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Path Planning of the Manipulator Arm FANUC Based on Soft 
Computing Techniques 

L. Bouhalassa1, L. Benchikh2, Z. Ahmed-Foitih3, K. Bouzgou4,  

Abstract –In this paper, direct and inverse geometric models for a 6 degrees of freedom 
manipulator robot arm are developed, and a set of homogeneous matrices are generated by Denavit-
Hartenberg formalism. Moreover, a path planning method based on soft computing techniques is 
presented, which consists of using the neural network to model the end-effector workspace, and then 
determining the optimal trajectory to reach a desired position. The optimization of the trajectory 
depends on the minimization of the cost function, defined by the sum of two energies. The first one 
is the collision penalty (Ec) generated by each obstacle shape; the second one is the trajectory length 
penalty (El). Four steps are considered; at first, the configuration of the robot workspace where any 
assumption is taken into account. The robot is assimilated to a particle that moves inside a small 
two-dimensional space, and the obstacle is a polygon. Second, the Multilayer Perceptron Neural 
Network (MLP neural network) is used for the robot workspace modeling. Model block inputs are 
robot’s previous position values and the outputs are robot’s following position values. Then, the 
proposed approach is applied to optimize the cost function and to determine the end-effector 
trajectory in case of obstacles. The obtained result is a smooth trajectory, which represents robot 
motion. Finally, the presented approach is validated on a FANUC robot arm in a virtual 
environment, where the simulation results show this approach efficiency. 

Keywords: Artificial Intelligence, Neural Network, Path Planning, Manipulator arm, Geometric 
Modeling, Kinematic Modeling, FANUC Robot. 
 

Nomenclature 
0

EA  Orientation matrix of frame  RE/R 
k
jC  Degree of collision of the j-th point with 

obstacle k 

dj  Link offset along previous z to the common 
normal 

re  Error 
E  Translation matrix of the coordinate system 

TE  Total energy 

cE  Energy of the collision 

lE  Energy of the length f the trajectory 
f  Activation function 
p  Number of subdivision 

mIM  Input of neural hidden layer 
IT  Input of neural output layer 
k  Number of obstacles 

jl  Distance between two points 
N  Number of the points in the trajectory 
Nbr  Total number of obstacles vertices 
OT  Output of neural output layer 

mOM  Output of neural hidden layer 
P( x, y )  Point 
[   x y zP P P ]T End-effector position vector 

 
 

 
 

iq  Joint variable of the i-the link   
Ri  Link length of the common normal 

mSM  Bias of the hidden layer 
ST  Bias of the output layer 

T  Parameter appropriate for the neural 
network 

o
kT  Transformation matrix 

l cw ,w  Weights of the length, collision 

x,m y,mw ;w  Weights of the input layer 
x, y  Coordinates of the point (input layer) 

min minX ,Y  Minimum X, Y coordinates 

max maxX ,Y  Maximum X, Y coordinates 

j jx , y  Coordinates of the j-th point 

iα  Twist angle about common normal, from 
old z axis to new z axis 

iθ  Joint angle about z, from old x to new x 
 
  



I. Introduction 
The past decade has seen a renewed importance in the 

automatic path planning of robots without collision in the 
environment and it has been the subject of a very 
important number of searches. Several techniques of 
planning have been proposed in literature. However, there 
is not a general method to solve a planning problem of 
robots. The path planning is the determination of the 
trajectory, which allows the robot to move from the start 
position to the target without collision with any obstacles 
along the trajectory. The optimization of the function cost 
is expressed by two terms; the first one is the distance 
crossed by the robot between two position points (start and 
target). The Second one is the time or the energy 
optimization necessary for the execution of the 
manipulator displacement. 

The path planning of the end-effector can be defined as 
a sequence of translation and rotation from the starting 
position to the desired one, while avoiding static and 
dynamic obstacles in the workspace of the manipulator 
[1]-[2]. 

Therefore, several path planning methods in the 
literature are presented; the most frequently used is a 
decomposition method cited in[3]-[4], when the 
configuration of the robot arm is defined and the free 
spaces of that configuration can be divided into small 
regions called cells.  

Robots designed to assist the human operator require 
various features such as stability, human-machine 
interface, obstacle avoidance, and path planning. Thanks 
to extensive research on conventional techniques, path 
planning offers a new development path. Various 
trajectory planning techniques have been compared for 
real application in an internal environment in the recent 
works, as shown by Galceran [5], Pol [6],Bharadwa [7] 
and neural networks have been shown to be reliable 
alternatives to traditional methods by Li in  [8], and Ren 
and al in [9]. 

