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Abstract

We demonstrate that turbulent zonal jets, analogous to Jupiter ones,
which are quasi-stationary are actually metastable. After extremely long
times they randomly switch to new configurations with a different num-
ber of jets. The genericity of this phenomena suggests that most quasi-
stationary turbulent planetary atmospheres might have many climates
and attractors for fixed values of the external forcing parameters. A key
message is that this situation will usually not be detected by simply run-
ning the numerical models, because of the extremely long mean transition
time to change from one climate to another. In order to study such phe-
nomena, we need to use specific tools: rare event algorithms and large
deviation theory. With these tools, we make a full statistical mechanics
study of a classical barotropic beta-plane quasigeostrophic model. It ex-
hibits robust bimodality with abrupt transitions. We show that new jets
spontaneously nucleate from westward jets, with an exponentially small
probability as the Ekman dissipation decreases (Arrhenius law). This phe-
nomenology is controlled by two different types of instantons in the limit of
vanishing noise. Moreover, we are able to compute the saddles of the cor-
responding effective dynamics. We also investigate the detailed dynamics
of solutions having three alternating jets. We uncover an unexpectedly
rich dynamics governed by the symmetric group Ss of permutations, with
two distinct families of instantons, which is a surprise for a system where
everything seemed stationary in the hundreds of simulations of this model
performed in the past.
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1 Introduction

Many complex physical and natural systems have more than one local attrac-
tor. The dynamics can then settle close to one of these local attractors for a
very long time, and randomly switch to another one. Well-known examples are
phase transitions in condensed matter or conformational change of molecules
in biochemistry (Maragliano et al., 2010). Such situations of multistability
are ubiquitous also in geophysics and for turbulent flows (Ravelet et al., 2004;
Bouchet and Simonnet, 2009). The reversal of the Earth magnetic field on ge-
ological timescales, which is due to turbulent motion of the Earth’s metal core
(Berhanu et al., 2007), is a paradigmatic example.

The climate system is no exception and global multistability and abrupt
transitions existed from the global Neoproterozoic glaciations (snowball Earth
events) (Pierrehumbert et al., 2011) to glacial-interglacial cycles of the Pleis-
tocene (Paillard, 1998). Very often, those transitions are due to the internal
dynamics and are not caused by changes of external parameters. This is the
case for instance for the fast Dansgaard—Oeschger events (Dansgaard et al., 1993;
Ditlevsen et al., 2007; Rahmstorf, 2002). More local multistability also exist in
part of the climate system, for instance the Kuroshio bimodality (Schmeits and
Dijkstra, 2001; Qiu and Miao, 2000) in the North Pacific.

If multistability and abrupt transitions between distinguishable states are
generic features of complex dynamical systems, why should planetary atmo-
sphere dynamics be an exception? Actually Lorenz was already rising this
question in 1967 (Lorenz, 1967). The hypothesis of a transition to a super-
rotating Atmosphere with westward equatorial jets has been addressed many
times (Held, 1999) and observed in many numerical experiments (Arnold et al.,
2012). Recently the more specific question of an abrupt transition to superrota-
tion has been studied carefully (Herbert et al., 2020). On Earth, superrotation
may have played a role in the climate of the past: it was observed in numerical
simulations of warm climates such as the Eocene (Caballero and Huber, 2010),
and it has been suggested that it could explain the permanent El Nifi o con-
ditions indicated by paleoclimatic proxies during the Pliocene (Tziperman and
Farrell, 2009).

The aim of this paper is to address the hypothesis of planetary atmosphere
multistability and abrupt transitions not for equatorial jets but for midlatitude
eddy-driven jets. This is a natural hypothesis as multiple midlatitude jets are
observed on many planets, and that even with Earth conditions slight changes
of parameters lead to a different number of jets (Lee, 1997, 2005) and jets
of different nature (Kaspi and Flierl, 2007). Because it is difficult to change
from a state with n zonal jets, to a state with n+ 1 zonal jets continuously, it is
natural to expect multistability, abrupt transitions, and spontaneous transitions
between those different states to be generic. We demonstrate this in this paper.

We will focus on Jupiter like atmosphere with its alternating zonal bands
with colors correlated with the troposphere vorticity. They correspond to suc-
cessions of westward and eastward velocity jets. There is a strong asymmetry
between eastward and westward jets: eastward jets form cusps at their max-
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Figure 1: Upper left panel: Jupiter’s zonally averaged zonal velocity profile
observed by Voyager, Cassini (Porco et al., 2004) and Hubble (Simon et al.,
2015). Upper right panel: Great Red Spot contraction after one century (left:
from (Clerke, 1893), right: NASA). Lower panel: three white ovals appeared
in 1939-1940 (Rogers, 1995) and later merged to from the oval BA, also called
”Red Spot Junior” in 2006 when it turned red.

imum velocity whereas westward jets have an almost parabolic profile (Porco
et al., 2004; Sdnchez-Lavega et al., 2008). What is striking is the stability of
these jets: despite the strong turbulent activity at small scales, one hardly notice
any difference between the two separate measurements by Voyager and Cassini
20 years apart (see Fig.1). The Jovian large-scale atmosphere, including the
Great Red Spot (GRS), in fact appears to be stationary for decades. How-
ever, a fantastic event occurred in 1939-1940 when Jupiter lost one of its jets
(Rogers, 1995). Three white anticyclones were created which started to merge
in the late 90s into a large white anticyclone (see Fig.1). As such, Marcus (2004)
called the 1939-1940 event a global climate change on Jupiter. The mechanism
responsible for the disappearance of one of the jet remains completely unknown.

A key scientific aspect of bistability situations is that the time scale for ob-
serving a spontaneous transition from one attractor to another can be extremely
long. For instance on Jupiter, no such events as the 1939-1940 jet disappearance
occurred since then. The typical timescale for such transitions is thus longer
than 80 years, while energy balance for jet-mean flow interactions, Rossby wave



dynamics, and radiative effects have time scales much smaller ranging from one
Jupiter day to several years. For this reason, we argue in this paper that most
of time, scientists running numerical simulations are not aware that their model
may have more than one attractor, just because they never simulate it long
enough. Actually to simulate the model long enough and wait is most of the
time impossible with currently available computational capabilities. This time-
scale separation issue seems an impassable barrier. Breaking this constraint and
studying unobserved phenomenologies for such transitions are two fascinating
scientific aims. For instance in this paper, we will demonstrate that a barotropic
model of Jupiter jets has a huge number of climate (attractors) for a fixed set of
boundary conditions and forcing parameters, with an amazingly rich long-time
dynamical structure for the transitions from one attractor to another. This was
completely unexpected and never observed, even if analogous models have been
run by hundreds of groups before.

In order to face this time scale separation issue, we need to build com-
pletely new theoretical and numerical tools. For this it is scientifically sound
to go back to the basis and to start with the simplest possible model that con-
tains the phenomenology of Jupiter troposphere dynamics. We will consider
forced—dissipative barotropic turbulence on a beta plane, in which small-scale
turbulence self-organizes into large-scale coherent structures, with upscale fluxes
of energy. Although such a barotropic description of Jupiter troposphere has
long been recognized to be relevant (Galperin et al., 2014), it has clearly some
limitations as the energy transport through baroclinic instability is described
only roughly by the stochastic forcing, and models with baroclinic instability
may lead to dynamics with different qualitative aspects (Jougla and Dritschel,
2017). We come back to baroclinicity and multiple attractors in the conclusion.

The phenomenology of stochastically forced barotropic turbulence has been
described for a very long time in the literature (Vallis and Maltrud, 1993;
Dritschel and McIntyre, 2008; Galperin et al., 2001; Bakas and Ioannou, 2014;
Tobias and Marston, 2013). Starting from rest, as one forces randomly at scales
smaller than the Rhines scale, a 2D inverse energy cascade develops during a
transient stage. This cascade is stopped at a scale of the order of the Rhines
scale, where Rossby waves start to play a fundamental role and energy transfer
is inhibited. It is well-known that this barrier is anisotropic and take the form
of a dumbbell shape which favor zonal structure (Vallis and Maltrud, 1993).
Zonal jets then form, with a typical width of order of the Rhines scale, while
jet waves often called modified Rossby waves, or Zonons (Galperin et al., 2001),
play an important dynamical role. (Galperin and Read, 2019) is a survey of
the latest theoretical, numerical and experimental advancements atmosphere
and ocean jets dynamics and their interactions with turbulence. As illustrated
by many contributions in (Galperin and Read, 2019) the beta-plane barotropic
model has been a test-bed for many phenomenological and theoretical studies
of jet dynamics, for instance second-order closures (also called S3T or CE2 ex-
pansions) (Farrell and Ioannou, 2003; Srinivasan and Young, 2011) or analogies
with pattern formation (Parker and Krommes, 2013). Second order order clo-
sures, or the related quasilinear approach, has been argued to be exact in the



limit of time scale separation (Bouchet et al., 2013) between the zonal jet time
scale on one hand, and the eddy relaxation time on the other hand. This is
a limit relevant for Jupiter. Moreover (Woillez and Bouchet, 2019) has given
a fairly complete analytical description of the zonal jet structure, including a
dynamical explanation of the westward-eastward jet asymmetry, and a precise
description of the westward jet cups and their regularization.

