
HAL Id: hal-02943297
https://hal.science/hal-02943297

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Approach to Unravel the
Interoperability Problem of the Internet of Things
Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer,

Massimo Tisi

To cite this version:
Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, Massimo Tisi. A Model-Driven
Approach to Unravel the Interoperability Problem of the Internet of Things. Advanced Information
Networking and Applications, Apr 2020, Nantes, France. pp.1162-1175, �10.1007/978-3-030-44041-
1_100�. �hal-02943297�

https://hal.science/hal-02943297
https://hal.archives-ouvertes.fr


A Model-Driven Approach to Unravel the
Interoperability Problem of the Internet of
Things

Imad Berrouyne1,2,3, Mehdi Adda2, Jean-Marie Mottu1, Jean-Claude Royer1,
Massimo Tisi1

Abstract The Internet of Things (IoT) aims for connecting Anything, Anywhere,
Anytime (AAA). This premise brings about heterogeneity that creates connectiv-
ity challenges. These challenges constitutes a serious obstacle to interoperability
between things. Most existing approaches tackles the interoperability problem by
avoiding heterogeneity with standards at runtime. While heterogeneity is an intrin-
sic feature of the IoT, there is a need for an approach that embraces it to connect
AAA. In this paper we propose a model-based methodology to tackle the interoper-
ability problem. It relies on a Domain-Specific Language (DSL) for a model-based
specification of the network and a transformation process to generate the network
artifacts from this specification. The principle consists of achieving interoperability
at the model-level, then during a transformation process, ensuring that it is preserved
in the low-level code. Adopting this methodology makes the engineering of the IoT
more rigorous, prevents bugs earlier and saves time.

1 Introduction

The Internet of Things (IoT) aims for connecting Anything, Anywhere, Anytime
(AAA) [2]. In particular, connecting things from different sizes ranging from bac-
terias [14] to supercomputers. Each thing has its own requirements. For instance,
a tiny sensor may require Constrained Application Protocol (CoAP), because of its
limited resources, while a laptop requires a standard Hypertext Transfer Protocol
(HTTP) client. The premises of the IoT are that (1) any thing with a computing
power (2) can connect to the Internet. While the former premise (1) is hardware-
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related, the latter (2) could be tackled using an appropriate software engineering
approach.

Engineering IoT applications is hard. On the one hand, many stakeholders are
involved (e.g., Security, Business, Network), each using its own tools and methods.
On the other hand, heterogeneity (e.g., languages, protocols) [1] causes, inter alia,
an interoperability problem, by hindering communication between things.

Interoperability is an important milestone, to unlock the full potential of the
IoT [20, 17]. Many approaches tackle the interoperability problem by avoiding het-
erogeneity, either with standards [3, 7] or a layer at runtime responsible for commu-
nication [13, 16].

While standardization is sufficient in a homogeneous context (e.g., HTTP brows-
ers, specific range of things), the challenge of connecting AAA requires a more
generic and inclusive engineering solution that embraces heterogeneity to solve the
interoperability problem. Model-Driven Engineering (MDE) shares this common-
ality (i.e. genericity) with the IoT. Models offer the ability to unify the low-level
concepts at higher-level, i.e. model-level. These models can thereafter be used to
generate various artifacts. For instance, the Unified Modelling Language (UML) is
a generic modeling language to design, using models, any Object Oriented (OO)
application. UML models find their application in illustration purposes, code gen-
eration [18] or test cases generation [15] to cite a few. In this paper, we are heading
towards the same goal, but for the IoT.

Moreover, tackling the problem of interoperability at low-level, i.e. adapting the
code of heterogeneous things to interoperate, tends to be time-consuming and bug-
prone and complicates communication between stakeholders. Whereas, going at the
model-level, offers platform-agnostic abstractions to tackle the problem in a unified
manner.

The contribution of this paper is a model-based methodology to tackle the inter-
operability problem of the IoT that relies on a Domain-Specific Language (DSL)
based on models and a transformation process [22]. Indeed, it consists of achieving
interoperability at the model-level, then during the transformation process, ensuring
that interoperability is implemented in the concrete low-level code.