The objective of the path planning approach is to 
provide a collision-free path to reach the desired position 
of the robot end-effector in optimal conditions. The 
potential field method is presented in [10]-[11]-[12]. 
Therefore, authors in [13] have used a combination of 
parallel navigation and potential fields guidance methods 
and then performance metrics have been improved for a 
mobile robot rendezvous. In addition, The sub-goal 
method is presented  in [14]-[15], sampling-based 
methods in [16], neural network has been mentioned in 
[17], Distance Wave Transform can be found in [18], a 
Start Algorithm is tested in [19], where a D start algorithm 
is presented by authors in [20]. However, a modified A 
start algorithm is presented in [21]. 

Two types of trajectory planning are mostly used in 
practice, i.e., the path planning and the planning of 
movement of robot presented in [22]-[23].Therefore, in 

this work, the first type of Path planning will be 
introduced. 

The classic methods of the most used path planning are 
the visibility graph algorithm and the artificial potential 
field algorithm. However, the former lacks flexibility and 
the latter is prone to suffer from difficulties with local 
minima [17]. 

Since manipulator robots are used in the industry where t
he environment is very inaccessible and obstacles are des
cribed in 3D, these classic methods cannot provide reliab
le short time answers [24]. 

Recently, the neural network is considered an effective 
way to generate a trajectory for a manipulator robot 
particularly [25]. Using neural networks for the control of 
robot manipulators has attracted much attention and 
various related schemes and methods have been proposed 
and investigated [26]-[27].  

In this paper, a neural networks-based approach is 
introduced for a robot path planning by avoiding 
collisions. The developed algorithm is used to find a 
shortest safe trajectory for the robot and to optimize the 
function cost. The efficiency of the proposed neural 
network in solving the path planning problems is clearly 
demonstrated through a simulation applied on an optimal 
trajectory for the FANUC robot end-effector [28]. 

This paper is structured as follows. Section II describes 
the FANUC LR MATE 200iB modelling. Section III 
presents the two developed algorithms, first one for 
optimal trajectory extraction, and the second one for 
subdivision method. In Section IV, simulation tests are 
performed to validate the proposed approach. Lastly, 
conclusions and future work are drawn in section V. 

II. FANUC LR MATE 200iB Modelling 
In order to show the efficiency of the proposed 

approach, the versatile FANUC LR MATE 200iBcan be 
used. This manipulator is compact and it is a modular 
construction, and it is a tabletop robot that can be used for 
a variety of applications. The 200iB robot is electric servo-
driven and has a 6-Dof revolute joints and with many 
different mounting capabilities, and it has the ability to flip 
over backward for a larger work envelope and it provides 
the maximum flexibility. 

Additional benefits include joint velocity that can reach 
up to 480 degrees/sec, the end-effector built on the wrist 
design, fail-safe brakes on the second and third axis, and 
an integral internally mounted solenoid valve pack. The 
brushless AC servomotors and the harmonic drives on all 
the axes need minimal maintenance. In addition, there are 
sealed bearings and drives, and internally installed cables 
and additional safety tooling services [29]. 

Moreover, FANUC manipulator arm is the most used in 
the manufacturing tasks and in academic research, due to 
the kinematic of the wrist that is a RRR type and its three 
revolute joints with intersecting axes, equivalent to a ball 



socket. In [21] the FANUC 200iC is used by authors to 
define singularity regions and studying the Jacobian 
matrix determinant. In addition, the recursive Newton-
Euler method and the vector multiplication method are 
used for the Jacobian matrix generation and validation. 

Whereas, in [30], authors use the same manipulator arm, 
they determinate singularity regions by using a numerical 
method and they validate the results in the virtual reality 
environment developed in the VRML and Matlab 
interface. 

In [31], the complete forward kinematic model using 
analytical and numerical approaches is given. The 
manipulator arm consists of a FANUC Robotics 6-Dof 
robotic arm LR MATE 200iC. Calculations are extracted 
and all the results are checked and compared with the 
software data generated by the robot. 

In this paper, the FANUC LR MATE 200iB is used. The 
structure and the architecture of this manipulator are 
similar to the 200iC and the results of the proposed method 
and simulations can be tested in the real-time in the Lab. 
Figure 1 shows FANUC LR MATE 200iB robot 
dimensions and its workspace. 