Those statistical approaches, for instance S3T, actually allowed to predict
the non-uniqueness of solutions (multistability) (see Farrel and Ioannou (2007),
or Parker and Krommes (2013) for the transition regime to zonal jets). More-
over, wonderful zonal jet experiments have demonstrated bistability in fairly
barotropic regimes (Lemasquerier et al., 2020).

However, no spontaneous transitions between attractors were observed be-
fore the work Bouchet et al. (2019). In this paper, with the beta-plane barotropic
model with stochastic forcing we were able to observe multistability between
states with two eddy-driven zonal jets and states with three eddy-driven zonal
jets, and to observe spontaneous transitions between those two states. Because
of the huge numerical cost, it would have been impossible to observe several
of these very rare transitions, and to study their dynamics and probability. In
order to face this critical practical problem, we had to use a rare event algo-
rithm in order to concentrate the computational cost on transitions trajecto-
ries from one attractor to another, rather than on extremely long period when
nothing dynamically interesting occurs. Rare event algorithms aim at this goal
(Kahn and Harris, 1951; P. Del Moral, 2004). In a dynamical context, they
have been first applied for complex and bio-molecules, see for instance Metzner
et al. (2009); Hartmann et al. (2013). More recently, in order to progressively
go towards genuine geophysical applications, they have been applied to Lorenz
models (Wouters and Bouchet, 2016), partial differential equations (Rolland
et al., 2016), turbulence problems (Grafke et al., 2015; Laurie and Bouchet,
2015; Ebener et al., 2019; Bouchet et al., 2019; Lestang et al., 2020), geophysical
fluid dynamics (Bouchet et al., 2019), and climate applications (Ragone et al.,
2018; Webber et al., 2019; Ragone and Bouchet, 2019; Plotkin et al., 2019).
Some approaches through minimum action methods, related to large deviation
theory, are reviewed in Grafke and Vanden-Eijnden (2019). In Bouchet et al.
(2019), and in this paper, we rather use the Adaptive Multilevel Splitting (AMS)
algorithm, a very simple rare event algorithm which is well suited to study rare
transitions (Cérou and Guyader, 2007) (see Cérou et al. (2019) for a short re-
view, and Rolland et al. (2016); Bouchet et al. (2019) for application for partial
differential equations and geostrophic turbulence problems). In Bouchet et al.
(2019), thanks to the AMS algorithm, we were able to demonstrate that rare
transition path concentrate close to instantons and that transition rates follow
an Arrhenius law. The concentration of transition paths close to predictable
trajectories, called instantons, is a fascinating property shared by many rare
events. This has been now been observed in several turbulent flow applications
(Laurie and Bouchet, 2015; Grafke et al., 2015; Bouchet et al., 2014; Demat-
teis et al., 2019) and other geophysical applications, for instance the dynamics
of the solar system (Woillez and Bouchet, 2020). The idea that Jupiter’s jet



transitions should follow instantons and be described by Arrhenius laws, like
condensed matter phase transitions, is really striking.

The aim of this paper is to develop and extend those results in several ways,
pushing the power of rare event algorithm for studying unobserved phenomena
so far, for instance rare transitions for eddy-driven jets. We clearly demonstrate
the generic nature of multistability by performing bistability experiments be-
tween the attractors with two and three jets respectively. New results include a
complete description of the three jet structure. Amazingly there are actually six
different types of three-jet states with different jet spacing. The dynamics can
remain quasi-stationary close to the two-jet state for a very long time, switch
to the three-jet states; change several times its type of three-jet states, before
coming back to the two-jet states. We confirm the instanton phenomenology
for transition between the two-jet states and the three jet-states, but we also
demonstrate it for transitions between different three-jet states. This fascinat-
ing complex phase space structure for the slow dynamics, occurring on very
long time scales, has profound implication on our understanding of Jovian like
planets. It suggests that the observed state of Jovian troposphere is most-
probably one among many different ones, for a fixed set of forcing parameters.
This profound fact suggests a very simple explanation of the observed asym-
metry between the northern and southern hemisphere structure of Jupiter. In
the conclusion we explain why we believe that this observation for a barotropic
dynamics is expected to be robust for more comprehensive models. This open
a completely new set of scientific questions for planetary atmosphere studies.

Another new result of this paper concerns the hypothesis of barotropic ad-
justment of eddy driven jets. An eddy driven jet with a time-scale separation
between eddy dynamics and zonal jet time scale, should be unstable in order
to transfer meridionally zonally-averaged momentum, while it should be at the
same time stable if quasi-stationary zonal jet states are observed for very long
times. This apparent contradiction leads to the hypothesis of barotropic ad-
justment: the state of the system should be marginally stable (or unstable) in
order to fulfill these two seemingly contradictory requirements. The relevance
of this adjustment hypothesis has been recently discussed in the context of Jo-
vian planets and for a hierarchy of models (Read et al., 2020b,a). Through an
empirical analysis of the Rayleigh-Kuo criteria, we demonstrate in this paper
that the zonal jets actual constantly remain in a state of marginal stability.
The striking new results is that this remains true also during the transitions
between different attractors: The nucleation of a new jet, or the merging of two
jets, both occur within barotropically adjusted states.

The paper is organized as follow: we first show some bimodality results in-
volving transitions between two-jet and three-jet solutions in Section 3.1. We
study more in details these rare transitions using an advanced rare event algo-
rithm (AMS) in Section 3. Section 4 focuses on the dynamics of the three-jet
states only and a summary of the full effective dynamics is given. Section 5
addresses the question of the Arrhenius law when the Ekman dissipation a de-
creases. We then conclude in Section 6.



2 The beta-plane model for barotropic flows and
zonal jet dynamics

We consider in the following the barotropic quasi-geostrophic equations, with
a beta plane approximation for the variation of the Coriolis parameter. The
equations in a doubly periodic domain D = [0,2nLl,) x [0,27L) read

0w+ v - Vw+ Bavy, = —Aw — Vg (—A)" w+ o, (1)

where v = e, x V¢ is the non-divergent velocity, v, the meridional velocity
component, w = Ay and ¥ are the vorticity and the stream function, respec-
tively. A is a linear friction coefficient, vy, 4 is a (hyper-)viscosity coefficient, and
Ba is the mean gradient of potential vorticity. 7 is a white in time Gaussian
random noise, with spatial correlations

E [n(r1,t1)n(ra, t2)] = C(r1 —r2)d(ts — t2)

that parametrizes the curl of the forces (physically due, for example, to the effect
of baroclinic instabilities or convection). The correlation function C is assumed
to be normalised such that o represents the average energy injection rate, so
that the average energy injection rate per unit of area (or equivalently per unit
of mass taking into account density and the layer thickness) is € = o /472L?,.

For atmospheric flows, viscosity is often negligible in the global energy bal-
ance and this is the regime that we will study in the following. Then the main
energy dissipation mechanism is linear friction. The evolution of the average
energy (averaged over the noise realisations) F is given by

dE

& _\E+o
dt to

In a stationary state we have E = Eg 4 = 0/2), expressing the balance be-
tween forces and dissipation. This relation gives the typical velocity associated
with the coherent structure U ~ /Esot/L ~ /€/2X. As will be clear in the
following, we expect the non-zonal velocity perturbation to follow an inviscid
relaxation, on a typical time scale related to the inverse of the shear rate. As-
suming that a typical vorticity or shear is of order s = U/L corresponding to
a time 7 = L/U, it is then natural to define a non-dimensional parameter « as
the ratio of the shear time scale over the dissipative time scale 1/,

o3
a=M=1L &
€

When g is large enough, several zonal jets can develop in the domain. An
important scale is the so-called Rhines scale R which gives the typical size of
the meridional jet width:

Lp=(U/Ba)"? = (¢/52N)

1/4



We write the non-dimensional barotropic equation using the box size L as a
length unit and the inverse of a typical shear 7 = L/U as a time unit. We thus
obtain (with a slight abuse of notation, due to the fact that we use the same
symbols for the non-dimensional fields):

Ow~+v - Vw+ o, = —aw — v, (—A)" w + V2an, (2)

where, in terms of the dimensional parameters, we have v, = v, 47/L*", 8 =
BaL7. Observe that the above equation is defined on a domain D = [0, 27l,) X
[0,27) and the averaged stationary energy for v, < « is of order one. Please
observe that the non dimensional number f is equal to the square of the ratio
of the domain size divided by the Rhines scale. As a consequence, according to
the common belief, the number of jets should scale like 51/2 when f is changed.