This paper is structured as follows. Section 2 presents a simple smarthome ex-
ample as an illustrative test case for our methodology. Section 3 presents the DSL to
specify the smarthome network. Section 4 shows how model transformation bridges
the gap between the model-based specification of the network and its concrete im-
plementation. Section 5 provides an overview of the related work. Finally, Section 7
presents the discussion, conclusion and future work.

2 Running Example: A Simple Smarthome

To illustrate our study, we use the example of a simple smarthome (Cf. Figure 1).
It contains heterogeneous things communicating via heterogeneous paths, possibly
indirect path (thicker dashed line in the figure). A path is similar to an edge in
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the communication graph, it offers the possibility to reach a thing via a protocol.
The specification of the behavior of a thing is a statechart (an example is shown
in Figure 1), consisting of a finite number of states and event-based transitions.
Each thing can have states, functions (i.e. sequence of instructions achieving a goal),
properties (i.e. variables containing information about the thing) and ports (i.e. for
sending and/or receiving messages).

In the following subsections, we point out the difficulties to implement this ex-
ample. We identify two main categories of problems that can contribute to better
interoperability if done seamlessly. It should be noted that in the scope of our study,
we presume that common issues proper to distributed systems (e.g. deadlock, syn-
chronization) are either absent or handled by low-level protocols.

2.1 Seamless Networking

The first category consists of connecting things regardless of their implementation
(e.g., languages, protocols). For instance, the Smart Air Conditioner (SAC) needs to
receive the current temperature from the Temperature Sensor (TS) to adjust cooling.
In this exchange, we need to ensure that both things are interoperable[23], i.e. can
communicate either directly or indirectly, regardless of their protocols and/or pro-
gramming languages. Implementing this simple exchange requires ensuring, sepa-
rately, that the TS and the SAC have a way to exchange information, either directly
using the same protocol or indirectly using an intermediary thing. When they use
the same protocol, they may also be programmed using heterogeneous programming
languages, thus leading to repeat the same task (i.e. implementing the protocol) for
two programming languages. Such manual engineering is bug-prone, especially for
large networks. Indeed, bugs may be introduced when linking the SAC and the TS.
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These bugs may be discovered only once deployed, and late software bugs detection
is more expensive [8, 24].

The intrinsic heterogeneity of the IoT creates barriers to interoperability between
ranges. For instance, because of its limited resources the TS cannot send data di-
rectly to the Remote Display (RD), using Message Queuing Telemetry Transport
(MQTT) (a relatively more energy-hungry protocol). We need a bridge between
them. Implementing correctly such bridge is not trivial, as many expertise, plat-
forms, protocols and hidden risks are involved. There is a need for a Cross-Range
Interoperability (CRI) mechanism.

The lack of consensus for a standard, in addition to proprietary technologies,
leads to interoperability issues within the same range. For instance, the Smart Cur-
tain (SC) and the Outdoor Light Sensor (OLS) both support Zigbee, they can there-
fore communicate directly. The Smart Light (SL) supports Z-wave, and needs to go
to the state isOn or isOff according to the OLS sensed light. Although they both
use the same message format and belong to the same range, the SL and the OLS
cannot communicate directly due the incompatibility of their protocols. We need to
use the Gateway (GW), because it supports both protocols, as a pivot for an indi-
rect path (thicker dashed line), to forward the message from the OLS to the the SL.
Implementing this mechanism at low-level is also not always trivial.

These few examples show that such networking, yet simple, can be hard to im-
plement concretely because of the lack of interoperability mechanisms.

2.2 Seamless Smart Scenarios

The second category consists of seamless collaboration, i.e. a thing may impact
the behavior of another thing. By lacking a common representation of the behav-
ior, things cannot interoperate to achieve a smart scenario1. The advantage of a
statechart-based behavior is that it enables controlling the behavior using states ac-
cording to the context. For instance, when the TS is on the state high, the SAC has
to be on the state isOn. Thus, the SAC can adjust cooling according to the TS.

Also, as a thing can provide a function (sequence of instructions), there are
cases where a function may need to be executed depending on the state of another
thing. For instance, when the state of the OLS is medium, the function setInten-
sity(intensityLevel : Integer) of the SL should be executed with the parameter 50
(value for a medium lighting intensity).