 
Figure1:FANUCLR MATE 200iB robotdimensions and 

its workspace 

With 

d2 = 150mm, d3 = 250mm, d4 = 75mm,r4 = 290mm, 
r6=80mm 

From a methodological viewpoint, firstly, the zj axes 
will be placed on the joint axes, and then the xj axes, 
geometric parameters of the robot are determined. 
Therefore, frames placement of the robot arm is shown in 
Figure 2, [32]-[33]. 

 
Figure2: FANUC robot architecture 

Axes 4,5 and 6 are concurrent, the orientation of the 
end-effector is presented, and it has not affected its 
position. For that effect, E matrix that represents the 
attitude of the attached tool with respect to the end-
effector frame can be defined, where a r value relative to 
the tool length is added. The passing from z1 to z2is done 

with a 
2
π rotation angle, around 1x  axis, therefore, 2θ

becomes 2 2
πθ + . The passing from 1 2x x→ is done with

2
π , around 2Z  axis. For more details, [1] should be 

studied. 

The coordinate axes for the robot allow the Denavit-
Hartenberg parameters presented in table I below to be 
obtained. 

TABLE I: Denavit-Hartenberg parameters of the 
FANUC robot 

Joint i αi di θi ri 

1 0 0 θ1 0 

2 90 d2 θ2+π/2 0 

3 0 d3 θ3 0 

4 90 d4 θ4 r4 

5 −90 0 θ5 0 

6 90 0 θ6 r6 

The sequence of the link coordinates assigned by the 
Denavit-Hartenberg convention is again transformed from 
the coordinate frame i to (i–1) where i is the joint, then 
using homogeneous coordinate transformation matrix 
given in the next subsection. 



II.1. Geometric model of the robot 

The homogeneous transformation matrices are defined as  
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With ci=cos(θi) and si=sin(θi) and E=0TE,is the 
transformation matrix between the attached end-effector 
frame with respect to the reference frame. 

II.2.1 Direct geometric model 

The direct geometric model (DGM) is the set of 
relations that express the position of the end-effector [34], 
i.e. the operational coordinates of the robot, according to 
its joint coordinates. In the case of a simple open chain, it 
can be represented by the matrix transformation 0

kT
defined as the following equation 

0 1

1

i
k i ii

T k T q−

=
=  (2) 

The transformation matrix from R0 frame to R6frame 
can be written as the successive multiplication of all the 
elementary matrices for each axe from the manipulator 
base to the end-effector attached frame; it can be written 
as 

0 0 1 2 3 4 5
6 1 2 3 4 5 6=T T T T T T T  (3) 

If  0
6

f
ET T E= × , where E is the transformation 

matrix from the tool frame to the end-effector frame, thus
 f

ET  can be written as follows: 
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(4) 

After computing and identifying the terms of the two 
matrices of the equation (1) and (2), the following 
expression can be defined 

( ) ( )1 3 4 1 3 4f
ET : , T : ,=   
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II.2.2 Inverse kinematic model  

The inverse problem is to calculate the joint coordinates 
corresponding to a given situation of the end-effector [19]. 
When it exists, the form that gives all the possible 
solutions constitutes the one called the inverse kinematic 
model (IKM). 

Three calculating methods can be defined 

- The Paul’s method. 

- The Pieper’s method. 

- The General method of Raghavan& Roth. 

In this case, Pieper’s method is suitable for FANUC 
robot [33]-[34].   

• Calculation of 1 2 3, ,θ θ θ  

The desired position and the orientation of the end-
effector can be written as a homogenous transformation 
matrix; it can be defined as follows: 

0

0

0 0 0 1

 
 
 =  
 
  

x

E y

z

p

A p
U

p
 (6) 

Where 0
EA is the (3x3) direction cosine matrix that 

describes the orientation of the end-effector attached 
frame and the last column of that matrix presents its 
position expressed in the arm base frame. 0U is defined 
as an elementary matrix multiplication and a matrix that 
defines the attitude of the attached tool to the end-
effector frame. It can be written as 

0 1 0
0 6 0 6

−= ⇒ =U T .E U .E T  

[ ] [ ]1 1
0 0 60 0 0 1 0 0 0 1=T TT .U . T .  

[ ] [ ]1 1
6 40 0 0 1 0 0 0 1=T TT . T .  

