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We describe how variable precision floating-point arithmetic can be used to compute inner products in the iterative solver GMRES. We show how the precision of the inner products carried out in the algorithm can be reduced as the iterations proceed, without affecting the convergence rate or final accuracy achieved by the iterates. Our analysis explicitly takes into account the resulting loss of orthogonality in the Arnoldi vectors. We also show how inexact matrix-vector products can be incorporated into this setting.

Introduction

As highlighted in a recent SIAM News article [START_REF] Higham | A multiprecision world[END_REF], there is growing interest in the use of variable precision floating-point arithmetic in numerical algorithms. (Other recent references include [START_REF] Carson | Accelerating the solution of linear systems by iterative refinement in three precisions[END_REF][START_REF] Haidar | The design of fast and energy-efficient linear solvers: on the potential of half-precision arithmetic and iterative refinement techniques[END_REF][START_REF] Haidar | Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers[END_REF][START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF][START_REF] Higham | Simulating low precision floating-point arithmetic[END_REF][START_REF] Higham | Squeezing a matrix into half precision, with an application to solving linear systems[END_REF] to cite only a few.) In this paper, we describe how variable precision arithmetic can be exploited in the iterative solver GMRES [START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF]. We show that the precision of some floating-point operations carried out in the algorithm can be reduced as the iterations proceed, without affecting the convergence rate or final accuracy achieved by the iterates.

There is already a literature on the use of inexact matrix-vector products in GMRES and other Krylov subspace methods; see, e.g., [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF][START_REF] Eshof | Inexact Krylov subspace methods for linear systems[END_REF][START_REF] Bouras | Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy[END_REF][START_REF] Giraud | Convergence in backward error of relaxed GMRES[END_REF][START_REF] Simoncini | Recent computational developments in Krylov subspace methods for linear systems[END_REF][START_REF] Gratton | Minimizing convex quadratic with variable precision Krylov methods[END_REF] and the references therein. This work is not a simple extension of such results. To illustrate, suppose that all arithmetic operations are performed exactly, except the matrix-vector products. Then one obtains an inexact Arnoldi relation

AV k + E k = V k+1 H k , V T k V k = I. (1) 
On the other hand, if only inner products are performed inexactly, the Arnoldi relation continues to hold but the orthogonality of the Arnoldi vectors is lost:

AV k = V k+1 H k , V T k V k = I -F k . (2) 
Thus, to understand the convergence behaviour and maximum attainable accuracy of GMRES implemented with inexact inner products, it is absolutely necessary to understand the resulting loss of orthogonality in the Arnoldi vectors.

We adapt techniques used in the rounding-error analysis of the Modified Gram-Schmidt (MGS) algorithm (see [START_REF] Björck | Solving linear least squares problems by Gram-Schmidt orthogonalization[END_REF][START_REF] Björck | Loss and recapture of orthogonality in the Modified Gram-Schmidt algorithm[END_REF] or [START_REF] Leon | Gram-Schmidt orthogonalization: 100 years and more[END_REF] for a more recent survey) and of the MGS-GMRES algorithm (see [START_REF] Drkošová | Numerical stability of GMRES[END_REF][START_REF] Greenbaum | Numerical behaviour of the Modified Gram-Schmidt GMRES implementation[END_REF][START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF]).

We focus on inexact inner products and matrix-vector products (as opposed to the other saxpy operations involved in the algorithm) because these are the two most time-consuming operations in parallel computations. The rest of the paper is organized as follows. We start with a brief discussion of GMRES in nonstandard inner products in Section 2. Next, in Section 3, we analyze GMRES with inexact inner products. We then show how inexact matrix-vector products can be incorporated into this setting in Section 4. Some numerical examples are presented in Sections 5 and 6.

GMRES in weighted inner products

Shown below is the Arnoldi algorithm, with y, z = y T z denoting the standard Euclidean inner product.

After k steps of the algorithm are performed in exact arithmetic, the output is

V k+1 = [v 1 , . . . , v k+1 ] ∈ R n×(k+1) and upper-Hessenberg H k ∈ R (k+1)×k such that v 1 = b β , AV k = V k+1 H k , V T k V k = I k .
The columns of V k form an orthonormal basis for the Krylov subspace

K k (A, b) = span b, Ab, A 2 b, . . . , A k-1 b .
In GMRES, we restrict x k to this subspace:

x k = V k y k , where y k ∈ R k is the solution of min y b -AV k y 2 = min y V k+1 (βe 1 -H k y) 2 = min y βe 1 -H k y 2 .