In a more complex scenario, we may need to specify that when the One Press
Button (OPB) is on the state isOn, the system should ask the SL to be on the state
isOn, the SAC to execute the function setTemperatureTo(25) and the Door Lock
(DL) to go to the state close.

It is important that the specification of such smart scenarios is not impacted by the
low-level technical details, such as the communication means or the programming

1 The concept of smart scenario refers to the ability to achieve a [smart] goal using multiple con-
textual factors (e.g., states of a thing, properties of a thing, space, time)
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languages that are often heterogeneous. The heterogeneity may distract us from
achieving the interoperability that is enabling these smart scenarios.

3 System Specification

This section describes the specification of the things and of the network to connect
them. A network consists of two activities: specification of the behavior of a thing
(Cf. Subsection 3.1) and specification of the network (Cf. Subsection 3.2).

3.1 Thing Behavior Specification

We presume that the behavior of a thing is specified using ThingML-DSL (TH-
DSL)2 [12]. TH-DSL specifies a statechart-based behavior (Cf. statechart example
in Figure 1), and functions that can be called within a state. TH-DSL provides a
syntax based on the Xtext grammar, representing the textual form of a model, called
ThingML-Model (TH-Model). The latter is based on the Eclipse Modeling Frame-
work (EMF). EMF is a state-of-art standard framework, maintained by Eclipse, to
design models.

TH-DSL offers the concept of external connector to enable a thing to send or
receive a message using a specific serialization format and protocol. The ThingML
Code Generator (TH-CGEN) reproduces the same statechart specified in TH-DSL
as well as the external connector in a target programming language (e.g., C/C++,
Arduino, JavaScript).

It is worth noting that when it is not possible to express an instruction using
TH-DSL syntax, TH-DSL permits to embed low-level code at the model-level. The
TH-CGEN places the embedded code, as such, in the statechart of the target pro-
gramming language. Thus, at worst, expressing low-level concepts from the model-
level is still possible.

In summary, ThingML is useful for us to specify the behavior of a thing in the
form of statechart with a communication interface and the generation of its equiva-
lent in the low-level code using TH-CGEN.

3.2 Primitive Concepts of Networking

We conceived CyprIoT-DSL (CY-DSL)3 [4] for the specification of the network in
an editor. CY-DSL is also based on the Xtext grammar, hence it is a textual repre-

2 https://github.com/TelluIoT/ThingML
3 https://github.com/atlanmod/CyprIoT
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sentation of an EMF model, called CyprIoT-Model (CY-Model). The full grammar
could be found on Github 4. The goal of CY-DSL is to define the primitive con-
cepts to specify a network of things in a unified manner. These concepts are abstract
representations of low-level networking concepts.

EMF offers a mechanism, called inter-model referencing, that enables to use
other EMF models. We use this mechanism to import the TH-Model inside the
CY-Model. Line 1 of Listing 2 shows how we import TH-Model of the SAC. It
consists of a name as identifier (i.e. airConditioner) and the relative path in disk of
the TH-Model (i.e. ”airConditioner.thingml”).

1 user bob
2 user monitor
3
4 network smartHomeNetwork {
5 domain org.atlanmod.smarthome
6 enforce smartPolicy
7 // Instances of things
8 instance myOLS : outdoorLightSensor platform POSIX owner bob
9 instance mySL : smartLight platform POSIX owner bob

10 // Instance of a channel
11 instance lightZigbee:lightChannel protocol ZIGBEE
12 // Binding : Sending (i.e. =>) the sensed light by myOLS to a Zigbee channel
13 bind myOLS.sendingSensedLightPort => lightZigbee{sensedLightPath, logsPath}
14 // Binding : Receiving (<=) the sensed light in mySL
15 bind mySL.receivingSensedLightPort <= lightZigbee{sensedLightPath}
16 ...
17 }

Listing 1 Specification of a network; Sending (=>) and Receiving (<=) Messages via a path

As shown in Listing 1, a network has an identifier (smartHomeNetwork) and a
domain (org.atlanmod.smarthome). Inside the network, we can declare an instance
of a thing (based on the imported TH-Model). An instance consists of an identi-
fier (e.g., myGW, myOLS, mySL), the platform specifying the target programming
language to generate the low-level code by TH-CGEN (e.g., ARDUINO, C/POSIX
based), and if necessary its owner (e.g., bob).

