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Abstract. We revisit and generalize a recent result of Cederbaum
[C2, C3] concerning the rigidity of the Schwarzschild manifold for spin
manifolds. This includes the classical black hole uniqueness theorems
[BM, GIS, Hw] as well as the more recent uniqueness theorems for pho-
ton spheres [C1, CG1, CG2].

1. Introduction

An (n+1)-dimensional vacuum spacetime is a Lorentzian manifold (Ln+1, g)
satisfying the Einstein field equations Ric = 0, where Ric is the Ricci tensor
of the metric g. The vacuum is said to be static when

Ln+1 = R×Mn, g = −N2 dt2 + g,

where (Mn, g) is an n-dimensional connected smooth Riemannian manifold,
that we will take to be orientable, standing for the unchanging slices of
constant time and N ∈ C∞(Mn) is a non-trivial smooth function on Mn.
To model the exterior of an isolated system, it seems physically natural to
require asymptotic flatness, that is, the Cauchy hypersurface Mn is usually
taken to be asymptotically flat. The vacuum Einstein field equations can
be translated into the following two conditions on (Mn, g) and the lapse
function N :

∇2N = N Ric, ∆N = 0, (1.1)

where Ric, ∇ and ∆ are respectively the Ricci tensor, the covariant deriva-
tive and the Laplace operator of the Riemannian manifold (Mn, g). Taking
traces in the first of these two equations and taking into account the second
one, we conclude immediately that the scalar curvature of (Mn, g) is zero.
It is usual to call the triple (Mn, g,N) a static vacuum triple.

The (n+1)-dimensional Schwarzschild spacetimes [Sc, T] are a 1-parameter
family of static, spherically symmetric and asymptotically flat solutions to
the vacuum Einstein field equations. For a parameter m ∈ R, it is given by
the static vacuum triple

(
R
n \Brm(0), gm, Nm

)
where the metric gm and the
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lapse function are

gm = N−2
m dr2 + r2gS, Nm(r) =

(
1− 2m

rn−2

)1/2

with gS denoting the standard metric on S
n−1 and rm := (2m)1/(n−2) for

m > 0 and rm := 0 for m ≤ 0.
For m > 0, this spacetime represents the exterior of a black hole whose

event horizon occurs at r = rm. A striking result due to Bunting and
Masood-ul-Alam [BM] for n = 3 (generalizing the seminal work by Israel
[I]) states that the Schwarzschild spacetime is in fact the only asymptoti-
cally flat static vacuum spacetime with nondegenerate horizons. For n ≥ 4,
this result has been generalized in [Hw, GIS]. In particular, there exist no
asymptotically flat static vacuum spacetimes with multiple black holes. The
proof of this result proceeds as follows: first it is shown that the metric g can
be conformally deformed using the lapse function N to get two Riemannian
metrics, one which can be compactified by adding a point at infinity and
another one which is asymptotically flat with zero ADM mass. Then glu-
ing these two manifolds along their boundaries gives an asymptotically flat
Riemannian manifold with zero scalar curvature and with zero mass. The
rigidity part of the positive mass theorem for non-smooth metrics [B, MS]
then applies and allows to conclude that (Mn, g) is conformally flat. For
n = 3, this is enough to conclude while for n ≥ 4 an additional argument
has to be used but in any case, the initial static vacuum triple has to be
isometric to

(
R
n \Brm(0), gm, Nm

)
.

More recently, new uniqueness theorems for photons spheres have been
studied using this approach. A timelike hypersurface P 3 in a static vac-
uum spacetime (L4, g) is called a photon sphere if it is a totally umbilical
hypersurface and if the associated lapse function is constant on each of its
connected components. In the Schwarzschild spacetime, there is only one
photon sphere given by {r = 3m} which models photons spiraling around
the central black hole “at a fixed distance”. In fact, as shown in [CG1],
the Schwarzschild spacetime is the unique asymptotically flat static vacuum
spacetime with photon sphere as an inner boundary. The main problem to
apply the method of Bunting and Masood-ul-Alam in this situation comes
mainly from the fact that the gluing hypersurfaces are not totally geodesic so
that the gluing process does not work directly. To overcome this difficulty,
Cederbaum and Galloway begin by gluing in a C1,1 fashion some pieces
of Schwarzschild time-slices of well-chosen masses on each photon spheres.
The resulting manifold has only totally geodesic inner boundary components
and then the method in [BM] can be used. A generalization of this result
for higher dimensional static vacuum triple has recently been addressed in
[CG2].

In [C2, C3], Cederbaum proves that both static vacuum black hole and
photon sphere uniqueness theorems can be deduced from a more general
rigidity result for the Riemannian time-slice of the Schwarzschild spacetime.



RIGIDITY OF THE RIEMANNIAN SCHWARZSCHILD MANIFOLD 3

This statement deals with pseudo-static systems (Mn, g,N) which generalize
the notion of static vacuum triple since they do not need to satisfy the
full set of the static equations (1.1). On the other hand, since the black
hole as well as the photon sphere boundary conditions arise from Lorentzian
geometric considerations, they have to be translated into purely Riemannian
assumptions. This is done in [C2, J] and this give rises to the notions of
nondegenerate static horizons and quasilocal photon surfaces. With these
definitions, Cederbaum is able to prove the following general rigidity result:

Theorem 1. Let (Mn, g,N) be an asymptotically isotropic pseudo-static
system of mass m with n ≥ 3. Assume Mn has a compact inner bound-
ary whose components are either nondegenerate static horizons or quasilocal
photon surfaces. Then m > 0, (Mn, g) is isometric to a suitable piece of the
Schwarzschild manifold of mass m and N coincides with Nm.

In this paper, we address another approach to this problem using spinors.
Although we have to assume that the manifold is spin (which is automati-
cally satisfied in the 3-dimensional case), we recover the full result of Ceder-
baum and even allow to relax the quasilocal photon surface condition. This
new type of boundary condition will be referred to as a generalized quasilocal
photon surface. Moreover, our arguments also avoid all the gluing construc-
tions which are the delicate part of her proof and our results also include
the black hole [BM, GIS, Hw] and the photon spheres uniqueness theorems
[C1, CG1, CG2]. This is done by using a positive mass theorem for mani-
folds with inner boundary due to Herzlich [He1, He2] which can be applied if
the first eigenvalue of the boundary Dirac operator satisfies a certain lower
bound. As we shall see one can check that this lower bound is fulfilled using
both the Friedrich inequality [F] and a generalization of an inequality of
Hijazi-Montiel-Zhang [HMZ]. We then get:

Theorem 2. Let (Mn, g,N) be a spin asymptotically isotropic pseudo-static
system of mass m with n ≥ 3. Assume Mn has a compact inner boundary
whose components are either nondegenerate static horizons or generalized
quasilocal photon surfaces. Then m > 0, (Mn, g) is isometric to a suitable
piece of the Schwarzschild manifold of mass m and N coincides with Nm.