 

The position of the end-effector is defined just with three 
first angles. Furthermore, the angles of the wrist give the 



end-effector orientation; only using a numerical method 
under the Matlab Software, the set of the following 
equations can be presented 

( ) ( )

( ) ( )
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Where ( ) ( )2 3 2 32 3 2 3c cos( ),s sin( )θ θ θ θ− −= + = +  

By using the 2nd expression of (7), 1θ can be 
computed with a terms simplification of  

1 1 6 1 0x ys P s r c P− − + =  

 

Thus, the first angle 1θ can be written as follows 
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ATAN2 is the Matlab define function that gives the 
Argument Arctangent for angle. From a 1st equality of (7), 
the following equation can be written 
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Thus, the 1st and 3rdexpression become 
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From the 1st expression of (9), 2θsin( )  is computed as  
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s
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In addition, from the 2nd expression of (7), 2θcos( ) is 
obtained and can be written as 
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In order to compute 3θ , the following equation can be 
used 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2 2 2 2 2
3 2 4 4 4 42 3 2 3 2 3 2 3

4 42 3 2 3

2 2 2 2 2 2 2
3 2 4 4 42 3 2 3 2 3

4 4 42 3 2 3 2 3

2 2 2 2 2 2
3 4 4 4 42 3 2 3 2 3

2
4 4 4 42 3

25

2 2

2

2 2

2 2 2 2

z z

z

z z z

d s r c d s r d c s A

Ar c Ad s

d s P d c P d c r s

P r s r d c s

d c r d s r d c

Ar P d s Ad P r P

− − − −

− −

− − −

− − −

− − −

−

 = + − +

− +

 = + − +
+ +


= + + + +


− − + − +

 (12
) 

The simplified expressions can be defined for a simpler 
computation 
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In (12), the following is replaced: 

( ) ( )2 3 2 3 0Xc Ys H− −+ + =  

The equation (According to c(2-3)) of the second degree 
admits two real solutions when s(2-3)=1+ c(2-3)

2and, if 
0∆ ≥ with: 
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Substituting these results in equations (10) and (11), the 
values of the second and the third joint angle can be found 
and written as 

( ) ( )( ){ 3 22 3 2 3

3 3

2

2

θ θ

πθ θ
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
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The wrist angle values 4 5 6, ,θ θ θ will be computed when the 
previous step is finished. Therefore, the values of the first 
three joint angles are found, and 1 2 3θ θ θ, , , can be 
substituted in the three according transformation matrix. 
Furthermore, 0

3T matrix is known and the following 
expression can be written: 
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By identifying, the following expression can be written 
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Therefore, the value of 4θ can be computed as follows 
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Thus, the last joint value that consists of the rotation of the 
wrist can be computed and written as  
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III. MLP Neural Network approach 
As a highly parallel distributed system, neural network 

provides a great possibility to solve the problem of high 
real-time requirements of robot system. Moreover, this 
system is applied to intelligent autonomous mobile robot 
navigation and path planning [35]. The developed method 
to solve the path planning problems uses the neural 
network for modeling the robot environment and for 
defining the trajectory that the robot can follow without 
any collision with obstacles, where the energy function is 
used. The sum of two energies, the collision energy 
function (Ec) generated by each obstacle shape and the 
length trajectory energy function (El), is used as the 
optimization cost function. 

The development of the proposed method is as follows. 
Firstly, a configuration of the robot environment is made; 
after that, the path planning and the extraction of the 

trajectory by the Multilayer Perceptron Neural network 
will be started. Finally, the FANUCend-effector control is 
programmed. 

III.1. Configuration of the environment  

The manipulator arm is supposed to move in the 
determinate workspace, and it is described below as 

- The robot is assimilated to a particle that moves in a 
limited two-dimensional space (2D). 

- The static obstacle in the workspace is described as 
polygons (Figures 3.a. and 3.b.). 

 
a 

 
b 

Figure3: 3-D configuration of the obstacle and its 
projection in the (x,y) plan 

III.2. Planning and extraction of the robot trajectory 

The Multilayer Perceptron Neural Network (MLP 
neural network) is used in this paper and it is depicted in 
Figure 4. The MLP neural network is a feed-forward 
layered network of artificial neurons, where the data 
circulates in one way, from the input layer to the output 
layer. It contains three layers: input, hidden and output. 
The layers are connected by synaptic weights. The MLP 
neural network learning process adapts the connections 
weights in order to obtain a minimal difference between 
the network output and the desired output. Several 
algorithms are used for the learning step, but the most used 
is called back-propagation (BP) algorithm. It consists of 
four stages: initializing weights, feed forward, back 
propagation of errors and weight update. 

Each obstacle is described by the Multilayer Perceptron 
Neural Network, and it is represented by a set of linear 
inequalities, so that the points in the obstacle will satisfy 
all the inequalities limits. 