We can also declare an instance of a channel. Listing 2 shows an example of a
channel, containing two paths, where the second is a sub-path of the first. An in-
stance of channel sets a protocol (e.g., MQTT, ZIGBEE). The concept of channel de-
couples the communication of things (path and protocol) from their programming
languages, thus enabling seamless networking at the model-level. The concept of
path offers a uniquely identified way to exchange messages, while a sub-path en-
ables to organize paths in the form of a tree. It is inspired from existing standard
protocols, for instance, in MQTT a message is exchanged via a topic, while in HTTP
via a Uniform Resource Locator (URL). In fact, both (topic and URL) can be uni-
fied under the concept of path. As shown in Listing 2, a path consists of an identifier

4 CyprIoT Gihub > /language/org.atlanmod.cypriot/src/org/atlanmod/cypriot/Cypriot.xtext
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(sensedLightPath), declaration of the accepted message (lightSensorMessage) and the
message serialization format (JSON). Hence, an exchange via a path is transparent,
thus easing detection of incompatibility of channels and messages from the editor.

Inside the network, we can specify to bind a port of an instance of thing to one or
multiple paths (e.g., Line 13 of Listing 1). We can also forward an existing binding
to another path via an intermediary thing. For instance, in Line 11 of Listing 3, we
forward the temperature received by myGW via ZIGBEE to tempMQTTPath, a path of
myMQTTChannel that is using MQTT. Then, we bind the port receivingTemperaturePort
of myRD to receive the message sent to tempMQTTPath. myGW plays the role of an

intermediary thing between myOLS and myRD. The same principle is used to for-
ward messages from the OLS (supporting Zigbee) to the SL (supporting Z-wave) as
indicated in the running example.

This subsection shows that we can specify a network from an editor, using prim-
itive concepts, without being distracted by the low-level technical details.

3.3 Policy Specification

Generally speaking, the purpose of a policy (Cf. Listing 5) is to control the behavior
of a network. We focus in this paper on its ability to specify smart scenarios. A
policy consists of a set of rules. A rule (Cf. syntax in Listing 4) aims to control in
a readable way the network using its inner elements (e.g., channels, paths, users,
instances). Specifying these rules at the model-level allows to decouple the business
logic and safety from the concrete implementation (source of heterogeneity). We
show a few examples of such rules in this subsection.

Figure 5 shows a policy. It consists of an identifier (i.e. smartPolicy) and two rules.
This policy is enforced in smartHomeNetwork (Line 6 of Listing 1).

Rule in Line 2 specifies that the state isLow of myOLS (i.e. instance of the OLS),
triggers mySL (i.e. instance of the SL) to be at the state isOn (for an optimal light-
ing). Rule in Line 3 specifies that the state isHigh of myTS (i.e. instance of the TS),
triggers the function setTemperature(25) of mySAC (i.e. instance of the SAC) (thus,
setting the temperature to 25◦C when it’s warm).

Specifying a policy is readable and relieved from the low-level technical de-
tails. A policy can serve various purposes [25] (e.g., communication control, ad-
ministrative goal), we present only its smart aspects as it is the focus of this paper.

1 thing airConditioner import ”airConditioner.thingml”
2
3 channel lightChannel {
4 path bobSmartHome
5 path sensedLightPath (lightSensorMessage:JSON) subpathOf bobSmartHome
6 }

Listing 2 Importing a thing (Line 1); Declaring channel, path and sub-path (Line 3 to 6)
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1 network smartHomeNetwork {
2 domain org.atlanmod.smarthome
3 ...
4 instance myGW : gateway platform ARDUINO owner bob
5 instance myRD : remoteDisplay platform JAVASCRIPT owner monitor
6 instance myMQTTChannel:RDChannel protocol MQTT(server=”mqtt.atlanmod.org
7 :1883”)
8 // ”lightBind” is an optional identifier for the bind
9 bind lightBind : bind myGW.sensedLightPort <= lightZigbee{sensedLightPath}