Algorithm 1 Arnoldi algorithm

Require: A ∈ R n×n , b ∈ R n 1: β = b, b 2: v 1 = b/β 3: for j = 1, 2, . . . do 4:
w j = Av j 5:

for i = 1, . . . , j do 6:

h ij = v i , w j 7: w j = w j -h ij v i 8:
end for 9: h j+1,j = w j , w j 10:

v j+1 = w j /h j+1,j 11: end for It follows that

x k = V k y k = V k (H T k H k ) -1 H T k (βe 1 ) = V k H † k (βe 1 ), r k = b -Ax k = V k+1 (βe 1 -H k y k ) = V k+1 (I -H k H † k )βe 1 . (3) 
Any given symmetric positive definite matrix W defines a weighted inner product y, z W = y T W z and associated norm z W = z, z W . Suppose we use this inner product instead of the standard Euclidean inner product in the Arnoldi algorithm. We use tildes to denote the resulting quantities in the algorithm. After k steps, the result is

V k+1 = [ v 1 , . . . , v k+1 ] and upper-Hessenberg H k ∈ R (k+1)×k such that v 1 = b b W = b β , A V k = V k+1 H k , V T k W V k = I k . The columns of V k form a W -orthonormal basis for K k (A, b). Let x k = V k y k , where y k ∈ R k is the solution of min y b -A V k y W = min y V k+1 ( βe 1 -H k y) W = min y βe 1 -H k y 2 , so that x k = V k H † k ( βe 1 ), r k = b -A x k = V k+1 (I -H k H † k ) βe 1 .
We denote the above algorithm W -GMRES.

Let x k and x k denote the iterates computed by standard GMRES and W -GMRES, respectively, with corresponding residual vectors r k and r k . It is well known that

1 ≤ r k 2 r k 2 ≤ κ 2 (W ). (4) 
See e.g. [START_REF] Pestana | On the choice of preconditioner for minimum residual methods for non-Hermitian matrices[END_REF] for a proof. Thus, if κ 2 (W ) is small, the Euclidean norm of the residual vector in W -GMRES converges at essentially the same rate as in standard GMRES.

A similar result [START_REF] Freund | Quasi-kernel polynomials and convergence results for quasiminimal residual iterations[END_REF]Theorem 4] holds for the residual computed in the quasi-minimal residual method [START_REF] Freund | QMR: A quasi-minimal residual method for non-Hermitian linear systems[END_REF][START_REF] Freund | Quasi-kernel polynomials and their use in non-Hermitian matrix iterations[END_REF].

GMRES with inexact inner products 3.1 Preliminary results

Suppose the inner products in the Arnoldi algorithm are computed inexactly, i.e., line 6 in Algorithm 1 is replaced by

h ij = v T i w j + η ij , (5) 
with |η ij | bounded by some tolerance. Our main contribution is to show precisely how large each η ij can be without affecting the convergence of GMRES. Throughout we assume that all arithmetic operations in GMRES are performed exactly, except for the above inner products.

It is straightforward to show that despite the inexact inner products in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF], the relation AV k = V k+1 H k continues to hold. On the other hand, the orthogonality of the Arnoldi vectors is lost. We have

[b, AV k ] = V k+1 [βe 1 , H k ], V T k+1 V k+1 = I k+1 + F k . (6) 
The relation between each η ij and the overall loss of orthogonality F k is very difficult to understand. To simplify the analysis we suppose that each v j is normalized exactly. (This is not an uncommon assumption; see, e.g., [START_REF] Björck | Solving linear least squares problems by Gram-Schmidt orthogonalization[END_REF] and [START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF].) Under this simplification, we have

F k = Ūk + Ū T k , Ūk = 0 k×1 U k 0 1×1 0 1×k , U k =    v T 1 v 2 . . . v T 1 v k+1 . . . . . . v T k v k+1    , (7) 
i.e., U k ∈ R k×k contains the strictly upper-triangular part of F k . Define

N k =    η 11 . . . η 1k . . . . . . η kk    , R k =    h 21 . . . h 2k . . . . . . h k+1,k    . (8) 
Note that R k must be invertible if h j+1,j = 0 for j = 1, . . . , k, in other words, if GMRES has not terminated by step k. (We assume that GMRES does not breakdown by step k.) Following Björck's seminal rounding error analysis of MGS [START_REF] Björck | Solving linear least squares problems by Gram-Schmidt orthogonalization[END_REF], it can be shown that

N k = -[0, U k ]H k = -U k R k . (9) 
For completeness, a proof of ( 9) is provided in the appendix.

Additionally, in order to understand how F k 2 increases as the residual norm decreases, we will need the following rather technical lemma. The relationship [START_REF] Freund | QMR: A quasi-minimal residual method for non-Hermitian linear systems[END_REF] is well know (see for example [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF]Lemma 5.1]) while ( 12) is essentially a special case of [START_REF] Paige | Bounds for the least squares distance using scaled total least squares[END_REF]Theorem 4.1]. We defer the proof to the appendix. Lemma 1. Let y j and t j be the least squares solution and residual vector of

min y βe 1 -H j y 2 , for j = 1, . . . , k. Then |e T j y k | ≤ t j-1 2 σ min (H k ) . ( 10 
)
In addition, given > 0, let D k be any nonsingular matrix such that

D k 2 ≤ σ min (H k ) b 2 √ 2 t k 2 . ( 11 
)
Then t k 2 2 b 2 2 + 2 D k y k 2 2 1/2 ≤ σ min -1 e 1 , H k D -1 k ≤ t k 2 b 2 . (12) 
Finally, although the columns of V k+1 in [START_REF] Drkošová | Numerical stability of GMRES[END_REF] are not orthonormal in the standard Euclidean inner product, we will use the fact that there exists an inner product in which they are orthonormal. The proof of the following lemma is given in the appendix.

