variant of the models in [22, 25, 29], is the subject of a number of analytical results dealing with the
global existence of solutions and the asymptotic behavior of bounded solutions, see, e.g., [14,17,20,28].
In all these results, instead of the splitting term θv − u in (1.1a), the corresponding models contain
in the taxis equation a dissipative term f(u) depending only on u generalizing the prototype f(u) =
1 − µu. In case of f ≡ 0, a critical mass phenomenon for global solutions is proved in [16, 27]. For
the model developed in [24], which includes a splitting term similar to θv − u in the taxis equation,
the global existence of solutions is proved in [24], while further results concerning their large time
behavior are lacking.
To the best of our knowledge, our results concerning the behavior of solutions to (1.1)–(1.2) seem

to be the first going beyond global existence for a chemotaxis model involving a species divided into
moving and static individuals and containing in the taxis equation a splitting term depending on
both subpopulations.
Our first result states the global existence and well-posedness for (1.1)–(1.2) in an appropriate

functional setting. To this end, for r ∈ (1,∞), we set

Wm
r,B(Ω) := {z ∈ Wm

r (Ω) : ∇z · n = 0 on ∂Ω} if 1 +
1

r
< m ≤ 2,

Wm
r,B(Ω) := Wm

r (Ω) if − 1 +
1

r
< m < 1 +

1

r
, (1.3)

Wm
r,B(Ω) := W−m

r/(r−1)(Ω)
′ if − 2 +

1

r
< m ≤ −1 +

1

r
,

and
Wm

r,B,+(Ω) :=
{

z ∈ Wm
r,B(Ω) : z ≥ 0 in Ω

}

, (1.4)

where Wm
r (Ω), m ∈ [0,∞), r ∈ [1,∞), denote the usual Sobolev spaces, see [3, Section 5].

Theorem 1.1. Let M > 0 and (u0, v0, w0) ∈ W 1
3,+(Ω;R

3) satisfying

‖u0 + v0‖L1(Ω) = M. (1.5)
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Then the system (1.1)–(1.2) has a unique nonnegative weak solution (u, v, w) in W 1
3 defined on [0,∞)

satisfying

u ∈ C
(

[0,∞);W 1
3,+(Ω)

)

∩ C1
(

[0,∞);W 1
3/2(Ω;R

2)′
)

,

v ∈ C1([0,∞);W 1
3,+(Ω)),

w ∈ C
(

[0,∞);W 1
3,+(Ω)

)

∩ C1
(

[0,∞);W 1
3/2(Ω;R

2)′
)

,

and

‖(u+ v)(t)‖L1(Ω) = M, t ≥ 0. (1.6)

Moreover,

u ∈ C
(

(0,∞);W 2
3,B(Ω)

)

∩ C1 ((0,∞);L3(Ω)) ,

w ∈ C
(

(0,∞);W 2
3,B(Ω)

)

∩ C1 ((0,∞);L3(Ω)) .

We next establish a critical mass phenomenon for (1.1)–(1.2). More precisely, we show the existence
of a critical mass Mc > 0, where Mc = 4π(1 + θ)D in the general case and Mc = 8π(1 + θ)D in the
radial setting in a ball, such that all solutions are bounded if the initial mass M satisfies M < Mc,
while solutions blowing up in infinite time exist for almost all M > Mc.
We begin with the statement of the boundedness result for M being subcritical.

Theorem 1.2. Let M > 0 and consider (u0, v0, w0) ∈ IM , where

IM :=
{

(u, v, w) ∈ W 1
3,+(Ω)×W 1

3,+(Ω)×W 2
2,+(Ω) : ‖u+ v‖L1(Ω) = M

}

. (1.7)

By (u, v, w) we denote the solution to (1.1)–(1.2) given by Theorem 1.1.

(a) If M = ‖u0 + v0‖L1(Ω) ∈ (0, 4π(1 + θ)D), then

sup
t≥0

{

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω)

}

< ∞. (1.8)

(b) If Ω = BR(0) is the ball of radius R > 0 centered at x = 0, (u0, v0, w0) are radially symmetric,

and M = ‖u0 + v0‖L1(Ω) ∈ (0, 8π(1 + θ)D), then (1.8) is also satisfied.

The corresponding unboundedness result for M being supercritical is the following.

Theorem 1.3. Let M > 0.

(a) If M ∈ (4π(1+ θ)D,∞) \ (4π(1+ θ)DN), then there are solutions (u, v, w) to (1.1)-(1.2) with
initial conditions in IM with an unbounded first component; that is,

lim
t→∞

‖u(t)‖L∞(Ω) = ∞. (1.9)

(b) Assume that Ω = BR(0) for some R > 0. If M ∈ (8π(1 + θ)D,∞), then there are solutions

(u, v, w) to (1.1)-(1.2) with radially symmetric initial conditions in IM with an unbounded

first component, i.e., satisfying (1.9).



4 Ph. Laurençot & C. Stinner

While for Keller-Segel systems there are many results on critical mass phenomena distinguishing
between boundedness and finite-time blowup, to the best of our knowledge such phenomena separat-
ing boundedness from infinite-time blowup seem to be scarcer. Still, the latter phenomenon has been
established in [8] for a chemotaxis model with volume filling effect as well as in [16, 27] for models
related to (1.1), but with 0 instead of θv − u in the right hand side of (1.1a).
We prove the results presented above by mainly extending the strategy from [16] to (1.1)–(1.2),

which in turn has its roots in [11–13]. We start by constructing a Liapunov functional for (1.1)–(1.2)
in Section 2, see (2.2), which is of general interest far beyond the results of this work and actually the
building block of our analysis. In Section 3 we prove the global existence of solutions to (1.1)–(1.2)
in Theorem 1.1 by mainly relying on Amann’s theory for partially diffusive parabolic systems in
an appropriate functional setting, in conjunction with a series of a priori estimates, some of them
involving parts of the Liapunov functional. In Section 4 we prove that global solutions to (1.1)–(1.2)
are bounded, providedM = ‖u0+v0‖L1(Ω) is suitably small, see Theorem 1.2. Here we first prove with
the help of the Trudinger-Moser inequality that the Liapunov functional constructed in Section 2 is
bounded from below for subcritical M and use this property as a starting point for the derivation of
further estimates. Finally, in Section 5 we prove that, for M sufficiently large, unbounded solutions
exist, as stated in Theorem 1.3. Here we use the strategy pioneered in [12,13] and further developed
in [16,23]. On the one hand, we establish that any bounded solution approaches the set of stationary
solutions when t → ∞. On the other hand, we show that the Liapunov functional is bounded from
below on the set of steady states with fixed mass M > Mc, but not bounded from below on the set
of initial data with mass M . Hence, solutions emanating from initial data for which the Liapunov
functional takes sufficiently negative values cannot be global and bounded and therefore have to
blow up in infinite time. As compared to [16], the Liapunov functional constructed here features
additional terms involving v, so that some arguments, in particular the proof of blowup, are more
involved.

2. A Liapunov functional

One of the main contributions of this work is the construction of a Liapunov function for (1.1)–
(1.2). To this end, we define for θ > 0

L(r) := r ln r − r + 1, Lθ(r) :=
L(θr)

θ
= r ln(θr)− r +

1

θ
, r ≥ 0, (2.1)

and observe that both functions are nonnegative. We next set

L(u, v, w) :=
∫

Ω

(L(u) + Lθ(v)− (u+ v)w) dx

+
1 + θ

2

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

+
1

2
‖D∆w − αw + v‖2L2(Ω) ,

(2.2)

and establish that L is a Liapunov functional for (1.1). We emphasize that, in constrast to [16], the
Liapunov functional depends not only on u and w, but also on v through the term Lθ(v)− vw. This
is obviously related to the fact that the conserved quantity throughout time evolution is ‖u+ v‖L1(Ω)
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instead of ‖u‖L1(Ω). Thus, some arguments in the forthcoming sections are more involved as compared
to [16].

Lemma 2.1. Let M > 0. Consider (u0, v0, w0) ∈ IM and denote the corresponding solution to

(1.1)-(1.2) given by Theorem 1.1 by (u, v, w). Then

d

dt
L(u, v, w) +D(u, v, w) = 0, t > 0, (2.3)

where D is nonnegative and defined in (2.5) below.

Proof. It follows from (1.1a), (1.1b), and (1.1d) that

d

dt

∫

Ω

(u lnu− u− uw) dx =

∫

Ω

(ln u− w) [div(∇u− u∇w) + θv − u] dx

−
∫

Ω

(∂tv + θv)∂tw dx

= −
∫

Ω

u|∇(lnu− w)|2 dx+

∫

Ω

(θv − u) lnu dx

+

∫

Ω

w∂tv dx−
∫

Ω

(∂tv + θv)∂tw dx.

Now, by (1.1c),
∫

Ω

w∂tv dx =

∫

Ω

w
(

∂2
tw −D∆∂tw + α∂tw

)

dx

=

∫

Ω

(

∂t(w∂tw)− (∂tw)
2 +D∇w · ∇∂tw + αw∂tw

)

dx

=
d

dt

∫

Ω

(

w∂tw +
D

2
|∇w|2 + α

2
|w|2

)

dx− ‖∂tw‖2L2(Ω)

=
d

dt

∫

Ω

w(D∆w − αw + v) dx+
d

dt

(

D

2
‖∇w‖2L2(Ω) +

α

2
‖w‖2L2(Ω)

)

− ‖∂tw‖2L2(Ω)

=
d

dt

(
∫

Ω

vw dx−D‖∇w‖2L2(Ω) − α‖w‖2L2(Ω) +
D

2
‖∇w‖2L2(Ω) +

α

2
‖w‖2L2(Ω)

)

− ‖∂tw‖2L2(Ω)

= − d

dt

(

D

2
‖∇w‖2L2(Ω) +

α

2
‖w‖2L2(Ω) −

∫

Ω

vw dx

)

− ‖∂tw‖2L2(Ω).

Using again (1.1c),

−
∫

Ω

∂tv∂tw dx = −
∫

Ω

∂tw
(

∂2
tw −D∆∂tw + α∂tw

)

dx

= −1

2

d

dt
‖∂tw‖2L2(Ω) −D‖∇∂tw‖2L2(Ω) − α‖∂tw‖2L2(Ω)
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and

−θ

∫

Ω

v∂tw dx = −θ

∫

Ω

∂tw (∂tw −D∆w + αw) dx

= −θ‖∂tw‖2L2(Ω) −
θ

2

d

dt

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

.

Gathering the above four identities imply

d

dt

∫

Ω

(u lnu− u− (u+ v)w) dx+
1 + θ

2

d

dt

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

+
1

2

d

dt
‖∂tw‖2L2(Ω)

= −
∫

Ω

u|∇(lnu− w)|2 dx+

∫

Ω

(θv − u) lnu dx

−D‖∇∂tw‖2L2(Ω) − (1 + θ + α)‖∂tw‖2L2(Ω).

Finally, since

d

dt

∫

Ω

(v ln (θv)− v) dx =

∫

Ω

ln (θv)∂tv dx

=

∫

Ω

ln (θv)(u− θv) dx

by (1.1b), we end up with
d

dt
L(u, v, w) +D(u, v, w) = 0 , (2.4)

where

D(u, v, w) :=

∫

Ω

u|∇(lnu− w)|2 dx+

∫

Ω

(θv − u)(ln (θv)− lnu) dx

+D‖∇(D∆w − αw + v)‖2L2(Ω) + (1 + θ + α)‖D∆w − αw + v‖2L2(Ω) .

(2.5)

Observe that the monotonicity of the logarithm function ensures the nonnegativity of D. �

A useful consequence of the availability of a Liapunov functional is the stabilization of global
solutions which are bounded in a suitable functional space; that is, the cluster points of such solutions
as t → ∞ in an appropriate topology are necessarily stationary solutions. In that direction, we report
the following result, which is similar to [10, Theorem 5.2], [12, Lemma 1], and [16, Proposition 3.8].