10 // Forwarding the binding ”sensedLightBind” to an MQTT channel
11 forward lightBind to myMQTTChannel{lightMQTTPath}
12 // Receiving Sensed Light in the Remote Display via MQTT
13 bind myRD.receivingLightPort <= myMQTTChannel{lightMQTTPath}
14 }

Listing 3 Forwarding an existing binding (continuation of Listing 1)

1 rule <Subject> <ActionType>:<Action> <Object>

Listing 4 Rule syntax

Ensuring its automatic enforcement is the concern of the Transformation Process
(T-PROCESS), assumed by experts. Experts are responsible for the mapping of the
abstract concepts at the model-level into their concrete representation at the low-
level.

4 Transformation Process

Model-to-Model Transformation (M2MT) is a process that takes one or more in-
put models to produce automatically a target model based on transformation rules
(usually specified by experts).

M2MT allows us to adapt the TH-Model (i.e. the behavior of the thing) according
to the CY-Model (i.e. the specification of the network) at the model-level. It takes
information from the CY-Model and adds only what is needed to the TH-Model, so
as to be conform to the specification of the network. As this process takes place at
the model-level (using abstract concepts), interoperability is preserved. The trans-
formed TH-Models are thereafter used to generate their equivalent in the low-level
code using TH-CGEN.

1 policy smartPolicy {
2 rule myOLS−>state:isLow trigger:goToState mySL−>isOn
3 rule myTS−>state:isLow trigger:executeFunction mySAC−>setTemperature(25)
4 }

Listing 5 Go to a state (Line 2) and execute a function (Line 3) according to another thing
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As shown in Figure 2, we use AtlanMod Transformation Language (ATL)5 for
M2MT, a state-of-the-art transformation tool. ATL rules are depicted using Graph
Transformation Rules (GTR) for illustrative purposes. The left-hand side (LHS)
shows the TH-Model before transformation, while the right-hand side (RHS) shows
the TH-Model after transformation. All the elements added in the RHS (in white)
are concepts of the TH-DSL syntax.

We show three examples of M2MT: (1) adding the communication interface ac-
cording to the network (i.e. protocol and path), (2) forwarding an existing binding
and (3) applying the trigger:executeFunction rule. (1) and (2) tackle the networking
problems while (3) tackles the smart scenarios. It is worth noting that these exam-
ples are meant to show the principle of M2MT. We developed other M2MTs aiming
to address other interoperability issues (e.g., applying the trigger:goToState rule,
communication control), that we could not include for space reasons.

The upper part of Figure 3 depicts the GTR of (1). On the RHS, elements in white
(i.e. MyExternalConnector, MyProtocol and some annotations) are added according
to the specification of the network in the CY-Model. An external connector links a
port to a protocol and uses annotations for the configuration of the protocol (e.g.,
for MQTT : broker address, port, topic, serialization format). Indeed, a bind con-
sists of adding MyExternalConnector to the TH-Model along with the connection
information specified in the CY-Model. TH-CGEN reproduces the equivalent of this
external connector in the low-level code. For instance, for myRD in Listing 1, we add
the external connector to connect the port receivingTemperaturePort via the protocol
MQTT (with the configuration: addressAnnotation=”mqtt.atlanmod.org”, serializ-
erAnnotation=”JSON” and the portNumberAnnotation=”1883”) through the path
(i.e topic) pathAnnotation=”tempMQTTPath”. This gives TH-CGEN all the infor-
mation needed to generate the low-level code containing the correct communication
interface of myRD.

If the target programming language is C/Posix and the communication protocol is
MQTT then TH-CGEN generates a statechart communicating via MQTT in C/Posix
language, the same applies in the case of Java or Arduino to cite a few. Thus, as the
low level code is a mere translation of the TH-Model, interoperability is preserved.
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Fig. 2 Generation of network artifacts using the T-PROCESS; Modeling Zone: specification of the
network and things; Expert Zone: interpretation of abstract concepts into low-level concepts by
experts for the generation of artifacts

5 https://www.eclipse.org/atl/
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The T-PROCESS applies this M2MT to all things. This transformation enables to
connect things in a network.