The phenomenology of stochastically forced barotropic turbulence has been
described for a very long time in the literature (Vallis and Maltrud, 1993;
Dritschel and McIntyre, 2008; Galperin et al., 2001; Bakas and Ioannou, 2014;
Tobias and Marston, 2013). Let us remind briefly the main aspects. Starting
from rest, as one forces randomly at scales smaller than the Rhines scale, a
2D inverse energy cascade develops during a transient stage. This cascade is
stopped at a scale of the order of the Rhines scale, where Rossby waves start
to play a fundamental role and energy transfer is inhibited. It is well-known
that this barrier is anisotropic and take the form of a dumbbell shape which
favor zonal structure (Vallis and Maltrud, 1993). Zonal jets then form, with a
typical width of order of the Rhines scale, while jet waves often called modified
Rossby waves, or Zonons (Galperin et al., 2001), play an important dynamical
role. For values of a of order one or larger, the system settles in a statistically
stationary state with such a phenomenology. For smaller values of «, the jets
become very strong. Once such strong jets are formed, they progressively expel
the waves. For smaller values of a no wave exist anymore, and both the inverse
cascade phenomenology and the modified Rossby wave phenomenology become
irrelevant. The system then settles in a statistically stationary state, where the
dynamics is dominated by the strong zonal jets, the average width of which is
still approximately given by the Rhines scale, and with fluctuations of order
Va. Most of the energy is then directly transferred from the forcing scale to the
jet scale through direct interaction with the average flow. This process, which
is non local in Fourrier space, is no more a cascade one (Bakas and Ioannou,
2014).

In the following we will be interested in this strong jet regime, which is
relevant for Jupiter. Except if otherwise stated, all the computations of this
paper will be performed with the parameters a = 1.20 1073, v = 1.5 1078, and
using a stochastic force with a uniform spectrum in the wave number band |k| €
[14,15]. The related forcing scale will be always well below the Rhines scale.
Figure 2 illustrates that although the flow is clearly turbulent, in the statistically
stationary state the zonal jets are very stable on timescale of the order of 10°
turnover time or more. If o would be decreased, these jets would become even
more stable. The averaged vorticity has a saw-tooth profile: it is composed of
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Figure 2: Jets sampled in direct numerical simulations. Left panels show local
time averages of the zonally averaged vorticity (red curve) and velocity (green
curve) as a function of latitude y (y is the vertical axis), for a = 1.2 - 1073,
Middle panels show the corresponding Hovmoller diagrams of the vorticity w
(the color represent the value of the zonally averaged vorticity as a function of
time and latitude). Right panels show one of the corresponding instantaneous
snapshots of the vorticity field. The first line shows these figures at 8 = 5, the
second line shows these figures at g = 10.



homogenized potential vorticity areas where the potential vorticity w + By is
nearly constant (and for which the vorticity decreases approximately like —Sy
across the basin), separated by small areas of abrupt increase of the vorticity
(or potential vorticity). For the velocity profile, homogenized potential vorticity
areas correspond to westward jets, with a local quadratic velocity profile with
a curvature approximately equal to §, while the jumps in vorticity give rise
to cusp for the velocity close to eastward jets. This phenomenology has been
observed in many simulations for barotropic flows and is actually analogous to
the one observed on Jupiter (see figure 1). The top panels of figure 2 show
a state with two alternating jets. There are actually four jets: two eastward
jets with local maxima of the zonally averaged velocity and two westward jets
with local minima of the zonally averaged velocity. We stress also that, on
the Hovmoller diagram, the jet extrema are located on the black area (close to
zero vorticity lines). The eastward jets are the black areas with negative (blue)
vorticity on the south and positive (red) vorticity on the north. Related to the
PV staircase phenomenology the black areas for eastward jets are very thin line,
while the black areas for westward jets have a broader extent. In the doubly
periodic domain of this study, the number of eastward jet has to be equal to the
number of westward jets, and jets will come by pairs. We will call a state with
K alternating jets, a state with K eastward and K westward jets.

3 Rare transitions between states with different
jet numbers

3.1 Bistability, rare-transitions and hysteresis between states
with two and three alternating jets

As stressed in Dritschel and Mclntyre (2008), assuming the PV staircase phe-
nomenology with a westward jet curvature of order g is sufficient to roughly
determine the number of jets: its order of magnitude is then given by the
ratio of the domain size divided by the Rhine scale, or equivalently in our non-
dimensional units /3. Figure 2 indeed shows that increasing /3 increases the
number of jets.

Compatible with this phenomenology, one expects to see transitions from K
alternating jets to a state with K + 1 ones when f is increased. As there is
no symmetry breaking in this process, one may expect these transitions to be
first order ones with discontinuous jumps of some order parameters. In situa-
tions with discontinuous transitions when an external parameter 3 is changed,
one expects for each bifurcation multistability ranges (1, 82) in which two (or
more) possible states are observed depending on the initial conditions, and for
which extremely rare transition from one state to another may occur due to
either external or internal fluctuations. Such a bistability phenomenology has
first been observed in Bouchet and Simonnet (2009). The aim of this paper
is to go much further in the study of the structure of the attractors and the
description of the spontaneous transitions between them.

10
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Figure 3: Lower panel: timeseries the moduli of the first zonal Fourier com-
ponents (|q,| with ¢, = |_§12\ Jow(z,y) ™ daxdy) for n = 2 (red) and n = 3
(black). The corresponding Hovmoller diagram for the zonally averaged vortic-
ity is shown in the upper panel (o = 1.2-1072 and 8 = 5.2).

Figure 3 shows that the bistability occurs for fixed values of the control
parameters and a very wide range of initial conditions. We compute the Fourier
components of the vorticity, with zonal wave number (0,n), defined as ¢, =
ﬁ wi(:z:,y) e™dx dy, for n = 2 and n = 3. Their moduli |g,| are relevant
order-parameter, for instance |ga| will be large for a two-alternating jet state and
small otherwise. In figure 3, one observes five spontaneous 2 — 3 transitions
and five 3 — 2 transitions for a duration of about 10° turnover times. The
fluctuations of the three alternating jet states are noticeably larger than the
ones for the two alternating jet states. This corresponds to internal dynamics
between several three alternating jet states, as will ne explained in section 4.

We finally perform an hysteresis experiment by varying adiabatically (very
slowly) the parameter § at rate B = 109> in the range 3 € [4,12], with a smaller
value of o = 5-107%. Different numerical experiments with independent real-
izations of the noise are performed. The result is shown in figure 4. This figure
displays the modulus of |g2| as a function of § in three of these experiments:
the upper branch of |ga| corresponds to the two alternating jet state and the
lower branch to the three alternating jet states. It shows bistability in the range
B € [6,11], with transitions occurring after a transition time 7" < 107°: with
this slowly varying (3, transition events are not uncommon. Performing direct
numerical simulations for this value of a will not show transitions however. The
reason is simply that, as explained in the next sections, the probability of seeing

11
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Figure 4: We performed four independent hysteresis experiments, by increasing
and then decreasing slowly the value of 5. For the four experiments, each of
the four curves represents |gz|, the modulus of zonal Fourier component with
wavenumber two, as a function of 8 (@ =5-10~* and § = a/100).

such transitions becomes then much too small. Based on the hysteresis curve, we
choose 5 = 8 as a reference value for future studies, unless otherwise specified.

3.2 Nucleation and coalescence of jets

We discuss now the spontaneous 2 — 3 and 3 — 2 transitions, as seen in figure
3. While we could not obtain many transition with direct numerical simulations,
using the rare event AMS algorithm, we were able to collect several thousands
of 2 — 3 — 2 transitions. The dynamics of those transitions are represented in
figure 5, in the space spanned by the order parameters |gs2],|¢s| and |g4|. The
remarkable result is that these trajectories seem to concentrate in the phase
space. The blue tube in figure 3 contains 80% of the 2 — 3 transitions whereas
the red tube contains 80% of the 3 — 2 transitions. The concentration of
trajectories that lead to a rare events close a predictable path, is called an
instanton phenomenology (see for instance (Laurie and Bouchet, 2015; Grafke
et al., 2015; Bouchet et al., 2014; Dematteis et al., 2019) for turbulent flows).
Figure 5 illustrates this remarkable instanton phenomenology for the 2 — 3 — 2
transitions. For this parameter regime, 2 — 3 and 3 — 2 transitions occur with
a return time approximatively equal to 10%. Note that it is a very rough estimate

12



based on a single AMS realization. We did not search for more precise estimates
here, as we are interested mostly on transitions dynamics. In principle, one
should use more realizations with different reaction coordinates (see Appendix
B).

The middle-left panel of figure 5 shows that the nucleation of a new pair
of alternating jets proceeds through an inversion of the velocity curvature of
one of the parabolic westward jet in the exact middle between the two adjacent
eastward jets. It takes the form of a small bump in the zonal velocity profile.
This structure indeed nucleates from two bands of positive and negative vorticity
inside a narrow band of zero vorticity around the westward jet. Such a nucleation
is highly improbable, as the new vortex bands are initially too narrow to be
stable. Then just by chance, one can have these band surviving long enough to
grow until it reaches a stable state. However, once a critical size is reached, the
band becomes stable and grows in size. The three jets slowly equilibrate and
separate apart. The new jet can relax either to the north or to the south of the
initial parabolic jet where it has nucleated. We will describe this in more details
in the next section, by studying saddle zonally averaged zonal velocity profiles.
In the following, we will call a transition 2 — 3, a nucleation.