Proposition 2.2. Let M > 0. Consider (u0, v0, w0) ∈ IM and denote the corresponding solution to

(1.1)-(1.2) given by Theorem 1.1 by (u, v, w). Assume also that

sup
t≥0

‖u(t)‖L∞(Ω) < ∞. (2.6)

Then there are a sequence (tj)j≥1 of positive times, tj → ∞, and nonnegative functions (u∗, v∗, w∗) ∈
L∞(Ω;R2)×W 2

2,B(Ω) such that

lim
j→∞

[

‖u(tj)− u∗‖L2(Ω) + ‖v(tj)− v∗‖L2(Ω) + ‖w(tj)− w∗‖W 1
2 (Ω)

]

= 0 (2.7a)
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and

L(u∗, v∗, w∗) ≤ lim inf
j→∞

L(u(tj), v(tj), w(tj)), (2.7b)

where

u∗ =
θM

θ + 1

ew∗

‖ew∗‖L1(Ω)

, v∗ =
M

θ + 1

ew∗

‖ew∗‖L1(Ω)

,

and w∗ is a solution to the nonlocal elliptic problem

−D∆w∗ + αw∗ =
M

θ + 1

ew∗

‖ew∗‖L1(Ω)

in Ω, ∇w∗ · n = 0 on ∂Ω.

Proof. The proof is similar to that of [16, Proposition 3.8], after observing that (1.1b), (2.6), and the
positivity of θ imply that

sup
t≥0

‖v(t)‖L∞(Ω) < ∞, (2.8)

while (1.1c), (1.1d), (1.6), and the positivity of α ensure that

sup
t≥0

‖w(t)‖L1(Ω) < ∞, (2.9)

Thanks to (2.6), (2.8), and (2.9), we may argue as in [16, Proposition 3.8] to derive first a lower
bound on L(u, v, w) and then the claimed stabilization. �

3. Global existence

This section is devoted to the proof of Theorem 1.1 and includes three steps: we first establish
the local well-posedness of (1.1)–(1.2) in a suitable functional setting and study the regularity of the
solution for positive times. We next derive a series of estimates which excludes the occurrence of
finite time blowup.

3.1. Local well-posedness. We start with the local well-posedness of (1.1)–(1.2).

Proposition 3.1. Let (u0, v0, w0) ∈ W 1
3 (Ω;R

3) be nonnegative. Then the system (1.1)–(1.2) has a

unique nonnegative weak solution (u, v, w) in W 1
3 defined on a maximal time interval [0, Tm), with

Tm ∈ (0,∞], satisfying

(u, w) ∈ C
(

[0, Tm);W
1
3 (Ω;R

2)
)

∩ C1
(

[0, Tm);W
1
3/2(Ω;R

2)′
)

,

v ∈ C1([0, Tm);W
1
3 (Ω)),

and

‖(u+ v)(t)‖L1(Ω) = M = ‖u0 + v0‖L1(Ω), t ∈ [0, Tm). (3.1)

Furthermore, if there is T > 0 such that

(u, v, w) ∈ BUC
(

[0, T ] ∩ [0, Tm);W
1
3 (Ω;R

3)
)

, (3.2)

then necessarily Tm ≥ T .
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Proof. Throughout the proof, C denotes a positive constant that may vary from line to line and
depends only on Ω, θ, D, α, ‖u0‖W 1

3 (Ω), ‖v0‖W 1
3 (Ω), and ‖w0‖W 1

3 (Ω). The existence and uniqueness

of a weak solution (u, v, w) to (1.1)–(1.2) having the claimed properties, except for nonnegativity
and (3.1), are proved in a completely similar way as [16, Proposition 2.1]. The proof relies on the
framework developed in [2,3] to handle systems coupling parabolic equations and ordinary differential
equations. Specifically, we set U = (u1, u2, u3) := (u, w, v), U1 := (u, w), U2 := v, and define

A(V ) :=

(

1 −v1
0 D

)

, S1(V ) :=

(

θv3 − v1
v3 − αv2

)

, S2(V ) := (v1 − θv3)

for V = (v1, v2, v3). Introducing the operators

A1(V )U1 := −
2
∑

j=1

∂j
(

A(V )∂jU
1
)

, B1(V )U1 :=

2
∑

j=1

A(V )n · ∇U1,

A2(V )U2 := 0 , B2(V )U2 := 0,

the system (1.1)–(1.2) can be recast as

∂tU
1 +A1(U)U1 +A2(U)U2 = S1(U) in (0,∞)× Ω,

∂tU
2 = S2(U) in (0,∞)× Ω,

B1(U)U1 + B2(U)U2 = 0 on (0,∞)× ∂Ω,

U(0) = (u0, w0, v0) in Ω,

and its well-posedness, as stated in Proposition 3.1, follows from [2, Theorem 6.4]. Indeed, this
result can be applied here since (A1,B1) is normally elliptic by [2, Remarks 4.1 (a)-(iii)] and [2,
Condition (6.1)] is satisfied. Denoting the solution to the above system provided by [2, Theorem 6.4]
by U = (U1, U2), we set (u, w) := U1 and v := U2 and thereby obtain Proposition 3.1, but yet
without the nonnegativity of (u, v, w) and the mass conservation (3.1).

To prove the former, we first notice that, since W
11/6
3 (Ω) embeds continuously in W 1

∞(Ω) by [21,
Chapter 7, Theorem 1.2] and

(

L3(Ω),W
2
3,B(Ω)

)

11/12,3

.
= W

11/6
3,B (Ω),

(

L3(Ω),W
2
3,B(Ω)

)

11/24,3

.
= W

11/12
3,B (Ω),

by [3, Eq. (5.3) and Theorem 5.2], we infer from (1.1c) and regularizing properties of the semigroup in
L3(Ω) associated with the unbounded operator −D∆+αid with domainW 2

3,B(Ω) that, for t ∈ [0, Tm),

‖w(t)‖W 1
∞(Ω) ≤ C‖w(t)‖

W
11/6
3 (Ω)

≤ Ce−αt/2(Dt)−11/24‖w0‖W 11/12
3 (Ω)

+ C

∫ t

0

e−α(t−s)/2(D(t− s))−11/24‖v(s)‖
W

11/12
3 (Ω)

ds
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≤ Ct−11/24 + C

(

sup
s∈[0,t]

{

‖v(s)‖W 1
3 (Ω)

}

)

t13/24,

where we have used the continuous embedding of W 1
3 (Ω) in W

11/12
3 (Ω) to obtain the last inequality.

Since v ∈ C([0, Tm);W
1
3 (Ω), the above inequality implies that, for T ∈ (0, Tm),

∫ T

0

‖w(t)‖2W 1
∞(Ω) dt ≤ CT 1/12 + C

(

sup
s∈[0,t]

{

‖v(s)‖W 1
3 (Ω)

}

)2

T 25/12;

that is,

w ∈ L2((0, T );W
1
∞(Ω)) , T ∈ (0, Tm) . (3.3)

Let us now recall that the positive part r+ of a real number is given by r+ := max{r, 0} and set
N(r) := (−r)+ for r ∈ R. Then,

N ′(r)2 = −N ′(r) , rN ′(r) = N(r) , (NN ′)(r) = −N(r) , rN(r) = −N(r)2 . (3.4)

On the one hand, it follows from (1.1a), (3.4), and Young’s inequality that

1

2

d

dt
‖N(u)‖2L2(Ω) =

∫

Ω

N ′(u)|∇u|2 dx−
∫

Ω

uN ′(u)∇u · ∇w dx

− θ

∫

Ω

N(u)(v+ −N(v)) dx− ‖N(u)‖2L2(Ω)

≤ −‖∇N(u)‖2L2(Ω) +

∫

Ω

uN ′(u)2∇u · ∇w dx

+ θ

∫

Ω

N(u)N(v) dx− ‖N(u)‖2L2(Ω)

≤ −‖∇N(u)‖2L2(Ω) +

∫

Ω

N(u)∇N(u) · ∇w dx

+ θ

∫

Ω

N(u)N(v) dx− ‖N(u)‖2L2(Ω)

≤ −1

2
‖∇N(u)‖2L2(Ω) +

1

2
‖N(u)‖2L2(Ω)‖∇w‖2L∞(Ω)

+ θ

∫

Ω

N(u)N(v) dx− ‖N(u)‖2L2(Ω) .

On the other hand, we infer from (1.1b) and (3.4) that

θ

2

d

dt
‖N(v)‖2L2(Ω) = −θ

∫

Ω

N(v)(u+ −N(u)− θv) dx

≤ θ

∫

Ω

N(v)N(u) dx− θ2‖N(v)‖2L2(Ω
.
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Summing up the previous two differential inequalities leads us to

d

dt

(

‖N(u)‖2L2(Ω) + θ‖N(v)‖2L2(Ω)

)

≤ ‖N(u)‖2L2(Ω)‖w‖2W 1
∞(Ω) − 2‖N(u)− θN(v)‖2L2(Ω)

≤ ‖w‖2W 1
∞(Ω)

(

‖N(u)‖2L2(Ω) + θ‖N(v)‖2L2(Ω)

)

.

Hence, by (3.3) and the nonnegativity of u0 and v0,

‖N(u(t))‖2L2(Ω) + θ‖N(v(t))‖2L2(Ω)

≤
(

‖N(u0)‖2L2(Ω) + θ‖N(v0)‖2L2(Ω)

)

exp

{
∫ t

0

‖w(s)‖2W 1
∞(Ω) ds

}

= 0

for t ∈ [0, Tm), from which the nonnegativity of u and v in [0, Tm) follows. That w is also nonnegative
in [0, Tm) is next a straightforward consequence of that of v and the comparison principle applied to
(1.1c).
We finally integrate (1.1a) and (1.1b) over Ω and deduce from the no-flux boundary conditions

(1.1d) that
d

dt

∫

Ω

(u+ v) dx =

∫

Ω

div(∇u− u∇w) dx = 0 , t ∈ [0, Tm),

from which (3.1) follows by the nonnegativity of u and v. �

3.2. Smoothness for positive times. Owing to the regularizing properties of the Laplace operator
and the associated semigroup in L3(Ω), the solution to (1.1)–(1.2) constructed in Proposition 3.1 is
more regular for positive times, as reported in the next result.