The idea to use the positive mass theorem of Herzlich for the black hole
uniqueness problem was suggested by Walter Simon in [Si1] and I am very
grateful to him for allowing us to reproduce his unpublished alternative proof
of the generalization of Israel’s theorem [I] by [MHRS, R] (see Appendix A).
It is also a pleasure to thank him for his careful reading as well as for
his valuable comments of a previous version of this paper. We end this
work by noticing that the use of the positive mass theorem can be dropped
from the Simon’s approach in the context of 3-dimensional static vacuum
triples (see Appendix B.1). However, since it is essential to deal with the
general assumptions of Theorem 2, it is important for the author to include
this proof here. In Appendix B.2, we see that this method is suitable to



4 SIMON RAULOT

get a new proof of the uniqueness of a connected photon surface in this
setting. Carla Cederbaum informed me that a work [CF] with her student
Axel Fehrenbach, in which they get similar results using arguments à la
Robinson [R], is in progress and I would like to thank her for this.

Finally, it is a pleasure to thank Piotr Chruściel for his invitation to the
seminar of the Gravitational Physics team of the University of Vienna as
well as for his hospitality and where this work began.

2. The setting

Here we consider a much broader class than the static vacuum triple,
namely the pseudo-static system. Such a system is defined by a triple
(Mn, g,N) where Mn is an n-dimensional smooth manifold endowed with
a smooth Riemannian metric g with nonnegative scalar curvature R and N
is a nonnegative smooth harmonic function on Mn. It is then immediate
from (1.1) that a static vacuum triple is a pseudo-static system. In the rest
of this article, we will always assume that N > 0 away from the boundary
∂Mn of Mn if it exists.

On the other hand, we will use the following definition of asymptotically
isotropic manifolds (see [CG1, J]). An n-dimensional smooth Riemannian
manifold (Mn, g), n ≥ 3, is asymptotically isotropic of mass m if the man-
ifold Mn is diffeomorphic to the union of a (possibly empty) compact set
and an open end En which is diffeomorphic to R

n \B, where B is an open
ball in R

n, and if there exists a constant m ∈ R such that, with respect to
the coordinates (yi) induced by this diffeomorphism, we have

gij = (gm)ij +O2

(
s1−n

)

for i, j = 1, ..., n on R
n \B as s :=

√
(y1)2 + ...+ (yn)2 → ∞. Here

gm :=
(
1 +

m

2sn−2

) 4
n−2

δ

denotes the spatial Schwarzschild metric in isotropic coordinates with δ the
flat metric on R

n. Moreover for such a manifold, a smooth function N :
Mn → R is called an asymptotic isotropic lapse of mass m if it satisfies

N = Ñm +O2(s
1−n)

on R
n \B as s → ∞ with respect to the same diffeomorphism, coordinates

and mass m described above. Here, Ñm denotes the Schwarzschild lapse
function in isotropic coordinates, given by

Ñm(s) =
1− m

2sn−2

1 + m
2sn−2

.

A triple (Mn, g,N) is called an asymptotically isotropic system of mass m
if (Mn, g) is an asymptotically isotropic manifold of mass m and N is an
asymptotic isotropic lapse of same mass m.
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Remark 1. A 3-dimensional asymptotically flat static vacuum triple (in the
sense of (A.1)) is automatically an asymptotically isotropic system from the

work of Kennefick and Ó Murchadha [KÓM].

The statement of Theorem 2 assumes boundary conditions which we now
make more precise. As mentioned in the introduction, although they are here
expressed only in terms of Riemannian geometry, these boundary conditions
arise from Lorentzian notions of horizons and photon spheres. We refer to
[C2, J] where these characterizations are derived. Assume that Mn has

a compact inner boundary ∂Mn =
∐k

i=1 Σi where Σi denotes one of its
connected components for 1 ≤ i ≤ k and let ν be the unit normal to ∂Mn

pointing toward infinity. A boundary component Σi of ∂M
n is said to be

a static horizon if it is a totally geodesic component of the zero level set of
the lapse N . It is called nondegenerate if its normal derivative is a nonzero
constant. In the following, such a hypersurface will be referred to as a
nondegenerate static horizon and in particular, it satisfies:

Hi = 0, Ni := N|Σi
= 0, νi(N) :=

∂N

∂ν
∣∣Σi

> 0, (2.1)

where Hi is the mean curvature of Σi in (Mn, g). In our conventions, the
mean curvature of an (n − 1)-dimensional round sphere seen as the inner
boundary of the exterior of an n-dimensional Euclidean ball is n − 1. On
the other hand, we will say that Σi is a quasilocal photon surface if it is
totally umbilical, if Ni as well as Hi are positive constants and if there exist
a constant ci > 1 such that

R/ i =
n− 2

n− 1
ciH

2
i (2.2)

and

2νi(N) =
n− 2

n− 1

(
ci − 1

)
HiNi. (2.3)

Here R/ i denotes the scalar curvature of Σi with respect to the induced
metric g/i := g|Σi

which has to be constant because of (2.2). Note that the
constant ci differs from [C2, C3] by a multiplicative constant. Obviously, the
intersection of the photon sphere {r = 3m} with a time-slice {t = const.}
in the Schwarzschild spacetime fits into this class of hypersurfaces. In the
following, instead of the assumption (2.2), we will only assume that

R/ i ≥ n−2
n−1ciH

2
i . (2.4)

In particular, the scalar curvature is not assumed to be constant on Σi.
Therefore a quasilocal photon surface for which (2.2) is relaxed to (2.4) will
be referred to as a generalized quasilocal photon surface.
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3. The spinorial tools

In this section, we recall results from spin geometry which are needed
to prove Theorem 2. For more details on this wide subject we refer to the
classical monographs [BHMM, LM] and the references therein.