The lower-right panel of figure 5 shows how two jets can merge, which can
be interpreted as the disappearance of one pair of alternating jets. The phe-
nomenology is again rather simple. Interestingly, if one reverses both the time
and the sign of the velocity, one would indeed obtain a nucleation from a cuspy
(westward) jet. Moreover, the resulting two alternating jet state just after the
two eastward jets have merged, is slightly asymmetric (see zonally averaged
zonal velocity for the 3 — 2 transition in figure 5 and section 4 hereafter).
This state then relaxes to a perfectly symmetric two-jet configuration over a
timescale of order 1/« (not shown). We call the jet merging 3 — 2 transition a
coalescence.

3.3 Barotropic adjustment and Rayleigh-Kuo criterium
for zonal jets and during transitions

From a fluid mechanics point of view, it is very natural to understand if the
rare transitions between attractors are related to hydrodynamical instabilities.
It is clear from all the Hovmoller diagrams, on figures 2 and 5 and on movies of
the dynamics (not shown), that the time scale for the dynamics is of order 1/«
both during a nucleation of new jets or during a coalescence. This is also true
for all other transitions we have observed. This phenomenology thus excludes a
fast instability in the barotropic equation (2), developing on time scales of order
one. As a consequence, if some instability occurs in equation (2), the flow has
to be marginally unstable with an instability rate scaling at most like o when
al0.

Such an observation of marginal instability is related to the classical hypoth-
esis of barotropic adjustment of eddy driven jets (see Read et al. (2020b,a) and
references therein). An eddy driven jet with a time-scale separation between
eddy dynamics and zonal jet time scale, should be unstable in order to transfer
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Figure 5: The upper panel shows the level set of the reactive trajectories in the
space |gz|,|gsl,|qa|- The blue and red reactive tubes contain 80% of the 2 — 3
transitions and 3 — 2 transitions, respectively. Each of these tubes gather about
1000 reactive trajectories obtained using the AMS algorithm, for o = 10~2 and
B = 8. Middle left and right panels show the zonally averaged zonal velocity as
a function of latitude, 3 curves at 3 different times (blue first, then red, then
black), during the 2 — 3 and 3 — 2 transitions, respectively. On the left, we
observe the nucleation of a new jet at the westward tip of an existing jet. On
the right, we observe the merging of two eastward jets. Lower left and right
panels are the two corresponding Hovmoller diagrams for the zonally averaged
vorticity.
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Figure 6: The Rayleigh-Kuo criteria for an example with two nucleations and
two mergers. This is a Hovmoller diagram where black dots are plotted each
time RK = U” — B is positive (a = 2.2 107* and 8 = 5.5).

meridionally zonally-averaged momentum, while it should be at the same time
stable if quasi-stationary zonal jet states are observed for very long times. This
apparent contradiction leads to the hypothesis of barotropic adjustment: the
state of the system should be marginally stable (or unstable) in order to fulfill
these two seemingly contradictory requirements. The relevance of this adjust-
ment hypothesis has been recently discussed in the context of Jovian planets
and for a hierarchy of models (Read et al., 2020b,a). The interesting remark
we want to stress here is that this barotropic adjustment mechanism actual
takes place for the statistically quasi-stationary jets, as might be expected, but
perhaps more unexpectedly also takes place during the periods of relaxation to-
wards these quasi-stationary states and during the periods of ”instability” that
lead to coalescences and nucleations of jets.

In order to have a more precise and quantitative insight on this issue, we look
at the Rayleigh—Kuo criteria RK = U” — 3, where U" is the second derivative
with respect to y of the zonally averaged zonal velocity U. It is well known that,
for a zonal flow U(y), a necessary condition for an hydrodynamic instability to
occur is that the Rayleigh-Kuo criteria changes sign (H.L.Kuo, 1949). Figure 6
is a Hovmoller diagram of the sign of the Rayleigh—Kuo criteria: we draw a black
point each time the Rayleigh criteria is negative. This picture is drawn from an
example of a 2 — 3 transition obtained with the adaptive multilevel splitting
algorithm (0 < at < 1.3) followed by a free dynamics (Eq. (2) without selection)
(1.3 < at < 12), with the parameters a = 2.2 10~* and 3 = 5.5. The eastward
jets are localized inside the thin white bands delimited by the area with dense
black dots. The westward jets are localized in the area with lots of scattered
black dots, but with a much lower density than at the flank of eastward jets.
The picture then shows subsequently: a nucleation of new jets at the location

15



of a westward jet (0 < at < 1.3), the northward drift of one of these new jets
until it reaches another eastward jet and coalesces (1.3 < at < 4), a transient
state with two alternating jets (4 < at < 4.9), the nucleation of new jet and the
drift northward of one of them, until a new coalescence (4.9 < at < 10.2), and
a stable state with two alternating jets (10.5 < at < 12).

We first describe in detail figure 6 during the period with a stable state with
two alternating jets (10.5 < at < 12). We note that most of the time, the
Rayleigh-Kuo criteria is positive, meaning that the overall structure is stable.
However, from time to time, the Rayleigh-Kuo criteria change sign on some
specific points of the domain. During that period, the velocity profile U looks
very much like the one of the two jet state. On this curve, we see a characteristic
shape for eastward jet velocity profile, with a characteristic cusp shape. At the
edge of the eastward jet, the cusp is associated with a very strong negative
curvature and thus a very low value of the RK = U" — 3, explaining the white
band without black dots on figure 6. On each flank of the jet, the velocity profile
has a concavity change, where RK change sign very often, explaining the two
dense black dot bands surrounding the eastward jet. On all the other parts of
the flow RK remains much of the time positive, except close to the westward jet,
where U"” is very close to § and RK changes sign rather often. This explains
the less dense band of black dots close to the westward jet edge. We stress
also that the shape of eastward jet cusps seems to depend significantly on the
dissipative mechanism: indeed figures 2 and 5, show that for larger values of «
for which hyperviscosity effects are negligible the cusp is rather rounded, while
other simulations with smaller values of « (not shown), for which hyperviscosity
effects become important, the velocity profile has a strong concavity change on
the flank of the jet. In a recent theoretical work Woillez and Bouchet (2019), it
has been established that: i) eastward jets should form a cusp, with a width of
order 1/K where K is the typical random force wavenumber, and which specific
profile depends on the dissipative mechanism, ii) the mechanism preventing the
growth of westward jet is a marginal instability of the velocity profile appearing
when the positive curvature of the jet is of order 5. Our numerical observations
are thus in line with this theoretical work.

Using figure 6, we now describe the jet nucleations and coalescences, from
the point of view of the Rayleigh-Kuo criterium. First we observe that during
the nucleation processes, we do not see any of sign change for the Rayleigh-Kuo
criteria that would qualitatively differ from the stable jet situation. Second,
during the coalescence, a black band appears at the level of the westward jet
squeezed between two eastward jets, just before the coalescence. In this area,
although we cannot conclude from this figure, the Rayleigh—-Kuo criteria may
change sign. As the Rayleigh-Kuo criteria is only a necessary condition for
instability, we can not conclude from this figure if a very localized and very low
rate instability may occur during the coalescence. But such an instability do
occur, its rate has to be the small as the typical time scale for the change of the
structure, is very long, of order 1/a.

We thus conclude that a barotropic adjustment mechanism actual also takes
place during the periods of "marginal instability” that lead to coalescences and
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nucleations of jets.

3.4 Saddle points

In the following, we will use the language of dynamical system theory plus
weak noise, in order to describe the phenomenology of the attracting states
and the transition dynamics between them. This dynamical system discussion
applies to the slow effective dynamics of the zonally averaged zonal velocity
Uly,t) = fo% u(x,y,t) de. Indeed, in the regime of small values of «, as argued
in Bouchet et al. (2013), we expect the slow relaxation dynamics of zonal jets to
be described by a deterministic effective equation that can be obtained through
a second cumulant closure. Moreover, the transitions from one attractor to
another are expected to be triggered by a noise, due to the fluctuations of
the Reynolds stress divergence, which properties can be computed using large
deviation theory as explained in Bouchet et al. (2018). This is equivalent to the
effective dynamics

0;U = F(U)+ Vao(U,7), (3)

with the rescaled time 7 = at and the average Reynolds stress divergence F(U)
and a white noise o(U, 7) related to the fluctuation of time averaged Reynolds
stress.

In the following, we directly verify the consequences of such a picture of
a dynamical system plus weak noise for the effective dynamics of U(y). The
attractors and saddle points should be thought as attractors and saddle points
of this dynamics, as directly observed in fully turbulent direct numerical simu-
lations, or fully turbulent simulations using the AMS algorithm. A saddle point
is thus a zonally averaged zonal velocity profile U(y) which is stationary for the
effective dynamics (F(U) = 0) and unstable. In a fully turbulent simulation
this state is characterized by the fact that it belongs to a transition trajectory,
and that when adding small perturbations it can either relax to one attractor
or to the other depending on the perturbation, as explained better in appendix
B.c.

For the value 8 = 8, the hysteresis curve in figure 4 suggests that the system
is multistable with at least two attractors. For dynamical systems with weak
noise, in the simplest cases the transitions from one attractor to another go
through a saddle point which belongs to the common boundary of the two
basins of attraction. In more complex situations, the transitions could rather
proceed through more complex structures, for instance saddle limit cycles or
saddle strange attractors. As we describe in the following, we have detected
point saddles points only for the dynamics of the 2 — 3 and 3 — 2 transitions.