The lower part of Figure 3 depicts the GTR of (2). To forward the binding cor-
responding to MyExternalConnector (via MyProtocol using MyPort), we create a
New ExternalConnector with a New Protocol (i.e. protocol to be used for forward-
ing). We omitted adding the annotations (that are similar to (1)) of the New Ex-
ternalConnector and New Protocol to improve the readability of the GTR. The
transformation looks for any state waiting to receive the message to forward (i.e.
ReceiveMsgEvent waiting for Message) and adds the action MsgSend to the event.
MsgSend consists of sending the received message as such using the New Exter-
nalConnector (via New Protocol using New Port that accepts the same received
message). This transformation is useful to enable seamless CRI pointed out in the
running example, via an intermediary thing.

Figure 4 depicts the GTR of (3) (Cf. Line 3 of Listing 5). To enforce this rule
two M2MTs are applied, one to the subject thing and the other to the object thing.
This transformation adds the necessary elements to make the subject thing sends
(MessageSendAction) the message (CommandMessage) informing that it entered
(OnEntry) the state in question. An event waits for the message (ReceiveMsgEvent),
inside all states of the object thing. An event is added to all states to ensure that the
function can be executed regardless of the current state of the object thing. Once
the object thing receives the message, it executes the function (ExecFunction) with
the specified Parameter in the rule. We try to send the message using an existing
path between the two things, i.e. if they are already expected to exchange some
information via a path. If no direct path exists between them, we try to find an
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indirect path to send the CommandMessage. This transformation enforces a smart
scenario at the model-level. The trigger:goToState rule uses the same principle, but
adds insides all states of the object thing a transition to the state to go to (instead of
a ExecFunction).

It is important to note that the transformed TH-Models ”interoperate” at the
model-level as only abstract and unified concepts (e.g., port, path, bind) are used.
TH-CGEN (Cf. Figure 2) reproduces the same concepts at the low-level code for
each TH-Model (i.e. same statechart, same communication interface) according to
the specified target programming language for each thing.

5 Related Works

Many approaches tend to contain the interoperability problem using standardization
(e.g., standard architecture, standard platform) [6, 21, 10, 9, 5]. Standards are not
quite inclusive, as certain things would not afford their cost (e.g., cost of adoption,
computing resources required) [14]. We believe that this is not a scalable strategy
for the IoT to reach its ultimate goal, i.e. connecting AAA. We propose a generic en-
gineering methodology based on MDE that is embracing heterogeneity and aiming
to include any possible networking scenario ultimately.

ThingML [12] abstracts the heterogeneity of things by representing their behav-
ior as a statechart, using TH-DSL. The TH-CGEN generates the low-level code
for various programming languages (e.g., JAVA, C, Javascript). However, it only
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proposes to connect an independent thing (i.e. by presuming that it is not part of
a network) using an external connector to tackle networking. We propose abstract
networking concepts to design a network of things.

Node-Red [13] allows to connect things, APIs and online services using a
browser-based editor. It presumes that the nodes are already deployed. If Node-
Red is used as an orchestration tool (i.e. wiring existing things), then it constitutes
a single point of failure. In addition, it is rather hungry and could not be deployed
in small devices. Our methodology aims to tackle the problem at the engineering
phase and covers theoretically any device without imposing a standard or an addi-
tional infrastructure to deploy at runtime.

The fifth generation of cellular network (5G) covers connectivity of resource-
constrained devices [19], namely for Low Power Wide Area (LPWA), but sill re-
quires using different protocols (NB-IoT, eMTC) that fit best the requirements of
this category of devices. Moreover, standardization takes time and has high upfront
costs to be adopted at large scale by providers. Indeed, heterogeneity will undeni-
ably persist, hence the need to embrace it instead of containing it in a standard.