 
Figure 4: MLP neural network model 



Two nodes of the input layer represent coordinates x 
and y of the given path point. The number of neurons in 
the hidden layer is equal to the number of obstacle 
vertices. Connection weight coefficients of the input layer 
and the hidden layer are equal to the x and y side of the 
inequality. The coefficient of each node in the hidden layer 
is equal to the constant term in the corresponding 
inequality. The connection weight from the hidden layer 
to the top layer is 1, and the bias of the top node is taken 
as the number of obstacle vertices decreased by 0.5. The 
following equation describes this neural network model: 
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( )
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m m
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OM f IM
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=

 =

 = +

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The sigmoid function is selected as the neuron activation 
function [36] shown as follows: 

1
1

f
exp( x/ T)

=
+ −

 (17) 

Figure 5 shows the description of the square shape as an 
obstacle 

 
Figure5:Obstacle vertices coordinates(C point) 

The point P(x,y) inside the obstacle can be describedwith 
the following equation 
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The biases of the hidden layer are: 
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The weights from the input layer to the hidden layer are 
introduced as  
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From equations (19) and (20), mIM is expressed as 
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The neural network model corresponding to the example 
is shown in Figure 6. 

 
Figure 6: MLP neural network environment model 

The collision penalty function of a path is defined as the 
sum of the collision penalty functions of each path point, 
and the collision penalty function of the point is obtained 
by representing each obstacle in its neural network. The 
neural network model is active when the output value is 
equal to 1, and if the point P(x,y) is inside the obstacle, 
otherwise, the output is equal to 0.  

The optimization of the trajectory depends on the 
minimization ofthe cost function, defined by the following 
energy function 

 = +T l l c cE w E w E  (22) 

Where 1+ =l cw w ; lE is the linked energy to the trajectory 
and it is written as 
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cE is given by the following expression 
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Minimizing equation (22), the optimal trajectory can be 
found between two positions (start and goal) without 
collision and with any obstacles. Thus, it is a simple time 
derivative of TE , written as 
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Whereη is an adaptation gain, equation (25) can be 
rewritten as: 
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When 0
.

jx → and 0
.

jy → , TE converges to its minimum. 
In other words, when all the points of the trajectory stop 
moving, there is no collision and the trajectory is the 
optimal one. 

Finally, equation (26) becomes 

( )

( ) ( )( )
( )

( ) ( )( )

1 1

1 1

1 1

1 1

2 2

2 2

.

j l j j j

k M
k' k ' k

c j m xmj
k m

.

j l j j j

k M
k' k ' k

c j m xmj
k m

x w x x x

w f IT f IM w

y w y y y

w f IT f IM w

η

η

η

η

− +

= =

− +

= =

= − − +

 
−   

 

= − − +

 
−   

 

∑ ∑

∑ ∑

 (28) 

Where 'f is given by the following expression 

( ) ( ) ( )1 1'f . f . f .
T

= −    (29) 

The first member of equation (28) in the right is for the 
path length optimization, and the second one, is for the 
obstacle avoidance. 

The extraction of the optimal trajectory is summarized 
by the following algorithm 

 

Algorithm 1: Optimal trajectory extraction 
 Start 
1: Set start and goal positions of the robot 

( ) ( )1 1 N Nx , y ; x , y respectively. 
2: The coordinates of the points of the initial 

trajectory (straight line) are described by the 
following equation: 
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= − − − +
 (30) 

3: For the points inside the obstacle, the calculation 
is performed according to equation (28). 

4: For the points outside the obstacle, the calculation 
is continued only to minimize the length of the 
path, using the following equation: 
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5: Test the convergence; equation (27) is used as a 
condition for termination of the calculation. 

 End 

The disadvantage of this method is the computation 
time, which depends on the number of the points of the 
initial trajectory. Increasing the number of the points also 
increases the computation time. In order to solve this 
problem, the subdivision method is used[23].The principle 
of this method can be written as the following algorithm  

Algorithm 2: The subdivision method 
 Start 

1: Set start and goal positions of the robot                                                               
( ) ( )1 1 N Nx , y ; x , y respectively. 

2: Set mid-point ( )c cx , y  between the start and goal           
positions. 

3: For the mid-point ( )c cx , y inside the obstacle, the 
calculation is performed according to the equation 
(28). 

4: Adding a new point in between every consecutive 
pair of points, the new points are outside obstacle, 
the calculation is continued using the equation 
(31). 