Corollary 3.2. Let the assumptions from Proposition 3.1 be fulfilled and denote the weak solution

to (1.1)–(1.2) constructed in Proposition 3.1 by (u, v, w). Then

u ∈ C
(

(0, Tm);W
2
3,B(Ω)

)

∩ C1 ((0, Tm);L3(Ω)) , (3.5)

w ∈ C
(

(0, Tm);W
2
3,B(Ω)

)

∩ C1 ((0, Tm);L3(Ω)) . (3.6)

Proof. We adapt and refine the proof of [16, Corollary 2.2]. Let β ∈ (0, 1). Since v ∈ C1([0, Tm);W
1
3 (Ω))

and −D∆+α id generates an analytic semigroup in L3(Ω), we infer from (1.1c) and [3, Theorem 10.1]
(with ρ = β, E0 = L3(Ω), and E1 = W 2

3,B(Ω)) that

w ∈ Cβ((0, Tm);W
2
3,B(Ω)) ∩ C1+β((0, Tm);L3(Ω)). (3.7)

Next, fix γ ∈ (5/6, 1). On the one hand, by (1.3) and Proposition 3.1,

u ∈ C([0, Tm);W
1
3,B(Ω)) ∩ C1([0, Tm);W

−1
3,B(Ω)), (3.8)

while [3, Theorem 7.2] guarantees that
(

W−1
3,B(Ω),W

1
3,B(Ω)

)

γ,3

.
= W 2γ−1

3,B (Ω)

(up to equivalent norms). Then, for 0 ≤ s ≤ t < Tm,

‖u(t)− u(s)‖W 2γ−1
3,B (Ω) ≤ ‖u(t)− u(s)‖1−γ

W−1
3,B(Ω)

‖u(t)− u(s)‖γ
W 1

3,B(Ω)
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≤ 2γ(t− s)1−γ sup
[s,t]

‖∂tu‖1−γ

W−1
3,B(Ω)

sup
[s,t]

‖u‖γ
W 1

3,B(Ω)
,

and we deduce from (3.8) that
u ∈ C1−γ([0, Tm);W

2γ−1
3,B (Ω)). (3.9)

On the other hand, using (3.7) with β = 1 − γ along with the continuous embedding of W 2
3,B(Ω) in

W 2γ
3,B(Ω), we obtain that

w ∈ C1−γ((0, Tm);W
2γ
3,B(Ω)). (3.10)

Owing to the choice of γ which ensures that 2γ − 1 > 2/3, the space W 2γ−1
3,B (Ω) is an algebra and we

deduce from (3.9) and (3.10) that u∇w ∈ C1−γ((0, Tm);W
2γ−1
3,B (Ω;R2)). Thus,

div(u∇w) ∈ C1−γ((0, Tm);W
2γ−2
3,B (Ω)) . (3.11)

Now, let ε ∈ (0, Tm). Thanks to [3, Theorem 8.5], the realization in W 2γ−2
3,B (Ω) of the Laplace operator

with homogeneous Neumann boundary conditions generates an analytic semigroup in W 2γ−2
3,B (Ω), its

domain being W 2γ
3,B(Ω), and it follows from (1.1a), (3.11), and [3, Theorem 10.1] (with ρ = 1 − γ,

E0 = W 2γ−2
3,B (Ω), and E1 = W 2γ

3,B(Ω)) that

u ∈ C1−γ((ε/2, Tm);W
2γ
3,B(Ω)) ∩ C2−γ((ε/2, Tm);W

2γ−2
3,B (Ω)) . (3.12)

Finally, fix η ∈ (5/3 − γ, 1) and notice that [3, Theorem 7.2] guarantees that, up to equivalent
norms,

(

W 2γ−2
3,B (Ω),W 2γ

3,B(Ω)
)

η,3

.
= W

2(η+γ)−2
3,B (Ω).

Therefore, for ε/2 < s ≤ t < Tm,

‖u(t)− u(s)‖
W

2(η+γ)−2
3,B (Ω)

≤ ‖u(t)− u(s)‖1−η

W 2γ−2
3,B (Ω)

‖u(t)− u(s)‖η
W 2γ

3,B(Ω)

≤ (t− s)1−η sup
[s,t]

‖∂tu‖1−η

W 2γ−2
3,B (Ω)

(t− s)η(1−γ)‖u‖η
C1−γ([s,t];W 1

3,B(Ω))
,

and we infer from (3.12), that

u ∈ C1−γη((ε/2, Tm);W
2(η+γ)−2
3,B (Ω)).

Hence, since 2(η + γ)− 2 > 4/3 > 1,

u ∈ C1−γη((ε/2, Tm);W
1
3,B(Ω)) . (3.13)

Combining (3.7) (with β = 1 − γη) and (3.13) and recalling that W 1
3,B(Ω) is an algebra entail that

u∇w belongs to C1−γη((ε/2, Tm);W
1
3,B(Ω;R

2)) and thus

div(u∇w) ∈ C1−γη((ε/2, Tm);L3(Ω)). (3.14)

In view of (1.1a) and (3.14), another application of [3, Theorem 10.1] (with ρ = 1− γη, E0 = L3(Ω),
E1 = W 2

3,B(Ω)) gives

u ∈ C1−γη((ε, Tm);W
2
3,B(Ω)) ∩ C2−γη((ε, Tm);L3(Ω)).
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Since ε ∈ (0, Tm) is arbitrary, the proof of Corollary 3.2 is complete. �

3.3. Estimates and global existence. We now prove the global existence for (1.1)–(1.2) and aim
at showing that the solution (u, v, w) from Proposition 3.1 satisfies (3.2) for all T > 0. To this end, we
take advantage of the outcome of Corollary 3.2 which guarantees higher regularity for (u(t), v(t), w(t))
for t ∈ (0, Tm) and derive estimates on [t0, Tm) for some fixed but arbitrary t0 ∈ (0, Tm).
Let us thus fix t0 ∈ (0, Tm) and recall that Corollary 3.2 ensures that

(u(t0), w(t0)) ∈ W 2
3,B(Ω;R

2), v(t0) ∈ W 1
3 (Ω), and ∂tw(t0) ∈ L3(Ω). (3.15)

For further use, we also fix
γ ∈ (5/6, 1), (3.16)

see Corollary 3.9 and Lemma 3.10. For the remainder of this section, C and (Ci)i≥1 denote positive
constants depending only on Ω, θ, D, α, γ, t0, ‖u(t0)‖W 2

3 (Ω), ‖v(t0)‖W 1
3 (Ω), and ‖w0‖W 2

3 (Ω). Dependence

upon additional parameters is indicated explicitly. We first remark that the mass conservation (3.1),
in conjunction with the nonnegativity of u and v, implies

‖u(t)‖L1(Ω) ≤ M and ‖v(t)‖L1(Ω) ≤ M, t ∈ [t0, Tm). (3.17)

We next derive a series of estimates.

Lemma 3.3. Let T > t0. There is C1(T ) > 0 such that, for t ∈ [t0, T ] ∩ [t0, Tm),

‖L(u(t))‖L1(Ω) + ‖v(t)‖L2(Ω) + ‖w(t)‖W 1
2 (Ω) + ‖∂tw(t)‖L2(Ω) ≤ C1(T ),

∫ t

t0

(

‖∇
√
u(s)‖2L2(Ω) + ‖∂tw(s)‖2W 1

2 (Ω)

)

ds ≤ C1(T ),

where L is defined in (2.1).

Proof. Using (1.1a), (1.1b), (1.1d) along with integration by parts, we obtain

d

dt

(

‖L(u)‖L1(Ω) + ‖Lθ(v)‖L1(Ω)

)

= −
∫

Ω

|∇u|2
u

dx+

∫

Ω

∇u · ∇w dx+

∫

Ω

(ln u− ln(θv))(θv − u) dx

= −4‖∇
√
u‖2L2(Ω) −

∫

Ω

u∆w dx−
∫

Ω

(ln(θv)− ln u)(θv − u) dx

≤ −4‖∇
√
u‖2L2(Ω) −

∫

Ω

u∆w dx , (3.18)

in view of the monotonicity of the logarithm. Due to (1.1b)–(1.1d), we further have
∫

Ω

u∂tw dx =

∫

Ω

(∂tv∂tw + θv∂tw) dx

=

∫

Ω

∂tw
(

∂2
tw −D∆∂tw + α∂tw

)

dx+ θ

∫

Ω

∂tw (∂tw −D∆w + αw) dx
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=
1

2

d

dt

(

‖∂tw‖2L2(Ω) + θD‖∇w‖2L2(Ω) + θα‖w‖2L2(Ω)

)

+D‖∇∂tw‖2L2(Ω) + (α + θ)‖∂tw‖2L2(Ω). (3.19)

Introducing

Y := D
(

‖L(u)‖L1(Ω) + ‖Lθ(v)‖L1(Ω)

)

+
1

2

(

‖∂tw‖2L2(Ω) + θD‖∇w‖2L2(Ω) + θα‖w‖2L2(Ω)

)

,

we combine (3.18) and (3.19) and deduce from (1.1c) that

dY

dt
+ 4D‖∇

√
u‖2L2(Ω) +D‖∇∂tw‖2L2(Ω) + (α + θ)‖∂tw‖2L2(Ω)

≤
∫

Ω

u (∂tw −D∆w) dx =

∫

Ω

u(v − αw) dx .

Also, by (1.1b),
1

2

d

dt
‖v‖2L2(Ω) =

∫

Ω

uv dx− θ‖v‖2L2(Ω) ≤
∫

Ω

uv dx .

Summing the previous two inequalities and using the nonnegativity of u and w, we find

d

dt

(

Y +
1

2
‖v‖2L2(Ω)

)

+ 4D‖∇
√
u‖2L2(Ω) +D‖∇∂tw‖2L2(Ω) + (α + θ)‖∂tw‖2L2(Ω)

≤ 2

∫

Ω

uv dx . (3.20)

Since Ω ⊂ R
2, we infer from (3.17) and Hölder’s, Gagliardo-Nirenberg’s and Young’s inequalities

that

2

∫

Ω

uv dx ≤ 2‖u‖L2(Ω)‖v‖L2(Ω) = 2‖v‖L2(Ω)‖
√
u‖2L4(Ω)

≤ C‖v‖L2(Ω)

(

‖∇
√
u‖L2(Ω)‖

√
u‖L2(Ω) + ‖

√
u‖2L2(Ω)

)

≤ C‖v‖L2(Ω)

(√
M‖∇

√
u‖L2(Ω) +M

)

≤ 2D‖∇
√
u‖2L2(Ω) + C

(

1 + ‖v‖2L2(Ω)

)

. (3.21)

Combining (3.20) and (3.21) and rearranging the terms, we conclude that

d

dt

(

Y +
1

2
‖v‖2L2(Ω)

)

+ 2D‖∇
√
u‖2L2(Ω) +D‖∇∂tw‖2L2(Ω) + (α + θ)‖∂tw‖2L2(Ω)

≤ C
(

1 + ‖v‖2L2(Ω)

)

.

Applying first Gronwall’s inequality and then the time integrated version of the previous inequality,
we deduce the claim in view of the positivity of all the terms involved in the left hand side of the
above inequality and the finiteness of Y (t0) stemming from (3.15). �
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Corollary 3.4. Let T > t0. There is C2(T ) > 0 such that

‖w(t)‖W 2
2 (Ω) ≤ C2(T ) , t ∈ [t0, T ] ∩ [t0, Tm) .

Proof. Using (1.1c) along with Lemma 3.3, we obtain, for t ∈ [t0, T ] ∩ [t0, Tm),

D‖∆w(t)‖L2(Ω) ≤ ‖∂tw(t)‖L2(Ω) + α‖w(t)‖L2(Ω) + ‖v(t)‖L2(Ω) ≤ (2 + α)C1(T ).

Since w(t) ∈ W 2
3,B(Ω) for t ∈ [t0, T ] ∩ [t0, Tm) by Corollary 3.2, the claim follows from Calderon-

Zygmund’s estimate which guarantees that ‖z‖W 2
2 (Ω) ≤ C

(

‖∆z‖L2(Ω) + ‖z‖L2(Ω)

)

for all z ∈ W 2
2,B(Ω).

�

Lemma 3.5. Let T > t0 and r > 0. There is C3(T, r) > 0 such that

‖u(t)‖Lr+1(Ω) + ‖v(t)‖Lr+1(Ω) ≤ C3(T, r) , t ∈ [t0, T ] ∩ [t0, Tm) .

Proof. Let r > 0. Using (1.1) and integration by parts gives

d

dt

(

‖u‖r+1
Lr+1(Ω) + θr‖v‖r+1

Lr+1(Ω)

)

= −r(r + 1)

∫

Ω

ur−1|∇u|2 dx+ r(r + 1)

∫

Ω

ur∇u · ∇w dx

+ (r + 1)

∫

Ω

(u− θv) (θrvr − ur) dx

≤ − 4r

r + 1
‖∇(u(r+1)/2)‖2L2(Ω) − r

∫

Ω

ur+1∆w dx .