Using AMS results, we are able to easily find these saddle states, using the
methodology described in appendix B.c. They are shown in figure 7 for the
nucleation. As mentioned before, the new jet is created from the parabolic jet
at the middle of the two westward jet. This new jet can drift either to the north
or to the south. This is illustrated by the presence of two different ensembles
in the AMS reactive trajectories giving two different saddles. The difference
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Figure 7: Zonally averaged velocity as a function of latitude, U(y), for the
nucleation saddles. Each black curve is obtained by the ensemble average of the
output of about 800 AMS runs (o = 1073 and B = 8). Please note the slight
asymmetry of each of the saddles, close to the westward tip of the nucleating
jet. For each value of y, we have superimposed the histograms of the U values of
the 800 AMS states (light blue), in order to feature the spread of the ensemble
values.

is small however and it is possible that in other parameter regimes, these two
saddles collapse into a single one at the exact middle of the two westward jets.
This is discussed in the next sections. Note that, in addition, one must add two
other saddles related to the nucleation at the other westward jets. Even more,
it is possible that one observes direct transitions 2 — 4 involving four possible
double nucleations (north north, north south, south north and south south). We
have indeed observed such transitions (not shown), but we have decided not to
discuss higher-order transitions involving several transitions at the same time,
that is transitions of codimension larger than one.

A similar study of the saddle points for the transitions 3 — 2 is discussed
in figure 8. If the distance between the two closest jets is below a certain
critical distance (approximately one sixth of the domain width), they start to be
attracted to each other until they merge into a single jet. On the contrary, if their
distance is above this critical value, the whole system relaxes to a stationary
three-jet state. This critical distance appears to be rather sensitive to the value
of 8. This distance increases as [ decreases and decreases for larger values of
B. This is consistent with the idea that for a regime where only the two-jet
states dominate, say for smaller values of 3, the three-jet states will be easily
destabilized though the coalescence process. One may ask, why only one saddle
is found ? The reason is simply related to the initial conditions used in the
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Figure 8: Zonally averaged velocity as a function of latitude, U(y), for the
coalescence saddle. Each black curve is obtained by the ensemble average of the
output of about 200 AMS runs (o = 1072 and 8 = 8). For each value of y, we
have superimposed the histograms of the U values of the 800 AMS states (light
blue), in order to feature the spread of the ensemble values.

AMS. In fact, there are as many coalescence saddles as nucleation saddles. This
point is clarified in section 4.

3.5 Instantons

Figure 5 strongly suggests the existence of an instanton-driven dynamics. By
this, we mean that jet nucleation or coalescence events are concentrated around
a predictable path, called instanton. These paths are composed of a rare noise
driven fluctuation path from the two alternating jet attractor toward a saddle
point (for instance), then of a typical relaxation path from the saddle point to
the three alternating jet attractor. If our hypothesis is correct, as a — 0 the
reactive tubes shown in Fig. 5 should collapse to a single instanton path (see
Appendix A). By an abuse of language, we will assume that this is the case and
we identify the instanton with the reactive tube. This is justified and discussed
in section 5, when we vary «.

The important point is that two different saddles are involved in the 2 — 3
and 3 — 2 transitions, and not just one. The consequence is a more subtle
structure which is not seen in the two crude figure 5. This is explained by the
schematics of figure 9. Let us denote the two alternating jet attractor and the
three alternating jet attractor Jo and Js respectively. In figure 9, the nucleation
instanton is the red curve starting from .J; and going to N together with its
relaxation part (black curve) from N to Js. Similarly, the coalescence instanton
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is the red curve starting from J3 to C and its relaxation part (black curve) goes
from C to J,. The relaxation curves (black curves) correspond to trajectories
having zero action in the asymptotic limit since they correspond to the natural
dynamics of the system. Figure 7 shows that the left schematic of figure 9 has
moreover a mirror equivalent shown to the right. The mirror states are denoted
here with a star for convenience.

Even more, to each instanton is associated an anti-instanton going through
the same saddle. The pair instanton anti-instanton forms a so-called figure-eight
pattern in phase space.

The time asymmetry does not only translate into a geometrical asymmetry
of the pair instanton anti-instanton, but the transition probability of corre-
sponding reactive trajectories is different as well. It appears that in this model,
the asymmetry is very strong especially in terms of transition probabilities: the
“anti-transition” probabilities are several order of magnitude smaller than the
transition probabilities. For instance, the ”anti-coalescence” instanton corre-
sponds to a path going from J2 to C (thin red curve) and then from C to J3
(relaxation black curve). It requires an inversion of the curvature on the top of
one of the eastern cuspy jets followed by a separation of the two small jets which
are created off the cusp. Such events are of course very rare but can be detected
by AMS. The probability of an inversion of the cusp curvature is estimated by
AMS to be O(107Y). However, the nucleation of an eastward jet leading to the
configuration shown in Fig. 8 has a considerably smaller probability, estimated
by AMS to be less than O(10730).

We describe in the next section the internal effective dynamics of the state
with three alternating jets.

4 States with three alternating jets and their
internal dynamics

The previous results indicate the existence of at least two types of states having
three alternating jets, due to different possible nucleations (see figure 7) or
coalescences (see figure 8). It was previously referred to as a mirror symmetry
without being too precise on what symmetry was involved. We show next that
the reality is more complicated, with the description of several different states
with three alternating jets, and a slow dynamics between them. This explains
in particular the large amplitude of the fluctuations of the three alternating jet
states, as seen in figure 3.

4.1 New representation of the jet attractors and their dy-
namics

In order to describe this structure we need a more precise description of the
jet profiles (the zonally averaged zonal velocity). If one measures precisely the
distance between the jet tips, one observes some slight asymmetries in the three
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Figure 9: Schematic representation of the instantons involved in the transitions
2 — 3 — 2. Left figure is a simplification of the right figure, ie without repre-
senting the dual mirror pair of states. Js is the stationary two-jet state, Js and
J§ are the two mirror-symmetric three-jet states obtained from the two nucle-
ation saddles called N" and N'* (see figure 7). The coalescence saddles are called
C and C* (see figure 8). The black arrows represent the relaxation trajectories
from the saddle to the attractors (with zero action; see Appendix A). The red
curves correspond to the reactive part of the instantons (with nonzero action).
The colored area inside the bold curves is what is shown in instanton tubes of
figure 5, that is half of the actual instanton structure.
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alternating jet states. Indeed, the attractors do not equilibrate to an equidistant
jet solution, see for instance the three alternating jet states in figure 3. This
asymmetry is robust when g is changed. Based on this remark, it is relevant
to characterize these states by the distance between the eastward jet tips for
instance. These distances give three numbers we call g1, 02, 03. Our convention
is to divide these quantities by the dimensionless domain width 27 so that
0 < g; < 1. Due to the periodicity in y, one has the constraint

o1+ 09+ 03 =1.

Given this constraint, in the following, we prefer to consider the most economical
representation and use only two of these quantities, say o1 and o2. Looking at
the Hovmoller diagram of Figure 3 for instance, one observes some slow drift of
the solution in the meridional direction. We therefore choose one of the eastern
jet as a reference moving frame, and compute o7 and oo from this reference
jet. o1 is the distance between this reference jet and the next eastward-jet tip,
northward. o2 is the distance between this new jet and the next eastward-jet
tip, northward again. This procedure is for measurements only and requires to
always track the same reference jet at any time. A state with three alternating
jets will be thus described by (01,092,035 =1 — 01 — 02).

It appears that the values taken by o1, 02 and o3 are always very close to
three fixed values of, o5 and 0§ which are all different from 1/3 and different
from each others. It appears that for a given configuration (o}, 03, 0%) there
are two other symmetric configurations by meridional translation: (¢3,03,07)
and (03,0%,03). However there exists also three other states that can not be
recovered by meridional translation from the first one (03,0%,0%), (05,05,07)
and (o7,0%,0%), but can be recovered if we use a mirror symmetry. These 6
states are in correspondence with all the permutations of {1,2,3}, three even
permutations and three odd permutations.

For clarity, figure 10 shows a schematic of these configurations. The group of
permutation is called S3 and possesses 3! = 6 possible permutations: {123,231, 312,213,321, 132}.
We now show in the next subsections a remarkable result: the symmetric group
S3 is indeed realized by the natural dynamics of the system.

4.2 Probability density in the (0;,03) plane

We perform a direct numerical simulation with some long time integration of
equation (2), and we measure the distances o1 and 5. This probability density
function of (o1,02) is shown in Fig. 11. The time averaged values obtained
from this dataset gives < o1 >= o] = 0.340 and < 02 >= 03 =~ 0.226 with
fluctuations for o1 and o9 being of the same order, of about +0.013.

Figure 11 shows that when one integrates the system over a very long pe-
riod of time, metastability is indeed observed between the six states. We denote
< o1 > the value of o1 averaged over a sliding time windows over a small enough
period of time. It reaches three distinct values < o1 >€ {0.22,0.34, 0.43} corre-
sponding to the three values {o7,05,05}. A closer inspection of the quantities
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Figure 10: Sketch of the zonal velocity as a function of latitude, U(y), gen-
erated by the symmetry group for the six different configurations, with three-
alternating jet. We have amplified the meridional asymmetry of the jets for
better visualisation.