On a n-dimensional Riemannian spin manifold (Mn, g) with boundary,
there exists a smooth Hermitian vector bundle over Mn called the spinor
bundle which will be denoted by S. The sections of this bundle are called
spinors. Moreover, the tangent bundle TM acts on S by Clifford multipli-
cation X⊗ψ 7→ γ(X)ψ for any tangent vector fields X and any spinor fields
ψ. On the other hand, the Riemannian Levi-Civita connection ∇ lifts to
the so-called spin Levi-Civita connection (also denoted by ∇) and defines
a metric connection on S that preserves the Clifford multiplication. The
Dirac operator is then the first order elliptic differential operator acting on
the spinor bundle S given by D := γ ◦ ∇. The spin structure on Mn also
induces (via the unit normal field to ∂Mn) a spin structure on its boundary.
This allows to define the extrinsic spinor bundle S/ := S|∂Mn over ∂Mn on
which there exists a Clifford multiplication γ/ and a metric connection ∇/ .
Similarly, the extrinsic Dirac operator is defined by taking the Clifford trace
of the covariant derivative ∇/ that is D/ := γ/ ◦ ∇/ . From the spin structure
on ∂Mn, one can also construct an intrinsic spinor bundle for the induced
metric g/, denoted by S∂ , and endowed with a Clifford multiplication γ∂ and
a spin Levi-Civita connection ∇∂ . Note that the (intrinsic) Dirac operator
on (∂Mn, g/) is obviously defined by D∂ = γ∂ ◦ ∇∂ . In fact, we have an
isomorphism

(
S/ ,∇/ , γ/

)
≃

{ (
S∂ ,∇∂ , γ∂

)
if n is odd(

S∂ ,∇∂ , γ∂
)
⊕

(
S∂ ,∇∂ ,−γ∂

)
if n is even

so that the restriction of a spinor field on Mn to ∂Mn and the extension
of a spinor field on ∂Mn to Mn are well-defined. These identifications also
imply in particular that the spectrum of the extrinsic Dirac operator is an
intrinsic invariant of the boundary: it only depends on the spin and Rie-
mannian structures of ∂Mn and not on how it is embedded inMn. The first
nonnegative eigenvalue of the extrinsic Dirac operator, which corresponds
to the lowest eigenvalue (in absolute value) of D∂ , will be denoted by λ1(D/ ).

3.1. Herzlich’s positive mass theorem for spin manifolds with bound-

ary. One of the main result needed in our approach is a sharp version of the
positive mass theorem for asymptotically flat spin manifold with boundary
due to Herzlich [He1, He2]. It is important to note that the spin assumption
is not only assumed just to adapt the Witten approach [W] to this setting.
As we shall briefly recall below, the choice of the boundary condition under
which the Dirac operator is studied is crucial to get rigidity. Note that a
positive mass theorem for asymptotically flat manifolds with compact inner
boundary has recently been obtained without the spin assumption by Hirsch
and Miao [HM].
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Recall that a Riemannian manifold (Mn, g) is said to be asymptotically
flat if the complement of some compact set is diffeomorphic to the com-
plement of a ball in R

n and the difference between the metric g and the
Euclidean metric δ in this chart behaves like s−τ , its first derivatives like
s−τ−1 and its second derivative like s−τ−2 where τ > (n− 2)/2. If moreover
the scalar curvature is integrable, its ADM mass, defined by

mADM (g) :=
1

2(n− 1)ωn−1
lim
r→∞

∫

Sr

(
divδg − d

(
trδg

))
(νr),

is a geometric invariant of (Mn, g) by Bartnik [B] and Chruściel [Ch] inde-
pendently. Here Sr is a coordinate sphere of radius r with νr as its unit
normal vector field pointing towards infinity, δ is the Euclidean metric and
ωn−1 is the volume of the standard (n − 1)-sphere in R

n. Moreover, the
volume integral is with respect to the Euclidean metric and divδ (resp. trδ)
is the divergence (resp. the trace) with respect to this metric. Obviously,
an asymptotically isotropic manifold of mass m as defined in Section 2 is
an asymptotically flat manifold with ADM mass equals to m. The positive
mass theorem asserts that if in addition to all the previous assumptions,
the scalar curvature is nonnegative then the ADM mass is also nonnegative
and if it is zero, (Mn, g) must be isometric to the Euclidean space. This
result was first proved by Schoen and Yau [SY1, SY2] for 3-dimensional
manifolds and thereafter, they showed how there method can be used for di-
mensions less than eight. In a recent preprint [SY3], the higher-dimensional
cases have been treated. On the other hand, Witten [W] discovered a proof
with a completely different method relying on spin geometry which we now
discuss.

In the spin setting and if the manifold has a compact inner boundary, the
proof of the positive mass theorem relies on the existence of ψ ∈ Γ(S) (in
some weighted Sobolev or Hölder spaces) such that

Dψ = 0 and ψ → ψ0

where ψ0 ∈ Γ(S) is constant near infinity and where the boundary condition
on ∂Mn has to be well-chosen. Then, integrating by parts the famous Schrö-
dinger-Lichnerowicz formula on large domains Ωr := {s ≤ r} with r > 0 and
taking the limit as r → ∞ leads to

1

2
(n− 1)ωn−1mADM(g) =

∫

M

(
|∇ψ|2 + R

4
|ψ|2

)
−

k∑

i=1

∫

Σi

〈D/ iψi +
Hi

2
ψi, ψi〉

where D/ i is the restriction of D/ to S/ i := S/ |Σi
and ψi = ψ|Σi

for all
i ∈ {1, ..., k}. Since the scalar curvature is assumed to be nonnegative,
it turns out that the right-hand side of this expression is nonnegative if one
can ensure that each boundary term is nonpositive. This can be done by
imposing the Atiyah-Patodi-Singer boundary condition on ψ|∂Mn as well as
an additional assumption on the first eigenvalue of the boundary Dirac op-
erator. We refer to the original papers of Herzlich (and to [BC2] for a more
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detailed treatment of the analytic part) for a rigorous proof of this result. A
straightforward adaptation of these arguments allows to obtain the following
version of Herzlich’s positive mass theorem (compare with [He1, Proposition
2.1] and [He2, Proposition 2.1]):

Theorem 3. Let (Mn, g) be a n-dimensional Riemannian spin asymptoti-
cally flat manifold with integrable scalar curvature R ≥ 0 and with a compact

inner boundary ∂Mn :=
∐k

i=1Σi such that

λ1(D/ i) ≥
1

2
Hi > 0 (3.1)

for all i = 1, ..., k. Then the mass is nonnegative and if the mass is zero,
(Mn, g) is flat, the mean curvature Hi is constant and (3.1) is an equality
for all i = 1, ..., k.

Here λ1(D/ i) denotes the first nonzero eigenvalue of the extrinsic Dirac
operator on Σi endowed with the metric g/i := g|Σi

. It is important to point
out that this result is sharp since the exterior of round balls in Euclidean
space are flat manifolds with zero mass for which (3.1) is an equality.

3.2. First eigenvalue of the Dirac operator. Our approach (following
[Si1], see Appendix A) consists to apply the previous positive mass theorem
to a certain conformal deformation of the Riemannian manifold (Mn, g).
In particular, we have to check that the assumption (3.1) holds and so we
have to deal with estimates for the first eigenvalue of the Dirac operator on
compact Riemannian spin manifolds. This is a vast subject on which the
interested reader may consult [BHMM, G].