6 Evaluation, Results & Discussion

We tested our methodology on networks ranging from 1 to 50 things. As our focus
is on networking, we presume that the behavior of things is not part of this evalua-
tion. We compare only the Lines of Code (LoC) needed for networking and smart
scenarios, between our model-based methodology, and traditional engineering. We
use C based things with MQTT as a communication mean to represent traditional
engineering. C and MQTT are among the most used technologies in the IoT [11].
Our results show that, we save for each thing, 298 LoC (CY-DSL: 11 vs. C: 309)
with M2MT (1), 287 LoC (1 vs. 288) with (2) and 164 LoC (3 vs. 1676) with (3),
in addition to the benefit of having a specification of the network and a traceable
transformation process. LoC correspond to the elements in the white of the GTRs
that are added automatically after transformation. The more things are in the net-
work, the more LoC are saved, and consequently time and bugs. With traditional
engineering, we need to connect each thing separately (automated by (1) and (2)),
and eventually make it part of a smart scenario (automated by (3)) as well as dealing
with the low-level heterogeneity.

We provide an evaluation based on the number of LoC suggesting the engineering
time that may be saved. As a future work we plan for an evaluation based on a real
engineering experience. Also, the current solution requires ThingML but we are
currently working on reverse engineering low-level code into a TH-Model.

Solving the interoperability problem in the IoT for any possible scenario is diffi-
cult. We showed that MDE offers promising tools to, at least, unravel the problem
rigorously. Thus, enabling easier networking and smart scenarios. MDE could help

6 Subject thing: 66 LoC - 0bject thing: 101 LoC
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to contain the problem without scarifying the freedom to use the technology that
works best for the thing.

7 Conclusion

The interoperability problem of the IoT causes poor collaboration between things,
because of difficulties in networking and smart scenarios between heterogeneous
things. Heterogeneity is intrinsic to the IoT. There is a need to embrace it to solve
the interoperability problem. In that sense, we proposed a model-based engineering
methodology that abstracts the low-level networking concepts (source of hetero-
geneity) into more inclusive concepts based on models, thus freeing up the IoT ap-
plication from heterogeneity, and consequently leading to seamless interoperability
at the model-level. The methodology makes the engineering more rigorous, prevents
bugs earlier and saves times.

In the future, we plan to add more abstractions to the CY-DSL (e.g., spacio-
temporal features), improve the T-PROCESS to interpret more complex network-
ing scenarios, develop mechanisms to prevent common distributed systems issues
at low-level (e.g. deadlock, synchronization) and support the generation of textual
artifacts (e.g., documentation, configuration file).
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10. Ivan Gojmerac, Peter Reichl, Ivana Podnar Žarko, and Sergios Soursos. Bridging iot islands:
the symbiote project. e & i Elektrotechnik und Informationstechnik, 133(7):315–318, 2016.

11. Eclipse IoT Working Group et al. IEEE, Agile-IoT EU, and IoT Council. 2018. IoT Developer
Survey 2018.(2018).

12. Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. Thingml: a language and
code generation framework for heterogeneous targets. In Proceedings of the ACM/IEEE 19th
MODELS Conference, 2016.

13. IBM Emerging Technologies. Node-RED. A visual tool for wiring the IoT, 2016.
14. Raphael Kim and Stefan Poslad. The thing with e. coli: Highlighting opportunities and chal-

lenges of integrating bacteria in iot and hci. arXiv:1910.01974, 2019.
15. Young Gon Kim, Hyoung Seok Hong, Doo-Hwan Bae, and Sung Deok Cha. Test cases gen-

eration from uml state diagrams. IEE Proceedings-Software, 146(4):187–192, 1999.
16. K Kreuzer et al. Openhab-empowering the smart home. Openhab. org, Tech. Rep., 2013.
17. James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques

Bughin, and Dan Aharon. Unlocking the potential of the internet of things. McKinsey Global
Institute, 2015.

18. Iftikhar Azim Niaz and Jiro Tanaka. Code generation from uml statecharts. In Proc. 7 th
IASTED International Conf. on Software Engineering and Application (SEA 2003), Marina
Del Rey, pages 315–321, 2003.

19. Maria Rita Palattella, Mischa Dohler, Alfredo Grieco, Gianluca Rizzo, Johan Torsner, Thomas
Engel, and Latif Ladid. Internet of things in the 5g era: Enablers, architecture, and business
models. IEEE Journal on Selected Areas in Communications, 34(3):510–527, 2016.

20. Keyur K Patel, Sunil M Patel, et al. Internet of things-iot: definition, characteristics, archi-
tecture, enabling technologies, application & future challenges. International journal of engi-
neering science and computing, 6(5), 2016.
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