01, 02, shows that the system is indeed wandering around four distinct config-
urations denoted a, b, ¢,d in in figure 11. When one integrates for a sufficiently
long period of time, the number of possible configurations is in fact 6, in corre-
spondance with the 3! permutations of the symmetric group Ss.

The probability density function of the full set is shown in figure 13. One
clearly sees in light blue some traces of transitions between pairs of adjacent
states. As explained in the next subsection, all states are indeed connected by
two type of transitions, one toward each adjacent state.

4.3 Internal saddles

The transitions observed must involve saddles with two equally distant jets and
are therefore located on the white dot lines of figure 13. Let a state be written
as (01,02,03) and let 4,5,k € {1,2,3} such that 0; < 0; < o;. Then type-
I transitions correspond to transitions where the two smallest distances have
been switched so that the new state has o; < 0; < o}. Indeed, it can be
seen in figure 13 by looking at the visible blue traces. This is a consequence of
the two possible nucleations of the form (% — ¢, % + e, %) and (% + €, % — €, %)
Type-II transitions follow the same type of rule, where instead, the two largest
distances are involved. In the example above, the new state will be such that
0; < o < 0j. It is clear that there are no possible transitions where the smallest
and largest distances are switched, as it would require to go through the perfectly
symmetric state (%, %, %) the system prefers to visit two configurations before,
through one type-I transition, and one type-II transition. By symmetry, we
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Figure 11: Probability density function of (o1,02) for one of the states with
three alternating jets (o = 1072 and 8 = 8).
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Figure 13: Probability density of (o1, 02) featuring the six different states with
three alternating jets. The three dotted lines correspond to states with two
equally distant jets, they intersect at (o1,09,03) = (%, %, %) Figure 11 is a
zoom of the states in the lower-left sector corresponding to configuration a.
The blue traces inbetween the states feature reactive trajectories statistics.
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Figure 14: The three type-1 saddles (o,0,1—20), (0,1 —20,0) and (1 —20,0,0)
are located at the intersections between the dot lines and the blue traces of
Fig.13 with ¢ =~ 0.30. The corresponding zonally averaged zonal velocities as a
function of latitude, U(y), which were obtained by direct numerical simulation,
are represented.
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Figure 15: The three plots show the zonally averaged zonal velocities as a
function of latitude, U(y), for the three type-II saddles (o, 0,1—20), (0,120, 0)
and (1 — 20,0,0) with o = 0.37. They have been obtained by direct numerical
simulations.

conclude that there are a total of three type-I saddles and three type-II saddles.
Those saddles are computed as discussed in appendix B.c. Type-I saddles have
two equally-small distances and are shown in figure 14. Type-II saddles have
two equally-large distances and are shown in figure 15.

4.4 Effective dynamics: summary

We first mention that one can represent a two-jet state in our (o1, 02) parameter
plane in different ways as there is one missing jet. We decide to choose the one
which is consistent with the dynamics in the limit where one jet appears or dis-

appears. One must identify first the four corners (0,0) = (0, 3) = (3,0) = (3, 1)
as a single state. During the nucleation process, the initial perturbation before
111

reaching the nucleation saddle is a jet of the form (3, 7, 5) (plus permutations)
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and the nucleation saddle is of the form (5 + ¢, § — €, 3) and its five symmetric
partners making a total of six different nucleation saddles. One can measure
the numerical value of € from figure 7, it gives € = 0.01. The same rule applies
for the coalescence saddles, there are a total of six coalescence saddles. Figure
16 is a summary of all the results.

Despite its simplicity, one should remark that there is, in addition, sub-
internal low-frequency variability within a single of the six states with three
alternating jets as observed in figure 11. This suggests the existence of additional
saddles possibly within the white S shape visible in figure 11. We do not show
the anti-instantons 2 — 3 — 2 whereas the internal type-I and type-II pairs
of instantons anti-instantons obviously coincide. Note also that higher-order
transitions do exist and complicate the picture, one can observe for instance
examples where nucleations and coalescences are superimposed, associated with
transient four-jet states in addition with the double-nucleation scenario. These
events occur with a smaller probability and are not studied here.

Our system is in a regime where at least two successive S3 symmetry-
breaking bifurcations of the effective dynamics have occurred, one related to
type-I transitions and one to type-II. Due to that, internal and complex low-
frequency variability can induce rather large fluctuations of the states with three
alternating jets. The scenario is in fact similar to the typical deterministic one,
where global bifurcations like homoclinic and heteroclinic bifurcations force the
system to have large-amplitude oscillations. One can readily anticipate that
there are simpler regimes unfolding from the perfectly symmetric state. Chang-
ing B does not seem to change radically the internal structures shown in figure
16, except for the saddles involved in the transitions 2 — 3 — 2 which move
either to the states with two alternating jets or the states with three alternating
jets, depending on how (3 is changed. It is plausible that, changing for instance
the aspect ratio of the domain, could reveal situations where the state (%, %, %)
is an attractor. We did not explore these interesting possibilities.

5 Large deviations and the Arrhenius law

We now address the important question of the dependency of the attractor
structure and the transition rate between attractors, with respect to the param-
eter a. From equation 3, as a direct consequence of Freidlin-Wentzell theory
(Freidlin and Wentzell, 1984), a large-deviation principle for the full system can
be inferred. In particular, an Arrhenius law must be present. One can rephrase
this result even more radically by saying that the effective dynamics described
in figure 16 and obtained for & = 1073 is indeed valid in the limit o — 0.
Reactive tubes, such as those shown in figure 5, in this case concentrate near
well-defined instanton paths.

Before hand, we investigate how the mean behavior of the stationary states
is affected by a. Values of (07,03, 0%), for different values of a, are reported in
table 1. We conclude that the three alternating jet attractors, corresponding to
figure 11, are slightly more asymmetric when « is decreased. In particular, the
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Figure 16: Effective phase space structure in the (o7, 02) plane, including all
S3 symmetric states. The red squares are the three-alternating jet states, the
blue squares correspond to the two alternating jet symmetric states. The blue
diamonds are asymmetric two-alternating jet states obtained just after the co-
alescence process. Red circles are the coalescence saddles, blue circles are the
nucleation saddles, black circles are type-I internal saddles and dark blue cir-
cles are type-II saddles. The middle square is the (unstable) three alternating
jet symmetric state. The states just before the nucleations are shown as small
white squares. The positions correspond to observed numerical values. The dot
lines are the internal mirror transitions responsible for metastability and the
solid blue and red lines are the 2 — 3 and 3 — 2 transitions, respectively.
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Table 1: Mean values of o} and o3 for the jet attractors shown in figure 11 as
a function of a.

« <o > <o9> std
81074 0.342 0213 1-1072
6-107% 0.342 0.202 8-1073
4.107%  0.340 0.191 6-1073
2-107* 0.334 0177 4-1073

closest jets become closer as o decreases, whereas o1 stays almost unchanged.
The effects of the resolution and viscosity are probably becoming more impor-
tant so that one cannot investigate further the limiting behavior.

We now discuss our last experiment. Using the AMS algorithm, we compute
for different values of «, the mean time it takes to observe 2 — 3 nucleation
transitions. This time is often called mean return time or mean first transition
time and essentially scales like the inverse of the transition probability. Note that
we have used a different value of 8 = 5.5 instead of 8 = 8. The dependency on
is in fact irrelevant, as the result we discuss here is mostly insensitive to 8. Note
also that although the probability of 2 — 3 transitions actually depends on (3,
the nucleation phenomenology remains unchanged. The result is shown in figure
17 and suggests the existence of an Arrhenius law of the form T « exp (%),
which is expected from large deviation theory.

If one decreases o even further, the scaling observed in figure 17 does not
correspond anymore to the simple Arrhenius law (not shown). This is most
probably because viscosity v is not negligible anymore for so small values of
«. Then the working hypothesis ¥ < « in order to obtain T x exp (%) is
no more valid. To support this hypothesis, one can observe that the mean
energy expected to be equal to one for negligible values of v, drops to values
significantly smaller than one when one uses such small values of a. Using
smaller value of v to test further the Arrhenius law would require to make
much more costly numerical simulation with a higher resolution, which would
be extremely difficult.

It is important to understand that such scaling law cannot be revealed by di-
rect numerical simulations as illustrated by the table 2: The amount of required
CPU time to study the Arrhenius law with a direct numerical simulation in-
creases exponentially as a decreases, whereas using the AMS thr required CPU
time increases only linearly (see Appendix B).

6 Conclusion

Using the rare event AMS algorithm, we are able to obtain a complete statisti-
cal description of the dynamics of planetary jets in a simple barotropic quasi-
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Figure 17: Logarithm of the mean first transition time 7" as a function of é for
the 2 — 3 nucleation transitions. The number of clones for the AMS algorithm is
N = 1000, and two to three independent algorithm realizations were performed.
Error bars are a crude approximation of the AMS variance based on the different
realizations.