3.2.1. The Friedrich inequality. The first sharp inequality concerning eigen-
values of the Dirac operator on compact Riemannian spin manifolds is due
to Friedrich [F] and is now known as the Friedrich inequality. It asserts that,
if (Σn−1, g/) is such a manifold and if λ1(D/ ) denotes it first Dirac eigenvalue,
then

λ1(D/ )
2 ≥ n− 1

4(n − 2)
inf
Σn−1

R/ (3.2)

where R/ is the scalar curvature of Σn−1 with respect to the metric g/. More-
over, equality occurs if and only if the manifold carries a real Killing spinor.
In particular, it is an Einstein manifold with positive scalar curvature. Note
that if Σn−1 is disconnected, this inequality holds on each of its connected
components.

3.2.2. A Hijazi-Montiel-Zhang-like inequality. If now we assume that Σn−1

is the boundary of an n-dimensional compact Riemannian spin manifold
(Mn, g), one can relate this first eigenvalue with extrinsic geometric invari-
ants. In [HMZ], Hijazi, Montiel and Zhang prove that if the scalar curvature
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of (Mn, g) and the mean curvature of Σn−1 = ∂Mn are both nonnegative,
it holds that

λ1(D/ i) ≥
1

2
inf
Σi

Hi (3.3)

for all i = 1, ..., k. Here we let Σn−1 :=
∐k

i=1 Σi where for i = 1, ..., k, Σi

is a connected component of Σn−1 with metric g/i := g|Σi
and first Dirac

eigenvalue λ1(D/ i). It turns out that, in our situation, this inequality does
not apply directly since one cannot ensure, a priori, that the mean curvature
is nonnegative. This is the first thing which has to be taken into account
in our approach. The second one is that the metric fails to be smooth at
an interior point (where it is in fact C1,1). We shall see that the works of
Bartnik and Chruściel [BC1, BC2] allow to deal with this problem. So we
end this section by recalling some of their results and we refer to their papers
for the definition of the Sobolev spaces which appear below.

Consider Mn a smooth, compact, spin manifold with boundary Σn−1

endowed with a Riemannian metric g which is smooth on Mn \ {p} and

W 2,q
loc at p ∈Mn \Σn−1 with q > n/2. The choice of the boundary condition

for the Dirac operator in our approach is crucial and the motivations for this
choice are similar to those of Herzlich (as explained in the previous section).
The Atiyah-Patodi-Singer boundary condition P>0 is defined as the L2-
orthogonal projection on the positive eigenspaces of the Dirac operator D/ .
It is shown in [BC1, Corollary 7.4] that the boundary problem

{
Dψ = η on Mn

P>0ψ|Σn−1 = ζ along Σn−1 (3.4)

for (η, ζ) ∈ L2×P>0H
1/2
∗ has a solution ψ ∈ H1 if and only if Ker (D∗,P∗

>0)
is reduced to zero. Here D∗ denotes the L2-formal adjoint of D and P∗

>0 the
adjoint boundary condition of P>0 . It is in fact straightforward to see that
D∗ = D and P∗

>0 = P≥0, the L
2-orthogonal projection on the nonnegative

eigenspaces of D/ , so that the condition on the existence of a solution to (3.4)
can be expressed as

Ker (D,P≥0) = {0}. (3.5)

On the other hand, if the data Ψ and Φ are smooth, the interior [BC1,
Theorem 3.8] and boundary [BC1, Theorem 6.6] regularity results apply on
Mn \ {p}, since the metric is smooth there. Therefore, the spinor field ψ
is smooth on Mn \ {p}. As we will see in Section 5, these facts imply in
particular that the Hijazi-Montiel-Zhang inequality (3.3) holds under these
weaker assumptions on (Mn, g).

4. Proof of Theorem 2

Let (Mn, g,N) be a spin asymptotically isotropic pseudo-static system of

mass m with n ≥ 3. In the following, we write ∂Mn =
∐k

i=1 Σi and we
assume that Σi is
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• a nondegenerate static horizon for 1 ≤ i ≤ i0,
• a generalized quasilocal photon surface for i0 + 1 ≤ i ≤ k.

Then consider the metric conformally related to g defined by

g+ = Φ
4

n−2
+ g with Φ+ =

1 +N

2
. (4.1)

From the well-known transformation of the scalar curvature under a confor-
mal change of the metric, the scalar curvature R+ of g+ is easily computed
to be

R+ = Φ
−n+2

n−2
+

(
− 4

n − 1

n − 2
∆Φ+ +RΦ+

)
= RΦ

− 4
n−2

+ ≥ 0

since N is harmonic with respect to g and R ≥ 0. On the other hand, a
direct computation using the asymptotically isotropy of the metric g as well
as the one of the lapse N allows to prove that (Mn, g+) is asymptotically flat
with zero ADM mass. It is then enough to check that the condition (3.1) in
Theorem 3 is fulfilled to conclude that g+ is flat. For this reason, one has to
compute the mean curvature of each boundary components with respect to
the metric g+. This is achieved by using the classical formula which relates
the mean curvature of the boundary of two conformally related metrics,
namely

H+
i = Φ

− n

n−2
+

(
2
n− 1

n− 2

∂Φ+

∂ν
+HiΦ+

)

for all i ∈ {1, ..., k}. Then if Σi is a nondegenerate static horizon, it follows
from (2.1) and the previous formula that its mean curvature is given by the
positive constant

H+
i = 2

n

n−2
n− 1

n− 2
κi (4.2)

where κi := νi(N) > 0 is the surface gravity of Σi for i ∈ {1, ..., i0}. On
the other hand, it follows from (2.3) that if i ∈ {i0 + 1, ..., k}, the mean
curvature of Σi is also a positive constant whose value is

H+
i =

1

2
HiΦ

− n

n−2
+

(
ciNi + 1

)
. (4.3)

A first attempt to prove that the condition (3.1) holds is to apply the
Friedrich inequality (3.2) on each component of the boundary. It is eas-
ily seen to be unfruitful for the nondegenerate static horizon components.
For the generalized quasilocal photon surfaces, it is useful to consider the
integer j0 ∈ {i0 + 1, ..., k} for which

Ni ≥ c
−1/2
i

if i0 + 1 ≤ i ≤ j0 and

Ni ≤ c
−1/2
i
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if j0+1 ≤ i ≤ k. Then we compute that the scalar curvature R/+
i of (Σi, g/

+
i )

with g/+i := g+|Σi
satisfies

R/+
i = Φ

− 4
n−2

+ R/ i ≥
n− 2

n− 1
Φ
− 4

n−2
+ cH2

i > 0 (4.4)

for i ∈ {i0+1, ..., k}. The previous inequality is a direct consequence of (2.4).
Combining the Friedrich inequality (3.2) for the first eigenvalue λ1(D/

+
i ) of

the Dirac operator D/+
i on (Σi, g/

+
i ) with (4.4) yields

λ1(D/
+
i )

2 ≥ n− 1

4(n − 2)
inf
Σi

R/+
i ≥ 1

4
Φ
− 4

n−2
+ ciH

2
i .