It now follows from Hölder’s and Gagliardo-Nirenberg’s inequalities that

r

∣

∣

∣

∣

∫

Ω

ur+1∆w dx

∣

∣

∣

∣

≤ r‖∆w‖L2(Ω)

∥

∥u(r+1)/2
∥

∥

2

L4(Ω)

≤ rC‖∆w‖L2(Ω)

(

∥

∥∇u(r+1)/2
∥

∥

L2(Ω)

∥

∥u(r+1)/2
∥

∥

L2(Ω)
+
∥

∥u(r+1)/2
∥

∥

2

L2(Ω)

)

≤ 2r

r + 1

∥

∥∇u(r+1)/2
∥

∥

2

L2(Ω)
+ Cr(r + 1)‖∆w‖2L2(Ω)

∥

∥u(r+1)/2
∥

∥

2

L2(Ω)

+ Cr‖∆w‖L2(Ω)

∥

∥u(r+1)/2
∥

∥

2

L2(Ω)

≤ 2r

r + 1

∥

∥∇u(r+1)/2
∥

∥

2

L2(Ω)
+ Cr(r + 1)

(

1 + ‖∆w‖2L2(Ω)

)

‖u‖r+1
Lr+1(Ω) .

Combining the above two inequalities with Corollary 3.4, we obtain

d

dt

(

‖u‖r+1
Lr+1(Ω) + θr‖v‖r+1

Lr+1(Ω)

)

≤ − 2r

r + 1

∥

∥∇u(r+1)/2
∥

∥

2

L2(Ω)

+ Cr(r + 1)
(

1 + C2(T )
2
)

‖u‖r+1
Lr+1(Ω).

Then Gronwall’s inequality implies the claim. �

Lemma 3.6. Let T > t0. There is C4(T ) > 0 such that

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖∂tv(t)‖L∞(Ω) ≤ C4(T ) , t ∈ [t0, T ] ∩ [t0, Tm) .
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Proof. Let T > t0 and I := [t0, T ] ∩ [t0, Tm). In view of (1.1a) and (1.1d), u satisfies

∂tu = div (D∇u) + div f + g, (t, x) ∈ (t0, Tm)× Ω,

along with no-flux boundary conditions, where D ≡ 1, f := −u∇w, and g := θv − u. According to
Lemma 3.5,

u ∈ L∞(I;L1(Ω)) and g ∈ L∞(I;L3(Ω)) ,

while Corollary 3.4, Lemma 3.5, and the continuous embedding ofW 2
2 (Ω) inW 1

r (Ω) for any r ∈ [1,∞)
ensure that f ∈ L∞(I;L5(Ω;R

2)). We then infer from [26, Lemma A.1] that

‖u(t)‖L∞(Ω) ≤ C(T ) , t ∈ [t0, T ] ∩ [t0, Tm) .

Combining this estimate with (1.1b), (3.15), the nonnegativity of v, and the continuous embedding
of W 1

3 (Ω) in L∞(Ω), we further obtain

0 ≤ v(t, x) = e−θ(t−t0)v(t0, x) +

∫ t

t0

u(s, x)e−θ(t−s) ds (3.22)

≤ e−θ(t−t0)‖v(t0)‖L∞(Ω) +

∫ t

t0

‖u(s)‖L∞(Ω)e
−θ(t−s) ds

≤ C‖v(t0)‖W 1
3 (Ω) +

C(T )

θ
≤ C(T )

for (t, x) ∈ [t0, T ] ∩ [t0, Tm). Finally, the last part of the claim immediately follows from (1.1b). �

Corollary 3.7. Let T > t0. There is C5(T ) > 0 such that

‖w(t)‖W 1
∞(Ω) ≤ C5(T ), t ∈ [t0, T ] ∩ [t0, Tm).

Proof. The proof is similar to that of [16, Corollary 2.7] and we recall it here for the sake of com-

pleteness. Owing to the continuous embedding of W
11/6
3 (Ω) in W 1

∞(Ω), see [21, Theorem 7.1.2],
and

(

L3(Ω),W
2
3,B(Ω)

)

11/12,3

.
= W

11/6
3,B (Ω),

see [3, Theorem 7.2], it follows from (1.1c), (3.15), Duhamel’s formula, the regularizing properties of
the heat semigroup, see [4, Theorem V.2.1.3], and Lemma 3.6 that, for t ∈ [t0, T ] ∩ [t0, Tm),

‖w(t)‖W 1
∞(Ω) ≤ C‖w(t)‖

W
11/6
3 (Ω)

≤ Ce−α(t−t0)/2‖w(t0)‖W 11/6
3 (Ω)

+ C

∫ t

t0

e−α(t−s)/2(t− s)−11/12‖v(s)‖L3(Ω) ds

≤ C‖w(t0)‖W 2
3 (Ω) + CC4(T )

∫ t

t0

(t− s)−11/12 ds ≤ C(T ),

and the proof is complete. �
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Lemma 3.8. Let T > t0. There is C6(T ) > 0 such that

‖∇u(t)‖L2(Ω) +

∫ t

t0

‖∂tu(s)‖2L2(Ω) ds ≤ C6(T ) , t ∈ [t0, T ] ∩ [t0, Tm) .

Proof. Multiplying (1.1a) by ∂tu and integrating over Ω, we conclude from Hölder’s and Young’s
inequalities that

‖∂tu‖2L2(Ω) +
1

2

d

dt
‖u‖2W 1

2 (Ω) = −
∫

Ω

∂tu(u∆w +∇u · ∇w) dx+ θ

∫

Ω

v∂tu dx

≤ ‖∂tu‖L2(Ω)‖u‖L∞(Ω)‖∆w‖L2(Ω) + ‖∂tu‖L2(Ω)‖∇u‖L2(Ω)‖∇w‖L∞(Ω)

+ θ‖∂tu‖L2(Ω)‖v‖L2(Ω)

≤ 1

2
‖∂tu‖2L2(Ω) +

3

2

(

‖u‖2L∞(Ω)‖∆w‖2L2(Ω) + ‖∇u‖2L2(Ω)‖∇w‖2L∞(Ω) + θ2‖v‖2L2(Ω)

)

.

Lemmas 3.3 and 3.6 and Corollaries 3.4 and 3.7 next imply that

‖∂tu‖2L2(Ω) +
d

dt
‖u‖2W 1

2 (Ω) ≤ C(T )
(

1 + ‖∇u‖2L2(Ω)

)

,

so that Gronwall’s inequality yields the claim. �

Corollary 3.9. Let T > t0. There is C7(T ) > 0 such that

‖u(t)‖W 1
3 (Ω) + ‖u(t)‖W 2γ

2 (Ω) + ‖v(t)‖W 1
3 (Ω) ≤ C7(T ), t ∈ [t0, T ] ∩ [t0, Tm),

the parameter γ ∈ (5/6, 1) being defined in (3.16).

Proof. Using (1.1a) along with properties of the heat semigroup (see, e.g., [1, Proposition 12.5]
and [4, Theorem V.2.1.3]) and Hölder’s inequality, we deduce from (3.15), Corollaries 3.4 and 3.7 as
well as Lemmas 3.5, 3.6 and 3.8 that, for t ∈ [t0, T ] ∩ [t0, Tm),

‖∇u(t)‖L3(Ω) ≤ C‖∇u(t0)‖L3(Ω) + C

∫ t

t0

(t− s)−2/3‖(u∆w +∇u · ∇w − θv + u)(s)‖L2(Ω) ds

≤ C + C

∫ t

t0

(t− s)−2/3
(

‖u(s)‖L∞(Ω)‖∆w(s)‖L2(Ω) + ‖u(s)‖L2(Ω)

)

ds

+ C

∫ t

t0

(t− s)−2/3
(

‖∇u(s)‖L2(Ω)‖∇w(s)‖L∞(Ω) + θ‖v(s)‖L2(Ω)

)

ds

≤ C + C(T )

∫ t

t0

(t− s)−2/3 ds ≤ C(T ).

Combining this estimate with (3.15) and (3.22) , we obtain

‖∇v(t)‖L3(Ω) ≤ e−θ(t−t0)‖∇v(t0)‖L3(Ω) +

∫ t

t0

‖∇u(s)‖L3(Ω)e
−θ(t−s) ds ≤ C(T ).

Together with Lemma 3.5, the above two estimates entail the stated W 1
3 -bounds on u and v.
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We next invoke (1.1a) along with properties of the heat semigroup (see [4, Theorem V.2.1.3]) and
Hölder’s inequality to deduce from Corollaries 3.4 and 3.7 and Lemmas 3.5, 3.6 and 3.8 that, for all
t ∈ [t0, T ] ∩ [t0, Tm),

‖u(t)‖W 2γ
2 (Ω) ≤ C‖u(t0)‖W 2γ

2 (Ω) + C

∫ t

t0

(t− s)−γ‖(u∆w +∇u · ∇w − θv + u)(s)‖L2(Ω) ds

≤ C + C

∫ t

t0

(t− s)−γ‖u(s)‖L∞(Ω)‖∆w(s)‖L2(Ω) ds

+

∫ t

t0

(t− s)−γ‖∇u(s)‖L2(Ω)‖∇w(s)‖L∞(Ω) ds

+

∫ t

t0

(t− s)−γ
(

θ‖v(s)‖L2(Ω) + ‖u(s)‖L2(Ω)

)

ds

≤ C + C(T )

∫ t

t0

(t− s)−γ ds ≤ C(T ),

and the proof is complete. �

In view of Corollaries 3.7 and 3.9 there is C8(T ) > 0 such that

‖u(t)‖W 1
3 (Ω) + ‖v(t)‖W 1

3 (Ω) + ‖w(t)‖W 1
3 (Ω) ≤ C8(T ) , t ∈ [t0, T ] ∩ [t0, Tm) . (3.23)

Hence, according to (3.2), we shall prove Hölder estimates with respect to time in order to conclude
the global existence of (u, v, w).

Lemma 3.10. Let T > t0 and δ := (3γ − 2)/6γ, recalling that γ ∈ (5/6, 1) is defined in (3.16).
There is C9(T ) > 0 such that

‖u(t2)− u(t1)‖W 1
3 (Ω) + ‖v(t2)− v(t1)‖W 1

3 (Ω) + ‖w(t2)− w(t1)‖W 1
3 (Ω) ≤ C9(T )|t2 − t1|δ

for t1, t2 ∈ [t0, T ] ∩ [t0, Tm).

Proof. The proof is similar to [16, Lemma 2.10], but is recalled here for the sake of completeness.
Let T > 0 and t1, t2 ∈ [t0, T ] ∩ [t0, Tm) such that t2 > t1.
First, by (1.1b) and (3.23) we have

‖∂tv(t)‖W 1
3 (Ω) ≤ ‖u(t)‖W 1

3 (Ω) + θ‖v(t)‖W 1
3 (Ω) ≤ (1 + θ)C8(T ), t ∈ [t0, T ] ∩ [t0, Tm).