Table 2: CPU time (d:day,y:year) needed to obtain about 1000 2 — 3 transitions
using 200 processors for both AMS and DNS and for different values of a.

o AMS DNS
1.20-1073% 1.0d 15d
0.90-107% 1.44d 210d

060-1073 22d ~5ly
045-107% 34d ~2050y
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geostrophic model. We show that the spontaneous appearance of new jets come
from noise-activated nucleations originating from the westward jets. The disap-
pearance of a jet is in fact the merging between two eastern jets as they become
attracted to each other if they are too close. We call this event a coalescence.
By collecting thousands of these transitions, we show that they concentrate
near some preferred transition paths suggesting the presence of instantons in
the limit of vanishing noise. A computation of the mean first-passage time as
a function of the Ekman dissipation a reveals a scaling law clearly compatible
with an Arrhenius law. This implies that the observed phenomenology is indeed
instanton-driven. As a by-product of our rare event algorithm, we are also able
to compute the saddles of the effective dynamics.

We next focus on the internal dynamics of solutions having three eastward
and westward jets. Surprisingly, it shows a striking example of internal metasta-
bility. The state with three alternating jets appears to have jets not at equal
distance to each other. We show that there are in fact six distinct configu-
rations which are governed by the symmetric group of permutation called Ss.
The consequence is a complex dynamics with low-frequency variability and large
fluctuations. This behavior originates from at least two S3 symmetry-breaking
bifurcations of the effective dynamics associated with two different types of
transitions depending on the distance between the jets.

We stress that these results are generic. For instance, the observed internal
metastability of the three-jet states should appear as soon as there is some
asymmetry in the jet positions and shapes. It comes from deeper algebraic
constraints link to the symmetries of the solutions. To this respect, changing 8
should not alter this picture but rather has an impact on the stability of these
states. As discussed before, changing a to even smaller values will not change
this picture either.

One expects each metastable state to concentrate on a well-defined single
configuration. One may also ask whether the use of a doubly-periodic domain
has an impact on these results or not? As far as transitions between states with
two and three alternating jets are concerned, the nucleation and coalescence
phenomenology is mostly local and should prevail in more general domains. The
internal symmetry-breaking dynamics of the state with three alternating jets is
likely to be modified in more visible ways. However, we expect this mechanism
to be robust, since it is the relative distance between the jets which plays a
role. As a basis for these assertions, we demonstrate that this phenomenology
is preserved when one uses lateral meridional walls in appendix C. As mentioned
in section 4, it is plausible that changing the aspect ratio to a small value has
a more radical impact on the internal dynamics. Effective bifurcations, either
supercritical or subcritical, are potentially controlled by the domain aspect ratio.
For instance, one can possibly obtain states with symmetric three alternating
jets which are stable configurations. In fact, all the visible structures shown in
this work should unfold from a single symmetric state. It is remarkable that all
the classical bifurcation concepts including normal form theory are recovered
here in a statistical sense through large-deviation principles.

One consequence of this approach is the possibility to infer many results

32



on the dynamics involving n jets. It is reasonable to think that in the general
case there are n! distinct configurations controlled by the symmetric group S,,.
The situation becomes rather involved however as saddles can be of many more
different types instead of type-I and type-II for n = 3.

We stress that it is very difficult to obtain such results using classical tools.
The rare-event AMS algorithm is performing exponentially better than any
naive Monte-Carlo methods and is particularly fitted to study large deviations.
The price to pay is the difficulty sometimes to control the algorithmic variance.
It essentially depends on the choice of a good reaction coordinate.

We have not discussed one important aspect of the dynamics, which is called
jet migration, and is observed in advanced primitive-equation models of Jupiter
(Williams, 2003). It takes the form of slow drift of the whole jet system which
can be either northward or southward. Our mechanism of metastability does
not explain such behavior since the relative distance between the jets must be
the same. We do however observe jet migrations either to the north or to the
south in our simple model (see e.g. Fig. 3). The AMS algorithm can be used
in such a context by simply changing the reaction coordinate and is expected
to provide powerful insight on jet migration as well.

In the future, we would like to consider more realistic models and, in par-
ticular, two-layer baroclinic models (Phillips, 1951) using a small aspect ratio.
These models are rather popular for the study of the midlatitude Jovian atmo-
sphere (Williams, 1979; Haidvogel and Held, 1981; Panetta, 1993; Kaspi and
Flierl, 2007). Interestingly, one anticipates the same transition phenomenology
than the one studied here, at least in square domains. The Hovmoller diagram
of Panetta (1993), Fig. 10 for instance is very suggestive as one observes several
small coalescences at the beginning and a well-defined 3 — 4 nucleation. 1 — 2
transitions are also studied in details in Lee (1997).
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A Instantons, large deviations
Let us consider a stochastic partial differential equation written as
du = F(u) dt + /adWy,

where u = u(x,t),x € R%, u(x,0) = up(x) is an initial condition and W; is a
Wiener process. We define V = V(ug, u1,T), the set of trajectories starting from
uo and ending at uy at time 7. A path integral approach (initiated by Onsager
and Machlup, 1953) allows to formally express the transition probability from
up at time t = 0 to u; at time T as

Pr(ul,T|u0,O):Aexp (—AT—[U]> Dlu). (4)

«

Here D[u] is a measure over paths which can be defined rigorously, and Ar is
the so-called action:
1 T

The saddle-point approximation of (4) in the limit @ — 0 gives, at the limit
T — o0, the large-deviation result

2

d
Y dt.

E—F(U)

— lim alogPr = inf A [u], with V = {u(t), lim wu(t) = ug,u(0) = us}.
a—0 wucy t——o0

Here, us is a saddle point at the boundary of the basin of attraction of wuyg.
Generically, there is a unique minimizer of the action A = A, which is called
an instanton path, often referred to as the most probable path going from wug to
the saddle us in the limit of vanishing noise. Remarkably, Freidlin and Wentzell
(1984) have shown that the saddle approximation of the path integral is indeed
valid provided uy is a fixed isolated attracting point of the deterministic system
with @ = 0. Let v be a solution in the basin of attraction of ug, the instanton
path is in this case simply the trajectory of the deterministic dynamics which
satisfies 24 — F(u) = 0 with w(0) = v. It is the unique minimizer of the infinite
time action 4 which is trivially zero. One calls these solutions, relaxation paths
(Bouchet et al., 2014). Of particular interest is the case where the deterministic
system is a gradient system with F(u) = —%—Z. It is possible to define the time-
reversed path of the relaxation path going from ug to v and it is called fluctuation
path. Fluctuation paths have of course the same geometrical support than
relaxation paths (see also Vanden-Eijnden and Heymann, 2008). One can easily
deduce that a fluctuation path is indeed the unique minimizer of the infinite
time action which becomes equal to V' (v) — V(ug). The classical Arrhenius law
for gradient systems is thus obtained , namely —lim,_oalogPr = V; — Vj,
where V; is the value of the potential V at the saddle .
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B Adaptive Multilevel Splitting algorithm (AMS)

The idea of splitting indeed took its source during the Manhattan project with
J.Von Neumann (unpublished) and was sometimes referred to as Von Neumann
splitting (Kahn and Harris, 1951; Rosenbluth and Rosenbluth, 1955). These
ideas were more or less forgotten until the 90s where they start to be rather
popular in chemistry, molecular dynamics and networks. These algorithms are
now better understood from a mathematical point of view and have become an
important area of research in probability (P. Del Moral, 2004). We use here
the modern adaptive version of these splitting techniques which is proposed by
Cérou and Guyader (2007). It is much more robust and versatile than the clas-
sical versions used previously. The general idea is to decompose a very small
probability into a chain of products of (larger) conditional probabilities. As
such, one mimics the evolution of species by performing Darwinian selections
on the system dynamics, in a controlled (unbiased) way. These types of algo-
rithms essential perform a large number of mutations and selections (branch-
ing) by cloning the system dynamics. This is the reason they are sometimes
called genetic algorithms although they bear several different names like multi-
level splitting, go-with-the-winner, rare event or even large-deviation algorithms.
Note that they must not be confused with the well-known family of importance
sampling techniques (see Ebener et al., 2018).

B.1 Algorithm description

One needs a Markovian model (X¥)¢>0 with Xo = x € H, where H is an ad-hoc
functional space. Typically, X; corresponds to a stochastic partial differential
equation (PDE) in H. Let us consider two arbitrary sets .4 and B such that
ANB = (. The goal is to estimate the probability p to enter the set B,
starting from the initial condition x, before returning to A. Let 7¢(x) = inf{t >
0,X¥ € C}. The probability p translates to p = p(x) = Pr(ra(x) < 74(x)).
A reactive trajectory is a particular realisation of this probability. We note
that p(x) = 0 if x € A and p(x) = 1 if x € B. The function p : x — p(x)
is called either committor or importance function or equilibrium potential in
mathematics. It can be shown to solve the backward Fokker-Planck equation
for diffusive processes (e.g., E and Vanden-Eijnden, 2006). Solving this PDE is
out of question in large (infinite) dimension. One then needs to define a quantity
which measures how far a trajectory is escaping from A. There is no unique
choice and this will depend mostly on the question asked. Let ® : H — R
a chosen function which is called reaction coordinate or observable. One then
defines
Qx) = sup D(X).
te[0,7.4]

For convenience ® is renormalized such that ®(.A) = 0 and ®(B) = 1 although
it is not necessary. We can now give the description of the algorithm in its
simplest version.
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Pseudo-code (last particle): Let N be a fixed number, ® given and x some
fixed initial condition. The quantity p is an unbiased estimate of p.