The last inequality is deduced from the facts that the function Φ+ and the
mean curvatureHi are constant on the generalized quasilocal photon surface
Σi. Now from (4.3), we have that

1

4
Φ
− 4

n−2
+ ciH

2
i ≥ 1

4

(
H+

i

)2
(4.5)

if and only if

1

4
Φ
− 4

n−2
+ ciH

2
i ≥ 1

16
H2

i Φ
− 2n

n−2
+

(
ciNi + 1

)2

that is

ci

(
Ni + 1

)2
≥

(
ciNi + 1

)2
.

However, since ci > 1, it is easy to observe that this inequality holds only for
i ∈ {j0+1, ..., k}. It remains to show that (3.1) is also true for i ∈ {1, ..., j0}.
For this, consider the smooth metric defined on Mn by

g− = Φ
4

n−2
− g with Φ− =

1−N

2
(4.6)

which is Riemannian since N is harmonic and asymptotically isotropic. Sim-
ilarly to the metric g+, the scalar curvature R− of g− is nonnegative. More-
over since g is asymptotically isotropic, it can be shown ([C2, C3, J]) that
one can insert a point p∞ into (Mn, g−) to obtain a compact Riemannian
spin manifold (Mn

∞ :=Mn∪{p∞}, g−∞) whose metric is smooth onMn, C1,1

at p∞ and with boundary ∂Mn
∞ = ∂Mn. Then the mean curvature of ∂Mn

in (Mn
∞, g

−
∞) computed with respect to the unit normal

ν− = −Φ
− 2

n−2
− ν

is

H−
i = −Φ

− n

n−2
−

(
2
n− 1

n− 2

∂Φ−

∂ν
+HiΦ−

)
.

For i = 1, ..., i0, we have that

H−
i = 2

n

n−2
n− 1

n− 2
κi > 0 (4.7)
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is a positive constant, once again because of (2.1). On the other hand, if
i ∈ {i0 + 1, ..., k}, we deduce using (2.3) that

H−
i =

1

2
HiΦ

− n

n−2
−

(
ciNi − 1

)
(4.8)

is also a constant but it could, a priori, be negative for i ∈ {j0 + 1, ..., k}.
This is the main reason why we cannot apply directly the inequality (3.3).
Instead, we use the following result whose proof is postponed to the next
section.

Lemma 2. For i ∈ {1, ..., j0}, the first eigenvalue λ1(D/
−
i ) of the Dirac

operator D/−
i on (Σi, g/

−
i ) satisfies

λ1(D/
−
i ) ≥

1

2
H−

i .

Moreover, if equality holds, the boundary ∂Mn is connected.

As H−
i = H+

i for all i ∈ {1, ..., i0} because of (4.2) and (4.7), Lemma 2
allows to deduce directly that (3.1) holds for nondegenerate static horizons
since g/−i = g/+i implies λ1(D/

−
i ) = λ1(D/

+
i ). If i ∈ {i0 + 1, ..., j0}, we remark

that since Φ+ and Φ− are constant on Σi and

g/+i =
(Φ+

Φ−

) 4
n−2

g/−i ,

the corresponding Dirac operators are related by

D/+
i =

(Φ−

Φ+

) 2
n−2

D/−
i

so that the corresponding first eigenvalues satisfy

λ1(D/
+
i ) =

(Φ−

Φ+

) 2
n−2

λ1(D/
−
i ). (4.9)

Therefore, the inequality of Lemma 2 reads

λ1(D/
+
i ) ≥

1

2

(Φ−

Φ+

) 2
n−2

H−
i .

Now, from (4.3) and (4.8), we remark that
(Φ−

Φ+

) 2
n−2

H−
i ≥ H+

i

if and only if
(
cNi − 1

)
Φ+ ≥

(
cNi + 1

)
Φ−

which is true precisely if i ∈ {i0 + 1, ..., j0}. In conclusion, the assump-
tion (3.1) of the Positive Mass Theorem 3 holds for every component of the
boundary, so that the asymptotically flat manifold (Mn, g+) with nonnega-
tive scalar curvature and zero ADM mass has to be flat. Moreover, each Σi

is totally umbilical with constant mean curvature.
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If we chose a nondegenerate static horizon Σl with l ∈ {1, ..., i0}, since
equality holds in (3.1), we also have equality in Lemma 2 and so ∂Mn = Σl is
connected. The Gauss formula relative to the immersion of ∂Mn in (Mn, g+)
implies that ∂Mn has positive constant sectional curvature and it has to be
isometric to the quotient of a round sphere. Arguing as in [He2] we conclude
that (Mn, g+) is (up to an isometry) the exterior of a round ball with radius

sl =
n− 2

2
n

n−2κl
.

The metric g+ being the Euclidean one, it turns out that the function Ψ :=
Φ−1
+ satisfies the boundary value problem





∆δΨ = 0 on R
n \Bsl(0)

Ψ(s) = 1 +O(s2−n) as s→ ∞
Ψ|∂Bs

l
(0) = 2

where ∆δ denotes the Euclidean Laplacian. The maximum principle implies
the uniqueness of solutions to this elliptic equation so that it is straightfor-
ward to check that

Ψ(s) = 1 +
(sl
s

)n−2

is the only one. The Riemannian manifold (Mn, g) has to be isometric to
the exterior of the Schwarzschild metric with mass

m = 2sn−2
l =

1

2

( A

ωn−1

)n−2
n−1

> 0

and N = Nm. Here A denotes the area of the inner boundary (∂Mn, g/).
Now assume that we chose a quasilocal photon surface Σl with l ∈ {i0 +

1, ..., j0}. As before, since (3.1) is an equality, a straightforward computa-
tion implies that equality also holds in Lemma 2 and the boundary ∂Mn

has to be connected, that is ∂Mn = Σl. Moreover, since the boundary is
totally umbilical with constant mean curvature, one can argue as in the pre-
vious paragraph to conclude that (Mn, g+) is isometric to the exterior of an
Euclidean ball with radius

s̃l =
(n− 1)2−

2
n−2 c

− n

2(n−2)

l

(
c
1/2
l + 1

) 2
n−2

Hl

since Nl = c
−1/2
l . Once again, writing g = Ψ

4
n−2 δ with Ψ := Φ−1

+ and δ the
Euclidean metric, we deduce that Ψ is the unique solution of the problem




∆δΨ = 0 on R
n \B s̃l(0)

Ψ(s) = 1 +O(s2−n) as s→ ∞
Ψ|∂Bs̃

l
(0) = 2(1 + c

−1/2
l )−1.