Hence,

‖v(t2)− v(t1)‖W 1
3 (Ω) ≤

∫ t2

t1

‖∂tv(s)‖W 1
3 (Ω) ds ≤ C(T )(t2 − t1) . (3.24)

Furthermore, in view of Hölder’s inequality, we obtain from Lemma 3.3 and Corollary 3.7

‖w(t2)− w(t1)‖W 1
3 (Ω) ≤ C‖w(t2)− w(t1)‖1/3W 1

∞(Ω)‖w(t2)− w(t1)‖2/3W 1
2 (Ω)

≤ C
(

‖w(t1)‖W 1
∞(Ω) + ‖w(t2)‖W 1

∞(Ω)

)1/3
(
∫ t2

t1

‖∂tw(s)‖W 1
2 (Ω) ds

)2/3
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≤ C(2C5(T ))
1/3

(
∫ t2

t1

‖∂tw(s)‖2W 1
2 (Ω) ds

)1/3

(t2 − t1)
1/3

≤ C(T )(C1(T ))
1/3(t2 − t1)

1/3. (3.25)

Since W
4/3
2 (Ω) is continuously embedded in W 1

3 (Ω), interpolation inequalities (see [3, Theorem 7.2]),
Hölder’s inequality, Lemma 3.8, and Corollary 3.9 yield

‖u(t2)− u(t1)‖W 1
3 (Ω) ≤ C‖u(t2)− u(t1)‖W 4/3

2 (Ω)

≤ C‖u(t2)− u(t1)‖2/3γW 2γ
2 (Ω)

‖u(t2)− u(t1)‖2δL2(Ω)

≤ C
(

‖u(t1)‖W 2γ
2 (Ω) + ‖u(t2)‖W 2γ

2 (Ω)

)2/3γ
(
∫ t2

t1

‖∂tu(s)‖L2(Ω) ds

)2δ

≤ C(2C7(T ))
2/3γ

(
∫ t2

t1

‖∂tu(s)‖2L2(Ω) ds

)δ

(t2 − t1)
δ

≤ C(T ) (C6(T ))
δ (t2 − t1)

δ . (3.26)

Combining (3.24), (3.25), and (3.26) completes the proof, since 0 < δ < 1/3. �

Proof of Theorem 1.1. Proposition 3.1 and Corollary 3.2 imply the claim as soon as we know that
Tm = ∞. Since (u, v, w) ∈ BUC([0, t0];W

1
3 (Ω;R

3)) by Proposition 3.1, (3.23) and Lemma 3.10
ensure that (3.2) is satisfied for any T > 0, and we indeed conclude that Tm = ∞. �

4. Bounded solutions for small values of M

Let M > 0. In this section, we assume that

(u0, v0, w0) ∈ IM , (4.1)

and denote the corresponding global solution to (1.1)–(1.2) by (u, v, w), see Theorem 1.1. Throughout
this section, b and (bi)i≥1 denote positive constants depending only on Ω, θ, D, α, u0, v0, and w0.
Dependence upon additional parameters is indicated explicitly.
In order to show the boundedness of the solution to (1.1)–(1.2), we first have a look at the evolution

of the L1-norms of (u, v, w).

Lemma 4.1. For all t ≥ 0,

‖(u+ v)(t)‖L1(Ω) = M = ‖u0 + v0‖L1(Ω), (4.2)

‖u(t)‖L1(Ω) ≤ M and ‖v(t)‖L1(Ω) ≤ M, (4.3)

‖w(t)‖L1(Ω) ≤ ‖w0‖L1(Ω) +
M

α
. (4.4)



Mass threshold in a chemotaxis model 19

Proof. The identity (4.2) is nothing but (1.6), and (4.3) is a consequence thereof in view of the
nonnegativity of u and v. Using the nonnegativity of v and w as well as (1.1c), (1.1d), and (4.3), we
obtain

d

dt
‖w‖L1(Ω) + α‖w‖L1(Ω) = ‖v‖L1(Ω) ≤ M .

Hence

‖w(t)‖L1(Ω) ≤ e−αt‖w0‖L1(Ω) +M

∫ t

0

e−α(t−s) ds ≤ ‖w0‖L1(Ω) +
M

α

for all t ≥ 0 as α > 0. �

Next, as in [6, 10, 19], we use the structure of the Liapunov functional L defined in (2.2) and
follow the strategy from [16] (see also [8]). We begin with a lower bound on L for M appropriately
small which relies on the Trudinger-Moser inequality and first note the following consequence thereof
(see [7, Proposition 2.3] and [19, Section 2]).

Proposition 4.2. There is K0 > 0 depending only on Ω such that

∫

Ω

e|z| dx ≤ K0 exp

(

‖∇z‖2L2(Ω)

8π
+

‖z‖L1(Ω)

|Ω|

)

for all z ∈ W 1
2 (Ω).

Lemma 4.3. Assume that (4.1) is satisfied. There is b1 > 0 such that, for all t ≥ 0,

L(u(t), v(t), w(t)) ≤ L(u0, v0, w0) < ∞, (4.5)

L(u(t), v(t), w(t)) ≥ 4π(1 + θ)D −M

8π
‖∇w(t)‖2L2(Ω) +

α(1 + θ)

2
‖w(t)‖2L2(Ω)

+
1

2
‖ (D∆w − αw + v) (t)‖2L2(Ω) − b1. (4.6)

Proof. We first observe that (4.1) guarantees that L(u0, v0, w0) ∈ R, while Theorem 1.1 ensures that
L(u(t), v(t), w(t)) ∈ R for all t > 0.
Next, using the convexity of s 7→ − ln(s) and Jensen’s inequality as well as the nonnegativity of u

and v, we obtain

0 = −‖u‖L1(Ω) ln

(
∫

Ω

u

‖u‖L1(Ω)

ew‖u‖L1(Ω)

u‖ew‖L1(Ω)

dx

)

≤ −‖u‖L1(Ω)

∫

Ω

u

‖u‖L1(Ω)

ln

(

ew‖u‖L1(Ω)

u‖ew‖L1(Ω)

)

dx

=

∫

Ω

(u lnu− uw) dx+ ‖u‖L1(Ω) ln
(

‖ew‖L1(Ω)

)

− ‖u‖L1(Ω) ln
(

‖u‖L1(Ω)

)

, (4.7)

as well as

0 = −‖v‖L1(Ω) ln

(
∫

Ω

v

‖v‖L1(Ω)

ew‖θv‖L1(Ω)

θv‖ew‖L1(Ω)

dx

)
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≤ −‖v‖L1(Ω)

∫

Ω

v

‖v‖L1(Ω)

ln

(

ew‖θv‖L1(Ω)

θv‖ew‖L1(Ω)

)

dx

=

∫

Ω

(v ln(θv)− vw) dx+ ‖v‖L1(Ω) ln
(

‖ew‖L1(Ω)

)

− ‖v‖L1(Ω) ln
(

‖θv‖L1(Ω)

)

. (4.8)

In view of the nonnegativity of (u, v, w), L, and Lθ, we infer from (2.2), (4.2), (4.7), (4.8), and
Proposition 4.2 that

L(u, v, w) =
∫

Ω

(u lnu− uw) dx+

∫

Ω

(v ln (θv)− vw) dx− ‖u‖L1(Ω) + |Ω| − ‖v‖L1(Ω) +
|Ω|
θ

+
1 + θ

2

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

+
1

2
‖D∆w − αw + v‖2L2(Ω)

≥ −M ln
(

‖ew‖L1(Ω)

)

+ L
(

‖u‖L1(Ω)

)

+ Lθ

(

‖v‖L1(Ω)

)

+ (|Ω| − 1)

(

1 +
1

θ

)

+
1 + θ

2

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

+
1

2
‖D∆w − αw + v‖2L2(Ω)

≥ 4π(1 + θ)D −M

8π
‖∇w‖2L2(Ω) +

α(1 + θ)

2
‖w‖2L2(Ω) +

1

2
‖D∆w − αw + v‖2L2(Ω)

−M lnK0 −
M

|Ω|‖w‖L1(Ω) + (|Ω| − 1)

(

1 +
1

θ

)

. (4.9)

Inserting (4.4), we obtain (4.6), while (4.5) immediately follows from (2.3) since D ≥ 0. �

Hence, for M ∈ (0, 4π(1 + θ)D), the Liapunov functional is bounded from below and we obtain
further refined estimates.

Lemma 4.4. Assume that (4.1) is satisfied with M ∈ (0, 4π(1 + θ)D). There is b2 > 0 such that,

for all t ≥ 0,

‖u(t) ln(u(t))‖L1(Ω) + ‖v(t) ln(v(t))‖L1(Ω) + ‖w(t)‖W 1
2 (Ω) + ‖∂tw(t)‖L2(Ω) ≤ b2,

∫ ∞

0

‖∂tw(s)‖2W 1
2 (Ω) ds ≤ b2.

Proof. Since (1.1c) and Lemma 4.3 imply that

min

{

4π(1 + θ)D −M

8π
,
α(1 + θ)

2
,
1

2

}

(

‖w(t)‖2W 1
2 (Ω) + ‖∂tw(t)‖2L2(Ω)

)

≤ b1 + L(u0, v0, w0)

and M ∈ (0, 4π(1 + θ)D), we get

‖w(t)‖W 1
2 (Ω) + ‖∂tw(t)‖L2(Ω) ≤ b, t ≥ 0. (4.10)

Next, (2.2), (4.2), (4.3), (4.5), and the Young inequality AB ≤ eA−1 +B lnB for A,B > 0 yield
∫

Ω

(u lnu+ v ln(θv)) dx
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≤ L(u, v, w) +
∫

Ω

(u+ v) dx+

∫

Ω

(u+ v)w dx

≤ L(u0, v0, w0) +M +

∫

Ω

(u

2
ln
(u

2

)

+
v

2
ln
(v

2

)

+ 2e2w−1
)

dx

≤ L(u0, v0, w0) +M +
1

2

∫

Ω

(u lnu+ v ln(θv)) dx+ 2

∫

Ω

e2w−1 dx− ln θ

2

∫

Ω

v dx

≤ L(u0, v0, w0) +
1

2

∫

Ω

(u lnu+ v ln(θv)) dx+ 2

∫

Ω

e2w dx+M(1 + | ln θ|) .

In view of Proposition 4.2 this implies

∫

Ω

(u lnu+ v ln(θv)) dx ≤ 4K0 exp

(

‖∇w‖2L2(Ω)

2π
+ 2

‖w‖L1(Ω)

|Ω|

)

+ b ,

so that, in view of z ln z ≥ −1/e for all z ≥ 0, we conclude from (4.3), (4.4), and (4.10) that

‖u lnu‖L1(Ω) + ‖v ln v‖L1(Ω)

≤
∫

Ω

(u lnu+ v ln v) dx+
4|Ω|
e

≤
∫

Ω

(u lnu+ v ln(θv)) dx− ln θ

∫

Ω

v dx+
4|Ω|
e

≤
∫

Ω

(u lnu+ v ln(θv)) dx+M | ln θ|+ 4|Ω|
e

≤ b , t ≥ 0 . (4.11)

Finally, we deduce from (1.1c), (2.5), and Lemmas 2.1 and 4.3 that

min{D, 1 + θ + α}
∫ t

0

‖∂tw(s)‖2W 1
2 (Ω) ds ≤

∫ t

0

D(u(s), v(s), w(s)) ds

≤ L(u0, v0, w0)− L(u(t), v(t), w(t))
≤ L(u0, v0, w0) + b1

which, in view of (4.10) and (4.11), completes the proof. �

Starting from the previous estimates, we derive further time-independent estimates for the solution
by using the ideas from [16] as well as the following inequality, which is [5, Equation (22)]:
Given η > 0, there is a positive constant κη depending only on η and Ω such that

‖z‖3L3(Ω) ≤ η‖z‖2W 1
2 (Ω)‖z ln |z|‖L1(Ω) + κη‖z‖L1(Ω) for all z ∈ W 1

2 (Ω). (4.12)

Lemma 4.5. Assume that (4.1) is satisfied with M ∈ (0, 4π(1 + θ)D). There is b3 > 0 such that,

for all t ≥ 0,

‖u(t)‖L2(Ω) + ‖v(t)‖L3(Ω) ≤ b3 .
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Proof. It follows from (1.1), (4.3), Hölder’s and Young’s inequalities, and the nonnegativity of u and
w

d

dt
‖u‖2L2(Ω) + 2‖∇u‖2L2(Ω) =

∫

Ω

(

−u2∆w + 2θuv − 2u2
)

dx

≤ 1

D

∫

Ω

u2 (v − αw − ∂tw) dx− 2

∥

∥

∥

∥

u− θv

2

∥

∥

∥

∥

2

L2(Ω)

+
θ2

2
‖v‖2L2(Ω)

≤ 1

D
‖v‖L3(Ω)‖u‖2L3(Ω) +

1

D
‖∂tw‖L2(Ω)‖u‖2L4(Ω) +

2θ

3
‖v‖3L3(Ω) +

θ4

3

≤ θ‖v‖3L3(Ω) +
2

3θ1/2D3/2
‖u‖3L3(Ω) +

1

D
‖∂tw‖L2(Ω)‖u‖2L4(Ω) + b .