Initialization: set the counter X = 0 and p = 1. Draw N i.i.d. trajectories
indexed by 1 < i < N, all starting at x until they either reach A or
B. Compute Q;(x) for 1 < i < N. In the following we denote Q; these
quantities since their initial restarting conditions might change.

DO WHILE (min; Q; < 1)

Selection: find ¢* = argmin,Q); and set @ = Q.
Branching: select an index I uniformaly in {1,---,N}\ {¢*}. Find
t* such that t* = inf; {@({XEI) > @} Compute the new trajectory

i* with initial condition x* = Xg) until it reaches either A or B.
Compute the new value Q;+(x*). DO K +— K41 and p + (1—+) xD.

END WHILE

Figure 18 gives an illustration of these algorithmic steps. The performance of
the algorithm depends crucially on the choice of ®. One can show that when
® has the same isosurfaces than the committor p(x) (which is always true in
1-D), the number of iterations K ~ Poisson(—N logp) (Guyader et al., 2011;
Simonnet, 2016). Central limit theorems can now be demonstrated in general
situations (Bréhier et al., 2016; Cérou and Guyader, 2016) and typically take

the form \/N%\ NL> N(0, |logpl|). The advantage of these algorithms is the
—00

unbiased estimate they provide. One should be careful however as a bad choice
of ® may lead to lognormal law with heavy tails and apparent bias (Rolland and
Simonnet, 2015). In practice, the larger N the better. A too small value of N
not only give results with large variance but also trigger extinction of species by
loss of trajectory diversity. One should take advantage of algorithmic variants
which eliminate n < N trajectories at each step instead of just one. The
number of iterations K in this case scales like %| logp|. Doing so in a parallel
environment provide much faster results. This is indeed the strategy used in this
paper, where we typically have N = O(103) and n = O(100) on n cores with
a speed-up scaling linearly like O(n). In practice, one should also run several
ii.d. algorithmic realisations with different choices of reaction coordinates and
consider a set of initial conditions x rather than a single initial state (see e.g.,
Cérou et al., 2011).

B.2 Reactive coordinates

There are many possible options to construct reasonable reaction coordinates.
The first option is to consider a low-dimensional projection of the system phase
space, say on zonal Fourier modes. One can also consider EOF's or wavelets basis
to better represent the solutions. In our case, we have chosen the Fourier moduli
|gal, |gs3l, |ga| for Fig. 5. One then needs to construct a function f(|q2l, |gs|, |q4]) €
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Figure 18: Al
Sketch of the adaptive multilevel splitting algorithm (last particle algorithm)
with N = 3 trajectories. One eliminates the trajectory (trajectory labeled 2
in the sketch) which has the smallest maximum value of @ (denoted Q2), and
creates a new one (sketched by a red curve) which is resampled from the initial
condition from one of the others trajectory chosen randomly (here trajectory
1), and when it crosses the level Q5.
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R such that it describes well the fluctuations of the system. Let M a projection
of the system in the low-dimensional phase space, a natural choice is then to
consider f(M) = 51—"}3 if dy < dg and f(M) = 1 — ;g_-; if dg < du, where
de = dist(M,C). The function f is equal to zero in the set A and one in the
set B. One must be careful as the Euclidian distance may not reflect well the
dynamics of the transitions. Moreover if the dimension of the projected phase
space is too low, relevant fluctuations may not be seen at all.

Another option is to work in the physical space instead. In our case, it is
natural to work in the 1-D zonal velocity space such as those shown in many
instances of this work. For the nucleation transitions, the strategy is to detect
loss of convexity locally near the parabolic jet. A typical relevant quantity is
then |ju—u*||; where u* is the local convexification of u, say between two eastern
jets. This quantity typically can detect nonlocal changes of curvature and has
a smoothing effect. In principle the second derivative of uw at the parabolic
jet would be the right quantity but the corresponding fluctuations can be very
large and may reflect more subtil changes in the velocity profile even far from
the jet. Moreover, as the nucleation proceeds, the fluctuations of the curvature
at the newly created jet saturate and become more or less irrelevant. If one has
enough control and understanding on such reaction coordinates, only one scalar
quantity is necessary to perform AMS. If it is not the case, one should consider
a mix of both approaches. Note that one is indeed doing some simplified form
of image processing so that deep neural networks can bring interesting new
perspectives.

B.3 Saddle detection

Once a reactive trajectory reaches a saddle, it should relax, with a probability
close to 1, either to the set A or the set B depending whether it is ”before” or
”after” the saddle. This property is at the basis of the three methods presented.

1 The simplest method requires no extra computations and is fairly accurate.
Once AMS algorithm has converged, one should simply record the states
over which the last branching has occurred. The reason is that these
initial conditions all relax (by the ”natural” dynamics, ie the one with
probability close to 1) to the target set B by the AMS definition whereas
previous states relax to A again by definition.

2 The dichotomy method is more precise than method 1, but it requires
extra costly computations as one must reconstruct all AMS trajectories
(see Lucarini and Bédai, 2017; Schneider et al., 2007; Willis and Kerswell,
2009, for a similar idea). One proceeds by dichotomy on the reactive
trajectories (X¢)ep0,-] by picking initial conditions along the trajectory.
For each initial conditions one relaxes the dynamics to decide whether it
goes to A or B. The dichotomy provides a critical time, say ts, and the
saddle is close to X¢,. Note that this is correct in probability only, so that
one should perform several realisations, and for many AMS trajectories
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In practice, one realisation is enough since the return time associated to
the transition is much larger than the natural relaxation dynamics.

3 This method has mainly a theoretical interest. The idea is simply to
compute pairs of instantons, anti-instantons and to look for their inter-
sections since they must intersect at saddles and form a so-called figure-
eight pattern (see Fig. 9). For reversible dynamics like gradient systems,
this approach is irrelevant as the geometric support of an instanton and
anti-instanton is the same. In practice, computing anti-instantons is very
challenging.

C Permutations in a channel flow

We investigate here the robustness of the S,, symmetric group w.r.t. the bound-
ary conditions. We conduct an experiment in a zonally-periodic channel with
free-slip boundary conditions, by imposing ¢ = 0 at the north and south walls
and and an additional constraint Ag = 0 for the hyperviscosity. We focus on a
parameter regime having three jets (5 = 8), and use the same isotropic annular
stochastic forcing than in the doubly-periodic case. We generate O(10) i.i.d.
realisations starting from the same initial condition ¢ = 0. We obtain three
distinct mirror pairs of solutions w.r.t. the symmetry y — —y (denoted by a
bar), ie a total of 6 different configurations. No additional states have been
observed even by increasing the number of realisations. We define o1 as the
distance between the first and second eastward jet and o9, between the second
and third eastward jet. The results are shown in Fig. 19 and we call A, B, C' the
three states (right of Fig. 19) together with their mirror counterparts A, B,C
(upper part of Fig. 19).

A close inspection of the numerical values (o1, 02, 03) where o3 = 1 —01 — 03,
shows that not all permutations are realized. Let us look at the state A with
values (01,4,02,4,03 4) =~ (0.45,0.20,0.34), then C' is simply (01,4,03,4,02,4),
A= (02,4,01.4,03.4) and C = (03 4,01,4,02 4), giving a total of 4 states. The
state B does not correspond to a permutation of the previous states. It has
values (01, p,02,8,03,5) ~ (0.45,0.29,0.27). It is almost invariant by permuting
oo and o3. Note that the boundary conditions impose the presence of either
westward or eastward jets on the walls since ¢ = 0 yields Z—Z = 0, in particular
we observe that the states have either two westward jets (A, B, A, B) or one
eastward and one westward jet (C,C). The existence of two eastward jets at
the north and south walls seems to be forbidden for this value of 3, it has never
been observed.

We thus conclude that the symmetric group appears to be broken into two
different subgroups. It suggests a more complex general picture where the sym-
metries of the problem play a key role in the interaction between the jets. It is
plausible for instance that in a four-jet regime, the symmetric group S3 would
emerge as a subgroup.

One of the experiment is shown in the form of an Hovmdller diagram in
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Figure 19: Probability density function (o1, 02) for the 6 different three alternat-
ing jet states, in a zonally-periodic channel with free-slip boundary conditions.
The computation used about 10 independent noise realizations, each starting
from rest (zero initial condition). The physical parameters are § = 8 and
a = 5-107% The number of grid points in each direction is N = 400 using
RK4 time scheme for an annular isotropic noise like in the doubly-periodic case

at ky = 12. The diagonal (3, %, 1) is shown with a white dotted line.

Fig. 20. A striking transition from A — A takes place through a nucleation
inducing a 4-jet state quickly followed by a merging back to the mirror 3-jet
state. The solution goes through the perfectly marginally stable symmetry state
(3,1, 1) (see middle of Fig. 20). Transitions involving internal saddles have not
been directly observed and deserve further investigations using the rare event
AMS algorithm.
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