It is then straightforward to check that

Ψ(s) = 1 +
( ŝl
s

)n−2
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with

ŝl =
(n− 1)2−

2
n−2 c

− n

2(n−2)

l

(
cl − 1

) 1
n−2

Hl
.

We conclude that (Mn, g) is isometric to the exterior {s ≥ s̃l} of the
Schwarzschild metric with mass

m = 2ŝn−2
l =

1

2

(
1− 1

cl

)( A

ωn−1

)n−2
n−1

> 0

and N = Nm. Here we used the Stokes’ theorem and the harmonicity of N
to compute that ∫

∂Mn

ν(N) = (n− 2)ωn−1m (4.10)

for any asymptotically isotropic pseudo-static systems of mass m with con-
nected inner boundary. Then, using (2.3) and the fact that Nl = 1/

√
cl,

yields

Hl = 2(n − 1)
ωn−1

A

√
cl

cl − 1
m

and the last expression of the mass follows.
Finally, if we chose a quasilocal photon surface Σl with l ∈ {j0 + 1, ..., k}

then, since (3.1) is an equality, we directly get that the equality is also

achieved in (4.5). This implies that Ni = c
−1/2
i for all i ∈ {j0 +1, ..., k} and

thus from (4.8) thatH−
i is a positive constant. Now since all the components

of the boundary have positive mean curvature, the Hijazi-Montiel-Zhang
inequality (3.3) applies (see Section 5) and it is in fact an equality. The
boundary has therefore to be connected and totally umbilical with constant
mean curvature. One can conclude exactly as in the previous situation and
this finish the proof of Theorem 2.

5. Proof of Lemma 2

In order to prove Lemma 2, we first need to show that the boundary
value problem (3.4) for the Dirac operator D− on (Mn

∞, g
−
∞) under the

Atiyah-Patodi-Singer condition P−
>0 admits an unique strong solution. Here

P−
>0 denotes the L2-orthogonal projection on the positive eigenspaces of the

boundary Dirac operator D/−. Since the metric g−∞ is smooth on Mn and

W 2,q
loc for q > n/2 at the interior point p∞ (since C1,1 at this point), the re-

sults of Bartnik and Chruściel recalled in Section 3.2.2 apply on (Mn
∞, g

−
∞).

So proving the existence of such a solution is reduced to show that (3.5)
holds under the assumptions of Lemma 2.

For this, we recall the integral version of the famous Schrödinger-Lichne-
rowicz formula (see [BC1, HMZ] for a proof) which states that

∫

Mn
∞

(
|∇−ϕ|2 + R−

4
|ϕ|2 − |D−ϕ|2

)
=

k∑

i=1

∫

Σi

(
〈D/−

i ϕi, ϕi〉 −
H−

i

2
|ϕi|2

)
(5.1)
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for all ϕ ∈ Γ(S−) and where ϕi := ϕ|Σi
∈ Γ(S/−

i ). The notations in this
formula are directly derived from those of Section 3.

Consider now ψ ∈ Ker (D−,P−
≥0) that is ψ ∈ H1 and satisfies

{
D−ψ = 0 on Mn

∞

P−
≥0ψi = 0 along Σi

(5.2)

for all i ∈ {1, ..., k}. Since the scalar curvature of the metric g−∞ is nonneg-
ative, the formula (5.1) applied to ψ yields

k∑

i=1

∫

Σi

(
〈D/−

i ψi, ψi〉 −
H−

i

2
|ψi|2

)
≥ 0. (5.3)

On the other hand, it is straightforward to check that for all ϕ ∈ Γ(S−), we
have ∫

Σi

〈D/−
i ϕi, ϕi〉 ≤

∫

Σi

〈D/−
i

(
P−
>0ϕi

)
,P−

>0ϕi〉 (5.4)

with equality if and only if the L2-projection of ϕi on the negative eigenspaces
of D/−

i is zero. So we can rewrite (5.3) as

k∑

i=j0+1

∫

Σi

(
〈D/−

i ψi, ψi〉 −
H−

i

2
|ψi|2

)
≥ 0 (5.5)

because of the boundary conditions in (5.2) and since H−
i > 0 for i ∈

{1, ..., j0}. Note that we didn’t use (5.4) directly for i ∈ {j0 +1, ..., k}, since
the mean curvature H−

i may be negative and the inequality would then be
useless. Instead, we remark that since the L2-projection of ψi on the kernel
of D/−

i is zero, the upper bound (5.4) can be refined to
∫

Σi

〈D/−
i ψi, ψi〉 ≤ −λ1(D/−

i )

∫

Σi

|ψi|2 (5.6)

for i ∈ {j0 + 1, ..., k} with equality if and only if ψi is an eigenspinor for
D/−

i associated to the eigenvalue −λ1(D/−
i ) or is zero on Σi. This allows to

rewrite (5.3) as

k∑

i=j0+1

(
λ1(D/

−
i ) +

H−
i

2

) ∫

Σi

|ψi|2 ≤ 0. (5.7)

Assume for a moment that

λ1(D/
−
i ) +

H−
i

2
> 0 (5.8)

for all i ∈ {j0 + 1, ..., k}. We thus have equality in (5.7) and so ψi = 0
for all i ∈ {j0 + 1, ..., k}. Moreover, equality also holds in (5.5) and so
the L2-projection of ψi on the negative eigenspaces of D/−

i vanishes for all
i ∈ {1, ..., j0}. But ψi satisfies the boundary condition in (5.2) and then we
deduce that ψi = 0 for all i ∈ {1, ..., k}. Finally, equality occurs in (5.1)
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and so we get a parallel spinor field ψ which vanishes along ∂Mn. Since
ψ is smooth on Mn, its norm is constant on Mn. But since it is zero on
the boundary, it has to be zero on the whole of Mn and so (3.5) is fulfilled.
It remains to show that (5.8) is satisfied. For this, we put together (3.1)
(which holds for i = j0 + 1, ..., k without using Lemma 2 by the Friedrich
inequality) and the formula (4.9) which relates the first eigenvalue of Dirac
operators for homothetic metrics to get

λ1(D/
−
i ) ≥

1

2

(Φ+

Φ−

) 2
n−2

H+
i .

This lower bound and the expressions (4.3) and (4.8) of the mean curvatures
of Σi with respect to the metrics g+ and g− in terms of the metric g yield

λ1(D/
−
i ) +

H−
i

2
≥ 1

2

HiNi

1 +Ni
Φ
− n

n−2
− (ci − 1).