Next, Gagliardo-Nirenberg’s inequality yields

d

dt
‖u‖2L2(Ω) + 2‖∇u‖2L2(Ω) ≤ θ‖v‖3L3(Ω) + b

(

1 + ‖u‖3L3(Ω)

)

+ b‖∂tw‖L2(Ω)

(

‖∇u‖L2(Ω)‖u‖L2(Ω) + ‖u‖2L2(Ω)

)

≤ θ‖v‖3L3(Ω) + b
(

1 + ‖u‖3L3(Ω)

)

+
1

2
‖∇u‖2L2(Ω)

+ b
(

‖∂tw‖L2(Ω) + ‖∂tw‖2L2(Ω)

)

‖u‖2L2(Ω) .

In view of Lemma 4.4, this implies

d

dt
‖u‖2L2(Ω) +

3

2
‖∇u‖2L2(Ω) ≤ θ‖v‖3L3(Ω) + b

(

1 + ‖u‖3L3(Ω) + b2(1 + b2)‖u‖2L2(Ω)

)

. (4.13)

Moreover, using (1.1b) along with Young’s inequality, we obtain

1

3

d

dt
‖v‖3L3(Ω) + θ‖v‖3L3(Ω) =

∫

Ω

uv2 dx ≤ 4

3θ2
‖u‖3L3(Ω) +

θ

3
‖v‖3L3(Ω) .

Hence,
d

dt
‖v‖3L3(Ω) + 2θ‖v‖3L3(Ω) ≤

4

θ2
‖u‖3L3(Ω) . (4.14)

Defining Y := ‖u‖2L2(Ω) + ‖v‖3L3(Ω), we deduce from (4.13), (4.14) along with (4.3), (4.12), and
Lemma 4.4 that, for η > 0,

dY

dt
+

3

2
‖∇u‖2L2(Ω) + θ‖v‖3L3(Ω) ≤ b

(

1 + ‖u‖3L3(Ω) + ‖u‖2L2(Ω)

)

≤ b
(

1 + ηb2‖u‖2W 1
2 (Ω) + κηM + ‖u‖2L2(Ω)

)

≤ ηb4‖∇u‖2L2(Ω) + b
(

1 + ‖u‖2L2(Ω) + κη

)

.

Choosing η := 1/2b4 > 0, we find

dY

dt
+ ‖∇u‖2L2(Ω) + θ‖v‖3L3(Ω) ≤ b

(

1 + ‖u‖2L2(Ω)

)

.



Mass threshold in a chemotaxis model 23

Owing to the Gagliardo-Nirenberg and Young inequalities along with (4.3),

‖u‖4L2(Ω) ≤ b
(

‖∇u‖2L2(Ω)M
2 +M4

)

,

‖u‖2L2(Ω) ≤ b5‖u‖4L2(Ω) +
1

b5
,

so that, using once more Young’s inequality,

dY

dt
+ ‖u‖2L2(Ω) + b5‖u‖4L2(Ω) + θ‖v‖3L3(Ω) ≤

dY

dt
+ 2b5‖u‖4L2(Ω) + θ‖v‖3L3(Ω) +

1

b5

≤ b
(

1 + ‖u‖2L2(Ω)

)

+
1

b5
≤ b5‖u‖4L2(Ω) + b .

Consequently,

dY

dt
+min{1, θ}Y ≤ b , t > 0 ,

from which Lemma 4.5 follows after integration with respect to time. �

Corollary 4.6. Assume that (4.1) is satisfied with M ∈ (0, 4π(1 + θ)D). There is b6 > 0 such that,

for all t ≥ 0,
‖∆w(t)‖L2(Ω) + ‖w(t)‖W 1

3 (Ω) ≤ b6.

Proof. First, by (1.1c), Lemma 4.4, and Lemma 4.5,

D‖∆w‖L2(Ω) = ‖∂tw + αw − v‖L2(Ω) ≤ ‖∂tw‖L2(Ω) + ‖αw‖L2(Ω) + ‖v‖L2(Ω)

≤ (1 + α)b2 + |Ω|1/6b3.
Next, let t > 0. We infer from (1.1c), Duhamel’s formula, the regularizing effect of the heat

semigroup, and Lemma 4.5 that

‖w(t)‖W 1
3 (Ω) ≤ be−αt/2‖w0‖W 1

3 (Ω) + b

∫ t

0

e−α(t−s)/2(t− s)−1/2‖v(s)‖L3(Ω) ds

≤ b

(

1 + b3

∫ ∞

0

e−αs/2s−1/2 ds

)

,

which completes the proof. �

The previous result allows us to obtain better Lp-estimates for u.

Lemma 4.7. Assume that (4.1) is satisfied with M ∈ (0, 4π(1 + θ)D). For any p ∈ [1,∞), there is

b7(p) > 0 such that, for all t ≥ 0,
‖u(t)‖Lp(Ω) ≤ b7(p) .

Proof. We fix p > 2. Using (1.1a), (1.1d), Hölder’s inequality, and Corollary 4.6, we have

1

p

d

dt
‖u‖pLp(Ω) = −(p− 1)

∫

Ω

up−2|∇u|2 dx+ (p− 1)

∫

Ω

up−1∇u · ∇w dx+

∫

Ω

up−1(θv − u) dx
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= −4(p− 1)

p2
‖∇(up/2)‖2L2(Ω) −

p− 1

p

∫

Ω

up∆w dx+

∫

Ω

up−1(θv − u) dx

≤ −4(p− 1)

p2
‖∇(up/2)‖2L2(Ω) +

p− 1

p
b6‖up/2‖2L4(Ω) +

∫

Ω

up−1(θv − u) dx. (4.15)

Also, it follows from (1.1b) and Young’s inequality that

1 + θp−1

p

d

dt
‖v‖pLp(Ω) = −

∫

Ω

(θv)p−1(θv − u) dx− θ‖v‖pLp(Ω) +

∫

Ω

uvp−1 dx

≤ −
∫

Ω

(θv)p−1(θv − u) dx− θ

p
‖v‖pLp(Ω) +

1

pθp−1
‖u‖pLp(Ω). (4.16)

Next, in view of the Gagliardo-Nirenberg inequality (see, e.g., [18, Lemma 2.3] for a version involving
Lq-spaces for q > 0), p > 2, Lemma 4.5, and Young’s inequality, we further obtain

p− 1

p
b6‖up/2‖2L4(Ω) ≤ b(p)

(

‖∇(up/2)‖(p−1)/p
L2(Ω) ‖up/2‖1/pL4/p(Ω) + ‖up/2‖L4/p(Ω)

)2

≤ b(p)
(

‖∇(up/2)‖2(p−1)/p
L2(Ω) ‖u‖L2(Ω) + ‖u‖pL2(Ω)

)

≤ b(p)
(

b3‖∇(up/2)‖2(p−1)/p
L2(Ω) + bp3

)

≤ 2(p− 1)

p2
‖∇(up/2)‖2L2(Ω) + b(p). (4.17)

Combining (4.15), (4.16), and (4.17) and using the monotonicity of z 7→ zp−1 on [0,∞), we deduce
that

1

p

dy

dt
+

2(p− 1)

p2
‖∇(up/2)‖2L2(Ω) +

θ

p
‖v‖pLp(Ω) ≤ b8(p)

(

1 + ‖u‖pLp(Ω)

)

, (4.18)

with y := ‖u‖pLp(Ω)+(1+ θp−1)‖v‖pLp(Ω). Using once more Lemma 4.5 and Gagliardo-Nirenberg’s and

Young’s inequalities gives

‖u‖pLp(Ω) = ‖up/2‖2L2(Ω) ≤ b(p)
(

‖∇(up/2)‖(p−2)/p
L2(Ω) ‖up/2‖2/pL4/p(Ω) + ‖up/2‖L4/p(Ω)

)2

≤ b(p)
(

‖∇(up/2)‖2(p−2)/p
L2(Ω) ‖up/2‖4/pL4/p(Ω) + ‖up/2‖2L4/p(Ω)

)

≤ b(p)
(

b23‖∇(up/2)‖2(p−2)/p
L2(Ω) + bp3

)

≤ (p− 1)

p2b8(p)
‖∇(up/2)‖2L2(Ω) + b(p) ,

and we infer from (4.18) that

1

p

dy

dt
+

p− 1

p2
‖∇(up/2)‖2L2(Ω) + b8(p)‖u‖pLp(Ω) +

θ

p
‖v‖pLp(Ω)
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≤ 1

p

dy

dt
+

2(p− 1)

p2
‖∇(up/2)‖2L2(Ω) +

θ

p
‖v‖pLp(Ω) + b(p)

≤ b8(p)
(

1 + ‖u‖pLp(Ω)

)

+ b(p) ≤ (p− 1)

p2
‖∇(up/2)‖2L2(Ω) + b(p) .

Hence,
dy

dt
+min

{

pb8(p),
θ

1 + θp−1

}

y ≤ b(p) , t ≥ 0 .

Integration with respect to time of the above differential inequality completes the proof, after noticing
that u0 ∈ Lp(Ω) due to the continuous embedding of W 1

3 (Ω) in L∞(Ω). �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. (a) We fix p ∈ (2, 3) and ξ ∈ (2/p, 1). Since
(

W−1
p,B(Ω),W

1
p,B(Ω)

)

(1+ξ)/2,p

.
= W ξ

p,B(Ω)

by [3, Theorem 7.2] and writing (1.1a) as

∂tu−∆u+ u = θv − div(u∇w) in (0,∞)× Ω,

we infer from Duhamel’s formula and [4, Theorem V.2.1.3] that, for t ≥ 0,

‖u(t)‖W ξ
p (Ω) ≤ be−t/2‖u0‖W ξ

p (Ω) + b

∫ t

0

(t− s)−(1+ξ)/2e−(t−s)/2‖θv(s)− div(u∇w)(s)‖W−1
p,B(Ω) ds

≤ b‖u0‖W 1
3 (Ω) + b

∫ t

0

(t− s)−(1+ξ)/2e−(t−s)/2
(

‖v(s)‖Lp(Ω) + ‖(u∇w)(s)‖Lp(Ω)

)

ds.

We next deduce from Lemma 4.5, Corollary 4.6, Lemma 4.7, and Hölder’s inequality that

‖u(t)‖W ξ
p (Ω) ≤ b+ b

∫ t

0

(t− s)−(1+ξ)/2e−(t−s)/2
(

|Ω|(3−p)/3‖v(s)‖L3(Ω)

+ ‖u(s)‖L3p/(3−p)(Ω)‖∇w(s)‖L3(Ω)

)

ds

≤ b+ b [b3 + b6b7(3p/(3− p))]

∫ t

0

s−(1+ξ)/2e−s/2 ds ≤ b.

Since ξ > 2/p, the space W ξ
p (Ω) is continuously embedded in L∞(Ω) and we deduce from the above

estimate that
‖u(t)‖L∞(Ω) ≤ b9, t ≥ 0.

Moreover, from (1.1b) and the comparison principle, we obtain

‖v(t)‖L∞(Ω) ≤ max

{

b9
θ
, ‖v0‖L∞(Ω)

}

, t ≥ 0,

which, together with Corollary 4.6 and the continuous embedding of W 1
3 (Ω) in L∞(Ω), completes

the proof of part (a).
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(b) As w is radially symmetric, an improved version of Proposition 4.2 is valid. Namely, in view
of [19, Theorem 2.1], for any η > 0, there is K(η) > 0 depending only on η and Ω such that

∫

Ω

ew dx ≤ K(η) exp

((

η +
1

16π

)

‖∇w‖2L2(Ω) +
2‖w‖L1(Ω)

|Ω|

)

.