5: Testing the convergence. 
 End 

For the fifth step of algorithm (2), the following equation 
can be used 

1 0 25re error / ( . p )〈 + ∗  (32) 

Where 

( )2
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j
j

error f IT / N
=
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For p=6, trajectory with 65 points is given. 

  



IV. Results 
This paper aims to validate the path planning applied to 

the 6-Dof robot arm regarding different works as the 7-
Dof redundant robot arm used in [38]. Furthermore, this 
work uses a 6-Dof robot with the development of an 
inverse kinematics model based on a numerical approach 
and a neural network method with several layers to cover 
all the possible cases and the singular positions. 

Several works will focus on the shortest path problem of 
manipulator path planning of 2-Dof robot arm without 
taking into account the best way to reach a desired position 
[39]. In this case, the approach presented in this paper 
deals with several improves of the path planning, with 
respect to the short time, the best trajectory and the 
avoidance of singular positions. 

Obstacles are usually avoided in the case of manipulator 
robots when viewing the obstacle in a 3-D environment. 
The approach presented in this paper will decrease and it 
deals a 3-D space to the 2-D plane space [40]-[41]. 

A manipulator arm used is an industrial robot. Its main 
task is the manufacturing and it is necessary to avoid 
objects and tools when realizing trajectory missions. 

Unlike other systems, from 2-Dof to 5-Dof manipulators 
used in laboratories for academic research, the presented 
approach has been implemented on an industrial robot 
according to restrictive technical specifications. 

The main contribution of this work is based on a simple 
approach implemented in specific dimensions, which can 
be tested, with any robot in all the dimensions. 

In this section, simulation results obtained by applying 
the proposed path planning method based on Multilayer 
Perceptron Neural Network are presented. The first 
graphical interface is realized by Matlab software 
[37].Figures 7.a, 7.b show different steps of the execution 
program. The robot moves inside a small two-dimensional 
space, the obstacle start and target positions and path 
planning are marked as red square depicted in Figures 3.a 
and 3.b, the green points and a smooth blue curve in the 
Figure 7, respectively. The proposed algorithm is a 
significant improvement over the classical methods (the 
visibility graph algorithm and the artificial potential field 
algorithm), because it finds an optimal path without being 
trapped in the local minima [17] and the calculation time 
is reasonably fast. The algorithm can solve the navigation 
problem in very complex environment and even with static 
or dynamic obstacles [24]; any obstacle of rectangular, 
circular, or triangular shape can be represented by the 
neural network. For the description of the MLP neural 
network parameters, the algorithm uses only Cartesian 
coordinates of the obstacles vertices. The effectiveness of 
the proposed algorithm depends on the value of 
(T,wc,wl,er). In this simulation, the number of the points is 
65and the path is successfully generated. Figure 7(c) 
shows that the robot can move from the starting to the 
target positions without collision with the obstacle. The 

safe robot distance is respected. The coordinates of the 
points are recorded in two excel files (vecteurx.xlsx and 
vecteury.xlsx). 

The second graphical interface is realized by 
Roboguide-FANUC software [42], for the simulation and 
the control of the virtual FANUC robot with 6-Dof in a 2D 
environment. The results of the proposed algorithm have 
been successfully applied to the robot end-effector. The 
system can read automatically the Excel (vecteurx.xlsx 
and vecteury.xlsx) files, and then it will be converted into 
the Inverse kinematic program. Figures 8.a. and 8.b. 
represent the sequences of the path planning of the 
FANUC robot with MLP neural networks from the 
starting point to the target point. 

 
(a) 

 
(b) 

Figure 7: Different steps of the program execution  

 
(a) 

 
(b) 

Figure 8: Virtual prototype of the proposed approach 

V. Conclusion: 
In this paper, a new path planning method based on 

Multilayer Perceptron Neural Network is proposed. The 
architecture of the neural network model is constructed 
from equations that define a point inside the obstacle, and 
establish a relationship between the degree of collision and 
the out-put of the model. This model has given the desired 
solution to solve the path planning problems. The 
proposed method has been validated by several simulation 
tests applied to the FANUC robot. The simulation results 
are verified by two research laboratories (L.E.P.E.S.A-
Algeria, IBISC-France); both have demonstrated the 
feasibility and the effectiveness of the presented method 
to solve the path planning problem. The path obtained is 
optimal (the shortest trajectory) with a safe distance 
between the robot and the obstacle. The obtained results 
have encouraged authors to deepen the study and think 
about 3D path planning in the future, by adding an 
additional input for the z dimension to the obstacle 
description on MLP neural network. 
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