This implies (5.8) since the right-hand side of the previous inequality is
clearly positive because Hi as well as Ni are positive constants and ci > 1
for all i ∈ {j0 + 1, ..., k}.

Now the previous discussion ensures that for a fixed l ∈ {1, ..., j0}, the
boundary value problem

{
D−ξ = 0 on Mn

∞

P−
>0ξ|∂Mn = ηl along ∂Mn

admits a solution ξ ∈ Γ(S−), where ηl ∈ Γ(S/−) is defined by

ηl =

{
ζl on Σl

0 on Σi for i 6= l

with ζl ∈ Γ(S/−
l ) is a smooth eigenspinor for D/−

l associated to λ1(D/
−
l ). Note

that as recalled in Section 3.2.2, ξ is smooth on Mn. Applying the integral
version of the Schrödinger-Lichnerowicz formula (5.1), the upper bounds
(5.4) and (5.6) respectively for i ∈ {1, ..., j0} and for i ∈ {j0+1, ..., k} to the
spinor field ξ give

(
λ1(D/

−
l )−

H−
l

2

) ∫

Σl

|ξl|2 ≥
k∑

i=j0+1

∫

Σi

(H−
i

2
|ξi|2 − 〈D/−ξi, ξi〉

)

≥
k∑

i=j0+1

(
λ1(D/

−
i ) +

H−
i

2

)∫

Σi

|ξi|2.

From (5.8), we immediately obtain the inequality of Lemma 2. We should
pay attention to the fact that the upper bound (5.6) holds for spinor fields
ψi ∈ Γ(S/−

i ) such that P−
≥0ψi = 0 and so we have to check that ξ satisfied

this property. Since P−
>0ξi = 0 for all i 6= l, it is enough to show that

the projection of ξi on the kernel of the Dirac operator D/−
i is reduced to

zero for i ∈ {j0 + 1, ..., k}. In fact, for such i, the Friedrich inequality (3.2)
combined with the positivity (2.4) of the scalar curvature of (Σi, g/i) ensures
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that the kernel of D/ i is reduced to zero. But the dimension of this space
being invariant under conformal changes of the metric on Σi (see [Hi]), we
deduce that the kernel of D/−

i is also reduced to zero and so

P−
≥0ξi = P−

>0ξi = 0.

Now if equality occurs in Lemma 2, it it immediate to see that equality also
holds in (5.1) and the spinor field ξ has to be parallel. On the other hand,
since H−

i > 0 for all i ∈ {1, ..., j0}, the kernel of D−
i is also reduced to zero

and so Ker (D/−) = {0}, where D/− is the full boundary Dirac operator of
(∂Mn, g/−). This allows to conclude that

ξ|∂Mn = P−
>0ηl = ηl

since equality has to hold in (5.4) and (5.6). As the squared norm of the
parallel spinor ξ is smooth onMn, it has to be a positive constant because its
restriction to Σl is a nonzero eigenspinor for D−

l . However, this is impossible
if ∂Mn is disconnected since otherwise it is also zero on the other connected
components. We conclude that the boundary ∂Mn is connected and the
proof of Lemma 2 is now complete.

Appendix A. Simon’s proof of the static black hole uniqueness

theorem of [MHRS]

In this section, we give the proof of the (3 + 1)-dimensional static black
hole uniqueness theorem in the connected boundary case by Walter Simon
[Si1] which, in our conventions and notations, can be stated as follows:

Theorem 4. An asymptotically flat static vacuum triple (M3, g,N) with a
nondegenerate connected and compact inner boundary ∂M3 := N−1({0}) is
isometric to the exterior {s ≥ (m/2)n−2} of the Schwarzschild manifold of
positive mass m.

Here the 3-dimensional static vacuum triple (M3, g,N) is asymptotically
flat in the sense that the manifold M3 is diffeomorphic to the union of a
compact set and an open end E3 which is diffeomorphic to R

3 \ B where
B is an open ball in R

3. Furthermore, we require that, with respect to
the coordinates induced by this diffeomorphism, the metric g and the lapse
function N satisfy

gij − δij ∈W k,q
−τ (E)

N − 1 ∈W k+1,q
−τ (E)

(A.1)

for some τ > 1/2, τ /∈ Z, k ≥ 2, q > 4. Furthermore, nondegenerate mean
here that the surface gravity κ = ν(N) of the inner boundary is nonzero.
Then, since (M3, g,N) is a static vacuum triple, it is a well known fact that
this implies that the inner boundary is a nondegenerate static horizon in the
sense of Section 2.

One of the idea of Simon was to apply the positive mass theorem with
boundary of Herzlich to the metric g+ defined by (4.1). As done before, it is
enough to show that (3.1) holds in this situation and one way to obtain such
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a lower bound is to use the Friedrich inequality (3.2). Then we are brought
to compare the scalar curvature R/+ of (∂M3, g/+) with the mean curvature
∂M3 in (M3, g/+) whose value is

H+ = 16κ (A.2)

as computed in (4.2). This can be achieved by using a divergence identity
regarding the static vacuum triple in the compactified metric g−∞ defined in
Section 4. It turns out from the works of Beig and Simon [BS1, BS2] and

Kennefick and Ó Murchadha [KÓM] that since (M3, g,N) is an asymptot-
ically flat static vacuum triple with non-zero mass, its one-point compact-
ification (M3

∞, g
−
∞) admits a smooth (even analytic) extension to p∞. The

fact that the mass is non-zero in our situation follows directly by formula
(4.10). Then from the divergence identity (see [Si2] and Remark 4 for a
generalization of this formula)

divg−
(
N−1(1 +N)2∇−W

)
=

1

8
V |Ric−|2g− (A.3)

where W and V are the respectively smooth and continuous nonnegative
functions on M3

∞ given by

W =
|∇N |2

(1−N2)4
and V = N

(1−N)2

(1 +N)4
,

one can deduce the following lemma which plays a crucial role in what
follows. Here ∇−, divg− and Ric− are respectively the covariant derivative,

the divergence and the Ricci curvature of the manifold M3
∞ with respect to

the metric g−∞.

Lemma 3. The scalar curvature R/ of the nondegenerate static horizon ∂M3

with respect to the metric g satisfies R/ ≥ 8κ2.