We then proceed as in the derivation of (4.9) with the help of this estimate with η = (8π(1 + θ)D−
M)/(32πM) and (4.4) to deduce that

L(u, v, w) ≥ −M ln
(

‖ew‖L1(Ω)

)

+ L
(

‖u‖L1(Ω)

)

+ Lθ

(

‖v‖L1(Ω)

)

+ (|Ω| − 1)

(

1 +
1

θ

)

+
1 + θ

2

(

D‖∇w‖2L2(Ω) + α‖w‖2L2(Ω)

)

+
1

2
‖D∆w − αw + v‖2L2(Ω)

≥ 8π(1 + θ)D − (1 + 16πη)M

16π
‖∇w‖2L2(Ω) +

α(1 + θ)

2
‖w‖2L2(Ω)

+
1

2
‖D∆w − αw + v‖2L2(Ω) −M ln(K(η))− 2M

|Ω| ‖w‖L1(Ω) + (|Ω| − 1)

(

1 +
1

θ

)

≥ 8π(1 + θ)D −M

32π
‖∇w‖2L2(Ω) +

α(1 + θ)

2
‖w‖2L2(Ω) +

1

2
‖D∆w − αw + v‖2L2(Ω) − b .

Using this improved version of (4.6) in the remaining part of Section 4, we finish the proof of
part (b). �

5. Unbounded solutions for large mass

GivenM > 0, we denote by SM the set of nonnegative stationary solutions (u∗, v∗, w∗) ∈ W 2
2,B(Ω;R

3)
to (1.1) satisfying ‖u∗ + v∗‖L1(Ω) = M . In view of (1.1b), this requires u∗ = θv∗, which implies, to-
gether with (1.1a), that

u∗ = c
ew∗

‖ew∗‖L1(Ω)

for some c > 0, which is determined by the mass constraint. Hence, we define SM in the following
way:
(u∗, v∗, w∗) ∈ SM if

(u∗, v∗, w∗) ∈ W 2
2,B(Ω;R

3), u∗, v∗, w∗ ≥ 0 in Ω , (5.1)

u∗ =
θM

θ + 1

ew∗

‖ew∗‖L1(Ω)
, v∗ =

M

θ + 1

ew∗

‖ew∗‖L1(Ω)
, (5.2)

−D∆w∗ + αw∗ =
M

θ + 1

ew∗

‖ew∗‖L1(Ω)

in Ω , ∇w∗ · n = 0 on ∂Ω . (5.3)

As in [12,13,23], we begin with a lower bound for the Liapunov function L on SM for appropriate
values of the mass M .
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Proposition 5.1. (a) If M ∈ (4π(1 + θ)D,∞) \ (4π(1 + θ)DN), then

µM := inf
(u∗,v∗,w∗)∈SM

L(u∗, v∗, w∗) > −∞ .

(b) If Ω = BR(0) for some R > 0 and M ∈ (8π(1 + θ)D,∞), then

µM := inf
(u∗,v∗,w∗)∈SM,rad

L(u∗, v∗, w∗) > −∞ ,

where SM,rad := {(u∗, v∗, w∗) ∈ SM : u∗, v∗, w∗ are radially symmetric}.
Proof. (a) Let (u∗, v∗, w∗) ∈ SM . Then, in view of (5.2), (5.3), and the mass constraint ‖u∗ +
v∗‖L1(Ω) = M , we deduce from (2.2) that

L(u∗, v∗, w∗) =

∫

Ω

(

u∗ lnu∗ − u∗ + 1 + v∗ ln(θv∗)− v∗ +
1

θ
− (u∗ + v∗)w∗

)

dx

+
1 + θ

2

(

D‖∇w∗‖2L2(Ω) + α‖w∗‖2L2(Ω)

)

+
1

2
‖D∆w∗ − αw∗ + v∗‖2L2(Ω)

=

∫

Ω

((u∗ + v∗) ln u∗ − (u∗ + v∗)w∗) dx−M + |Ω|
(

1 +
1

θ

)

+
1 + θ

2

(

D‖∇w∗‖2L2(Ω) + α‖w∗‖2L2(Ω)

)

=

∫

Ω

(u∗ + v∗)

(

ln

(

θM

θ + 1

)

− ln
(

‖ew∗‖L1(Ω)

)

)

dx−M + |Ω|
(

1 +
1

θ

)

+
1 + θ

2

(

D‖∇w∗‖2L2(Ω) + α‖w∗‖2L2(Ω)

)

= M ln

(

θM

θ + 1

)

−M ln
(

‖ew∗‖L1(Ω)

)

−M + |Ω|
(

1 +
1

θ

)

+
1 + θ

2

(

D‖∇w∗‖2L2(Ω) + α‖w∗‖2L2(Ω)

)

. (5.4)

As (5.1) and (5.3) imply

w∗ ≥ 0 in Ω and ‖w∗‖L1(Ω) =
M

α(θ + 1)
,

we define

W := w∗ −
M

α(θ + 1)|Ω| = w∗ −
1

|Ω|

∫

Ω

w∗(x) dx . (5.5)

Rewriting (5.4) in terms of W leads to

L(u∗, v∗, w∗) =
1 + θ

2

(

D‖∇W‖2L2(Ω) + α‖W‖2L2(Ω) + α|Ω| M2

α2(θ + 1)2|Ω|2
)

−M ln
(

‖eW‖L1(Ω)

)

− M2

α(θ + 1)|Ω| +M ln

(

θM

θ + 1

)
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−M + |Ω|
(

1 +
1

θ

)

=
M

|Ω|F(W )−M ln (|Ω|)− M2

2α(θ + 1)|Ω| +M ln

(

θM

θ + 1

)

−M + |Ω|
(

1 +
1

θ

)

, (5.6)

where

F(W ) :=
(1 + θ)|Ω|

2M

(

D‖∇W‖2L2(Ω) + α‖W‖2L2(Ω)

)

− |Ω| ln
(‖eW‖L1(Ω)

|Ω|

)

. (5.7)

Moreover, in view of (5.3) and (5.5), W is a solution to

−D∆W + αW =
M

(θ + 1)|Ω|

( |Ω|eW
‖eW‖L1(Ω)

− 1

)

in Ω , ∇W · n = 0 on ∂Ω , (5.8)

along with
∫

Ω
W (x) dx = 0. Hence, due to (5.7), (5.8) along with M ∈ (4π(1 + θ)D,∞) \

(4π(1 + θ)DN), we are in a position to apply [13, Lemma 3.5] and conclude that there exists µ ≥ 0
which does not depend on W such that

F(W ) ≥ −µ . (5.9)

Combining the latter with (5.6) completes the proof of assertion (a).

(b) The proof is the same as that of assertion (a), we only use [13, Corollary 3.7 & Remark 3.8]
instead of [13, Lemma 3.5] to deduce the lower bound (5.9) for any M ∈ (8π(1 + θ)D,∞). �

As in [12, 13, 23], the next step is to show that L is not bounded from below on the set IM of
initial conditions defined in (1.7) as soon as M exceeds a specific threshold value. The argument
given below is however more involved, due to the additional positive term in L.
Proposition 5.2. Let M > 0.

(a) If M ∈ (4π(1 + θ)D,∞),then

inf
(u,v,w)∈IM

L(u, v, w) = −∞.

(b) If Ω = BR(0) for some R > 0 and M ∈ (8π(1 + θ)D,∞), then

inf
(u,v,w)∈IM,rad

L(u, v, w) = −∞,

where IM,rad := {(u, v, w) ∈ IM : u, v, w are radially symmetric}.

Proof. (a) As ∂Ω is smooth, upon a translation and a rotation, we may assume without loss of
generality that 0 ∈ ∂Ω, n(0) = (0,−1)T , and that there exist a0 ∈ (0, 1) and ζ ∈ C2([−a0, a0]) such
that we have

Ω ∩ Ba0(0) = {x ∈ Ba0(0) : x2 > ζ(x1)} and ∂Ω ∩ Ba0(0) = {x ∈ Ba0(0) : x2 = ζ(x1)}.
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We first claim that there is ω̄ ∈ C([0, a0]) such that

ω̄(0) = 0, ω̄ ≥ 0, (5.10a)

and, for all a ∈ (0, a0),

σa ⊂ Ω ∩Ba(0) ⊂ Σa, (5.10b)

where

σa := {x = (r cos(ω), r sin(ω)) : r ∈ [0, a), ω ∈ (ω̄(a), π − ω̄(a))} ,
Σa := {x = (r cos(ω), r sin(ω)) : r ∈ [0, a), ω ∈ [0, π + ω̄(a)) ∪ (2π − ω̄(a), 2π)} .

Indeed, in view of 0 ∈ ∂Ω we have ζ(0) = 0, while n(0) = (0,−1)T implies ζ ′(0) = 0. Hence, with
A := ‖ζ ′′‖C([−a0,a0])/2 ∈ [0,∞), a Taylor expansion implies

|ζ(s)| = |ζ(s)− ζ(0)− ζ ′(0)s| ≤ As2 ≤ Aa|s| for all s ∈ [−a, a]

and any a ∈ (0, a0]. Combining these properties of Ω and ζ , we deduce that

{x ∈ Ba(0) : x2 > Aa|x1|} ⊂ Ω ∩ Ba(0) ⊂ {x ∈ Ba(0) : x2 > −Aa|x1|}.
Hence, (5.10a) and (5.10b) are satisfied for any a ∈ (0, a0) with the continuous function ω̄(a) :=
arctan(Aa), a ∈ [0, a0].
Next, for η ∈ (0, 1) and x ∈ Ω, define

ξη(x) := 2 ln

(

η

η2 + π|x|2
)

and Ξη(x) := ξη(x)−
1

|Ω|

∫

Ω

ξη(y) dy.

Clearly, ξη belongs to W 2
3 (Ω) and, for (x, η) ∈ Ω× (0, 1),

∇ξη(x) = − 4πx

η2 + π|x|2 ,

D2ξη(x) = − 4π

η2 + π|x|2 id +
8π2

(η2 + π|x|2)2x⊗ x,

−∆ξη(x) =
8πη2

(η2 + π|x|2)2 = 8πeξη(x). (5.11)

In view of (5.10a) and M > 4π(1 + θ)D > 4πD, we next fix a ∈ (0, a0) and η0 ∈ (0, 1) sufficiently
small such that

ω̄(a) < max

{

π

4
,
M − 4πD

32D

}

, (5.12a)

η20 + πa2 < 1, (5.12b)

η20 <
M − 4πD

32D|Ω| πa4, (5.12c)
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and derive additional estimates on ξη for η ∈ (0, η0). First, by (5.10b),

∥

∥eξη
∥

∥

L1(Ω)
=

∫

Ω∩Ba(0)

η2

(η2 + π|x|2)2 dx+

∫

Ω∩Ba(0)c

η2

(η2 + π|x|2)2 dx

≤
∫

Σa

η2

(η2 + π|x|2)2 dx+

∫

Ω∩Ba(0)c

η2

(η2 + πa2)2
dx

≤ π + 2ω̄(a)

2π

[

− η2

η2 + πr2

]r=a

r=0

+
η2|Ω|
π2a4

≤ 1

2
+

ω̄(a)

π
+

η20|Ω|
π2a4

,

and
∥

∥eξη
∥

∥

L1(Ω)
≥
∫

Ω∩Ba(0)

η2

(η2 + π|x|2)2 dx ≥
∫

σa

η2

(η2 + π|x|2)2 dx

=
π − 2ω̄(a)

2π

[

− η2

η2 + πr2

]r=a

r=0

=
π − 2ω̄(a)

2π

πa2

η2 + πa2

≥ π − 2ω̄(a)

2π

πa2

η20 + πa2
.

Hence, using (5.12),

πa2

4
<
∥

∥eξη
∥

∥

L1(Ω)
<

1

2
+

M − 4πD

16πD
=

M + 4πD

16πD
. (5.13)

We next turn to Ξη and first derive a lower bound for η ∈ (0, η0). To this end, we compute

Iη :=
2

|Ω|

∫

Ω

ln
(

η2 + π|y|2
)

dy

=
2

|Ω|

∫

Ω∩Ba(0)

ln
(

η2 + π|y|2
)

dy +
2

|Ω|

∫

Ω∩Ba(0)c
ln
(

η2 + π|y|2
)

dy

≥ 2

|Ω|

∫

Ω∩Ba(0)

ln
(

η2 + π|y|2
)

dy +
2

|Ω|

∫

Ω∩Ba(0)c
ln
(

πa2
)

dy.