Proof. Applying the weak maximum principle to (A.3) on the smooth com-
pact manifold M3

∞, we find that W is constant on M3
∞ or W must take

its maximum on the nondegenerate static horizon where it is constant. In
either case, the derivative of W along the inward normal ν is nonpositive
near ∂M3

∞ and the same applies for the following limit

lim
N→0

κ−1N−1g(∇W,∇N) ≤ 0. (A.4)

On the other hand, a direct computation using the static equations (1.1)
yields

g(∇W,∇N) = (1−N2)−4
(
∇N

(
|∇N |2

)
+ 8N |∇N |4(1−N2)−1

)

= 2(1 −N2)−4N
(
Ric(∇N,∇N) + 4|∇N |4(1−N2)−1

)

which allows to rewrite (A.4) as

0 ≥ 2κ
(
Ric(ν, ν) + 4κ2

)
= κ

(
− R/

2
+ 4κ2

)
.
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Here we used the fact that ν = κ−1∇N and, in the last equality, the Gauss
formula (recall that ∂M3 is totally geodesic in (M3, g) which is scalar flat).
This conclude the proof of this lemma. q.e.d.

Now, since the manifoldM3 is 3-dimensional, it is automatically endowed
with a spin structure so that the first eigenvalue of the Dirac operator on
∂M3 with the metric g/+ satisfies the Friedrich inequality

λ1(D/
+)2 ≥ 1

2
inf
∂M3

R/+. (A.5)

However, it is now immediate from the formula (4.4) that the Lemma 3
implies that

R/+ = 16R/ ≥ 128κ2.

Combining this estimate with the inequality (A.5) yields

λ1(D/
+)2 ≥ 64κ2

which, because of (A.2), is exactly (3.1). We conclude the proof of Theorem
4 as usual.

Remark 4. It may be interesting to note that the divergence identity (A.3)
can be generalized to n-dimensional static vacuum triples (Mn, g,N) for the
metrics g±. Namely it holds that

divg±
(
N−1(1∓N)2∇±W

)
= 2

n−6
n−2V ±|Ric±|2g± (A.6)

where W and V ± are the functions defined by

W =
|∇N |2

(1−N2)2
n−1
n−2

and V ± = N
(1±N)

2
n−2

(1∓N)2
n−1
n−2

.

Indeed, from the second Bianchi identity and the fact that g± is scalar flat,
one computes that

divg±
(
Ric±(X)

)
=

1

2
〈Ric±,LXg

±〉g± (A.7)

for all X ∈ Γ(TMn) and where LX is the Lie derivative in the direction of
X and Ric±(X) is the vector field on Mn defined by

g±(Ric±(X), Y ) = Ric±(X,Y )

for all Y ∈ Γ(TMn). On the other hand, a straightforward (but lengthy)
computation using the static equations (1.1) gives

1

2
Tf

(
LXg

±
)
= V ±Ric± (A.8)

where

X =
2

4
n−2

(1−N2)
n

n−2

∇N
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and Tf denotes the trace-free part of a symmetric tensor. Then putting
together (A.7) and (A.8), we deduce that

divg±
(
Ric±(X)

)
= V |Ric±|2g± ,

and (A.6) follows from the expression of the vector field X. It is important
to note that the proof of these divergence identities relies on the full set of
the static equations (1.1) and does not hold for pseudo-static systems.

Appendix B. Uniqueness without positive mass theorem

In this section, we present a simple proof of Theorem 4 which is clearly
in the spirit of the original works [I, MHRS, R] but which puts forward a
new geometric point of view. As we shall see, this method also applies when
studying uniqueness questions for connected quasilocal photon surface in
3-dimensional static vacuum triple.

B.1. The nondegenerate static horizon case. If we assume that the
assumptions of Theorem 4 are fulfilled, one can integrate on ∂M3 the in-
equality in Lemma 3 which, with the help of the Gauss-Bonnet formula,
yields

π χ(∂M3) ≥ 2κ2A.

Here χ(∂M3) denotes the Euler characteristic of the nondegenerate static
horizon. The formula (4.10) for n = 3 implies that the last inequality can
be rewritten as

A

32π
χ(∂M3) ≥ m2. (B.1)

On the other hand, a direct computation using the asymptotic of the lapse
function N gives that

W (p∞) =
1

16m2
.

Since the maximum of the smooth function W defined on M3
∞ is reached on

∂M3, we obtain

κ2 ≥ 1

16m2
,

which from (4.10), rewrites as the classical Penrose inequality

m2 ≥ A

16π
.

Combining this inequality with (B.1) gives

χ(∂M3) = 2 and m2 =
A

16π
,
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and thenW has to be constant onM3
∞. In particular, ∂M3 is homeomorphic

to a 2-sphere. From (A.3), (M3
∞, g

−
∞) is Ricci-flat and so flat since it is 3-

dimensional. This allows to conclude that (M3, g) is the desired exterior of
the Schwarzschild manifold.

B.2. The quasilocal photon surface case. We are now in position to
give a similar proof of the following result:

Theorem 5. An asymptotically flat static vacuum triple (M3, g,N) with a
connected quasilocal photon surface as inner boundary is isometric to the
exterior of a suitable piece of a Schwarzschild manifold of positive mass.

First recall that since ∂M3 is a quasilocal photon surface, it is a totally
umbilical surface with positive constant mean curvature H on which the
lapse function is also a positive constant. Moreover, the identities (2.2) and
(2.3) are fulfilled for a constant c > 1. Then since ν(N) > 0, the formula
(4.10) implies that the mass of (M3, g) is non-zero. Moreover, from these
properties, the Gauss formula reads as

2Ric(ν, ν) =
1− c

2
H2

so that computations as in Lemma 3 yields N2
0 ≤ c−1, where we let N0 :=

N|∂M3 . Once again using (2.2), (2.3) and (4.10), it is straightforward to
check that this inequality is equivalent to

m2 ≤ 1

8

(
1− 1

c

)2A2

ω2
2

R/

which, once integrated over ∂M3, gives

m2 ≤ 1

8

(
1− 1

c

)2 A

ω2
χ(∂M3). (B.2)

On the other hand, since the functionW reaches its maximum on the bound-
ary (unless it is constant) we have

W (p∞) =
1

16m2
≤W|∂M3 =

ν(N)2

(1−N2
0 )

4
≤

(
1− 1

c

)−4 ω2
2

A2
m2

that is

m2 ≥ 1

4

(
1− 1

c

)2 A

ω2
.

Combining this inequality with (B.2) allows to conclude that ∂M3 is a topo-
logical 2-sphere and that (B.2) is in fact an equality. The maximum princi-
ple implies that W is constant on the whole of M3 and then the divergence
identity (A.3) that (M3

∞, g
−
∞) is flat. Finally, it is not difficult to show that

(M3
∞, g

−
∞) is isometric to a flat ball with radius 2/H− and we can conclude
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that (M3, g) is isometric to the exterior {s ≥ s0} (with s0 = s̃l given in
Section 4) of the Schwarzschild metric with mass

m =
1

2

(
1− 1

c

)( A
ω2

) 1
2
.
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sonal communication.

[CG2] C. Cederbaum, G. J. Galloway, Photon surfaces with equipotential time-slices,
arxiv:1910.04220.
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