Since η2+ π|y|2 ≤ η20 + πa2 < 1 for (η, y) ∈ (0, η0)×Σa by (5.12b), we infer from (5.10b) and (5.12a)
that

Iη ≥
2

|Ω|

∫

Σa

ln
(

η2 + π|y|2
)

dy +
4

|Ω|

∫

Ω∩Ba(0)c
ln a dy

≥ π + 2ω̄(a)

π|Ω|
[

(η2 + πr2) ln (η2 + πr2)− η2 − πr2 + 1
]r=a

r=0
+

4

|Ω|

∫

Ω

ln a dy

≥ π + 2ω̄(a)

π|Ω|
(

−2η2 ln η + η2 − 1
)

− 4| ln a| ≥ −π + 2ω̄(a)

π|Ω| − 4| ln a|
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≥ − 1

|Ω|

(

1 +
M

16πD

)

− 4| ln a|.

Consequently, for x ∈ Ω,
Ξη(x) = −2 ln

(

η2 + π|x|2
)

+ Iη ≥ −ν1, (5.14)

with R := diam(Ω)/2 and

ν1 := 2 ln
(

1 + 4πR2
)

+
1

|Ω|

(

1 +
M

16πD

)

+ 4| ln a|.

Finally,

‖Ξη‖2L2(Ω) =

∫

Ω

(

−2 ln
(

η2 + π|x|2
)

+ Iη
)2

dx = 4

∫

Ω

(

ln
(

η2 + π|x|2
))2

dx− |Ω|I2η

≤ 4

∫

B2R(0)

(

ln
(

η2 + π|x|2
))2

dx = 8π

∫ 2R

0

r
(

ln
(

η2 + πr2
))2

dr

= 4
[

(η2 + πr2)
(

ln
(

η2 + πr2
))2 − 2(η2 + πr2) ln

(

η2 + πr2
)

+ 2(η2 + πr2)
]r=2R

r=0

≤ ν2
2 , (5.15)

where

ν2
2 := 4

[

(1 + 4πR2)
(

ln
(

1 + 4πR2
))2 − 2(1 + 4πR2) ln

(

1 + 4πR2
)

+ 2(1 + 4πR2)
]

.

Now, for η ∈ (0, η0), we set

uη := Uη
eξη

‖eξη‖L1(Ω)

, vη := Vη
eξη

‖eξη‖L1(Ω)

, wη = Ξη + ν1, (5.16a)

with
Uη := M − 8πD‖eξη‖L1(Ω), Vη := 8πD‖eξη‖L1(Ω). (5.16b)

We first observe that (5.13) and the lower bound on M guarantee that

Uη = ‖uη‖L1(Ω) ∈ [2πθD,M ] and Vη = ‖vη‖L1(Ω) ∈
[

2π2a2D,
2 + θ

2(1 + θ)
M

]

, (5.17)

while wη ≥ 0 by (5.14), so that the triple (uη, vη, wη) defined in (5.16) belongs to IM . Also,

uη = Uη
ewη

‖ewη‖L1(Ω)

and vη = Vη
ewη

‖ewη‖L1(Ω)

.

Next, on the one hand,
∫

Ω

uη ln uη dx = ln(Uη)

∫

Ω

uη dx+

∫

Ω

uηwη dx− ln
(

‖ewη‖L1(Ω)

)

∫

Ω

uη dx

=

∫

Ω

uηwη dx+ Uη ln(Uη)− Uη ln
(

‖ewη‖L1(Ω)

)

(5.18)
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and
∫

Ω

vη ln(θvη) dx = ln(θVη)

∫

Ω

vη dx+

∫

Ω

vηwη dx− ln
(

‖ewη‖L1(Ω)

)

∫

Ω

vη dx

=

∫

Ω

vηwη dx+ Vη ln(θVη)− Vη ln
(

‖ewη‖L1(Ω)

)

. (5.19)

On the other hand, by (5.11), (5.15), and (5.16),

‖D∆wη − αwη + vη‖2L2(Ω) =

∥

∥

∥

∥

∥

D∆ξη + Vη
eξη

‖eξη‖L1(Ω)

− αΞη − αν1

∥

∥

∥

∥

∥

2

L2(Ω)

=
∥

∥D∆ξη + 8πDeξη − αΞη − αν1
∥

∥

2

L2(Ω)

= α2 ‖Ξη + ν1‖2L2(Ω) ≤ 2α2
(

‖Ξη‖2L2(Ω) + |Ω|ν2
1

)

≤ 2ν2
3 := 2α2

(

ν2
2 + |Ω|ν2

1

)

. (5.20)

We then infer from (5.18), (5.19), and (5.20) that

L(uη, vη, wη) =

∫

Ω

(

uη ln uη − uη + 1 + vη ln(θvη)− vη +
1

θ
− (uη + vη)wη

)

+
1 + θ

2

(

D‖∇wη‖2L2(Ω) + α‖wη‖2L2(Ω)

)

+
1

2
‖D∆wη − αwη + vη‖2L2(Ω)

≤ Uη ln(Uη)− Uη + |Ω|+ Vη ln(θVη)− Vη +
|Ω|
θ

− (Uη + Vη) ln
(

‖ewη‖L1(Ω)

)

+
1 + θ

2

(

D‖∇Ξη‖2L2(Ω) + α‖Ξη + ν1‖2L2(Ω)

)

+ ν2
3

= Uη ln(Uη)− Uη + |Ω|+ Vη ln(θVη)− Vη +
|Ω|
θ

−M ln
(

‖eΞη‖L1(Ω)

)

−Mν1

+
1 + θ

2

(

D‖∇Ξη‖2L2(Ω) + α‖Ξη‖2L2(Ω) + α|Ω|ν2
1

)

+ ν2
3

=
M

|Ω|F(Ξη) +Rη, (5.21)

where

F(Ξη) =
(1 + θ)|Ω|

2M

(

D‖∇Ξη‖2L2(Ω) + α‖Ξη‖2L2(Ω)

)

− |Ω| ln
(‖eΞη‖L1(Ω)

|Ω|

)

,

see (5.7), and

Rη := −M ln(|Ω|) + Uη ln(Uη)− Uη + |Ω|+ Vη ln(θVη)− Vη +
|Ω|
θ

−Mν1 +
(1 + θ)α|Ω|

2
ν2
1 + ν2

3 .
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According to [13, Section 3],

lim
η→0

F(Ξη) = −∞,

while (5.17) ensures that supη∈(0,η0)Rη < ∞. In view of these properties, it readily follows from
(5.21) that L(uη, vη, wη) → −∞ as η → 0, as claimed.

(b) We recall that Ω = BR(0) in that case. As above, for η ∈ (0, 1) and x ∈ Ω, we define

ξη(x) := 2 ln

(

η

η2 + π|x|2
)

and Ξη(x) := ξη(x)−
1

|Ω|

∫

Ω

ξη(y) dy.

Then ξη ∈ W 2
3 (Ω) and

∥

∥eξη
∥

∥

L1(Ω)
=

∫

Ω

η2

(η2 + π|x|2)2 dx = η2
∫ R

0

2πr

(η2 + πr2)2
dr

= −
[

η2

η2 + πr2

]r=R

r=0

=
πR2

η2 + πR2
.

Hence,

πR2

1 + πR2
≤
∥

∥eξη
∥

∥

L1(Ω)
≤ 1. (5.22)

Furthermore,

Iη :=
2

πR2

∫

Ω

ln
(

η2 + π|y|2
)

dy =
4

R2

∫ R

0

ln
(

η2 + πr2
)

r dr

=
2

πR2

[(

η2 + πr2
)

ln
(

η2 + πr2
)

−
(

η2 + πr2
)

+ 1
]r=R

r=0

≥ 2

πR2

(

−2η2 ln η + η2 − 1
)

≥ − 2

πR2
, (5.23)

so that

Ξη(x) ≥ −2 ln
(

η2 + πR2
)

+ Iη ≥ −ν4 := −2 ln
(

1 + πR2
)

− 2

πR2
. (5.24)

Finally,

‖Ξη‖2L2(Ω) =

∫

Ω

[

−2 ln
(

η2 + π|x|2
)

+ Iη
]2

dx = 4

∫

Ω

(

ln
(

η2 + π|x|2
))2

dx− |Ω|I2η

≤ 4
[

(

η2 + πr2
) [

ln
(

η2 + πr2
)]2 − 2

(

η2 + πr2
)

ln
(

η2 + πr2
)

+ 2
(

η2 + πr2
)

]r=R

r=0

≤ ν2
5 , (5.25)

where

ν2
5 := 4

[

(

12 + πR2
) [

ln
(

1 + πR2
)]2 − 2

(

1 + πR2
)

ln
(

1 + πR2
)

+ 2
(

1 + πR2
)

]

.
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Now, as above, we set

uη := Uη
eξη

‖eξη‖L1(Ω)

, vη := Vη
eξη

‖eξη‖L1(Ω)

, wη = Ξη + ν4, (5.26a)

with

Uη := M − 8πD‖eξη‖L1(Ω), Vη := 8πD‖eξη‖L1(Ω), (5.26b)

and deduce from (5.22) and the lower bound on M that

Uη ∈
[

θM

1 + θ
,M

]

and Vη ∈
[

8π2R2D

1 + πR2
,

M

1 + θ

]

. (5.27)

In particular, owing to (5.26), (5.27), and the regularity of ξη, the triple (uη, vη, wη) belongs to IM,rad

for all η ∈ (0, 1). We next compute L(uη, vη, wη) as in the previous case and argue as in the proof of
(5.21) with the help of (5.11), (5.24), and (5.25) to obtain that

L(uη, vη, wη) ≤
M

|Ω|F(Ξη) +Rη , (5.28)

where

F(Ξη) =
(1 + θ)|Ω|

2M

(

D‖∇Ξη‖2L2(Ω) + α‖Ξη‖2L2(Ω)

)

− |Ω| ln
(‖eΞη‖L1(Ω)

|Ω|

)

as before and

Rη := −M ln(|Ω|) + Uη ln(Uη)− Uη + |Ω|+ Vη ln(θVη)− Vη +
|Ω|
θ

−Mν4 +
(1 + θ)α|Ω|

2
ν2
4 + α2

(

ν2
5 + |Ω|ν2

4

)

.

According to [12, Lemma 2],

lim
η→0

F(Ξη) = −∞ ,

while (5.27) implies that supη∈(0,1) Rη < ∞. It then readily follows from (5.28) and the above
properties that L(uη, vη, wη) −→ −∞ as η → 0 and the proof of (b) is complete. �

Proof of Theorem 1.3. (a) Gathering the outcome of Proposition 2.2, Proposition 5.1 (a) and Propo-
sition 5.2 (a), we argue as in [12,13,16,23], see also [15], to conclude that, for M ∈ (4π(1+ θ)D,∞)\
(4π(1+ θ)DN), there are initial conditions in IM for which the first component of the corresponding
solution to (1.1)-(1.2) cannot be bounded in L∞((0,∞)× Ω) and thus infringes (2.6).

(b) In that case, combining Proposition 2.2, Proposition 5.1 (b) and Proposition 5.2 (b) with the
above mentioned references leads to the claim. �
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du nid chez les termites, Insectes Sociaux, 24 (1977), pp. 117–130.
[10] H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math.

Nachr., 195 (1998), pp. 77–114.
[11] D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results, NoDEA

Nonlinear Differential Equations Appl., 8 (2001), pp. 399–423.
[12] , On the existence of radially symmetric blow-up solutions for the Keller-Segel model, J. Math. Biol., 44

(2002), pp. 463–478.
[13] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J.

Appl. Math., 12 (2001), pp. 159–177.
[14] B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect

attractant production, Math. Models Methods Appl. Sci., 26 (2016), pp. 2111–2128.
[15] S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of

parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 2569–2596.
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