Lemma 2. Consider a given matrix Q ∈ R n×k of rank k such that

Q T Q = I k -F. ( 13 
)
If F 2 ≤ δ for some δ ∈ (0, 1), then there exists a matrix M such that I n + M is symmetric positive definite and

Q T (I n + M )Q = I k . (14) 
In other words, the columns of Q are exactly orthonormal in an inner product defined by I n + M . Furthermore,

κ 2 (I n + M ) ≤ 1 + δ 1 -δ . ( 15 
)
Note that κ 2 (I n +M ) remains small even for values of δ close to 1. For example, suppose

I k -Q T Q 2 = δ = 1 /2,
indicating an extremely severe loss of orthogonality. Then κ 2 (I n + M ) ≤ 3, so Q still has exactly orthonormal columns in an inner product defined by a very well-conditioned matrix.

Remark 1. Paige and his coauthors [START_REF] Björck | Loss and recapture of orthogonality in the Modified Gram-Schmidt algorithm[END_REF][START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF][START_REF] Paige | Properties of a unitary matrix obtained from a sequence of normalized vectors[END_REF] have developed an alternative measure of loss of orthogonality. Given Q ∈ R n×k with normalized columns, the measure is S 2 , where S = (I + U ) -1 U and U is the strictly upper-triangular part of Q T Q. Additionally, orthogonality can be recovered by augmentation: the matrix P = S Q(I-S) has orthonormal columns. This measure was used in the groundbreaking rounding error analysis of the MGS-GMRES algorithm [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF]. In the present paper, under the condition F 2 ≤ δ < 1, we use the measure F 2 and recover orthogonality in the (I + M ) inner product. However, Paige's approach is likely to be the most appropriate for analyzing the Lanczos and conjugate gradient algorithms, in which orthogonality is quickly lost and F 2 > 1 long before convergence.

A strategy for bounding the η ij

We now show how to bound the error η ij in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF] to ensure that the convergence of the GMRES is not affected by the inexact inner products.

The following theorem shows how the convergence of GMRES with inexact inner products relates to that of exact GMRES. The idea is similar to [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF]Section 5], in which the quantity E k R -1 k F must be bounded, where R k is the matrix in ( 8) and E k is a matrix containing rounding errors.

Theorem 1. Let x (e)
k denote the k-th iterate of standard GMRES, performed exactly, with residual vector r (e) k . Now suppose that the Arnoldi algorithm is run with inexact inner products as in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF], so that (6)-( 9) hold, and let x k and r k denote the resulting GMRES iterate and residual vector. Let y k and t k be the least squares solution and residual vector of

min y βe 1 -H k y 2 .
If for all steps j = 1, . . . , k of GMRES all inner products are performed inexactly as in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF] with tolerances bounded by

|η ij | ≤ η j ≡ φ j σ min (H k ) √ 2 b 2 t j-1 2 (16) 
for any ∈ (0, 1) and any positive numbers φ j such that

k j=1 φ 2 j ≤ 1, then at step k either 1 ≤ r k 2 r (e) k 2 ≤ √ 3, ( 17 
)
or t k 2 b 2 ≤ 6k , (18) 
implying that GMRES has converged to a relative residual of 6k .

Proof. If ( 16) holds, then in ( 8)

|N k | ≤      η 1 η 2 . . . η k η 2 . . . η k . . . . . . η k      = E k D k ,
where E k is an upper-triangular matrix containing only ones in its upper-triangular part, so that E k 2 ≤ k, and D k = diag(η 1 , . . . , η k ). Then,

N k R -1 k 2 ≤ N k D -1 k 2 D k R -1 k 2 ≤ E k 2 D k R -1 k 2 ≤ k (R k D -1 k ) -1 2 . ( 19 
) Let h T k denote the first row of H k , so that H k = h T k R k
. For any > 0 we have

σ min (R k D -1 k ) = min u 2= v 2=1 u T R k D -1 k v = min u 2= v 2 =1 [0, u T ] -1 h T k D -1 k 0 R k D -1 k 0 v ≥ min u 2= v 2 =1 u T -1 h T k D -1 k 0 R k D -1 k v = σ min -1 e 1 , H k D -1 k . Therefore, (R k D -1 k ) -1 2 = 1 σ min (R k D -1 k ) ≤ 1 σ min -1 e 1 , H k D -1 k .
Notice that if the η j are chosen as in [START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF], D k automatically satisfies [START_REF] Giraud | Convergence in backward error of relaxed GMRES[END_REF]. Using the lower bound in [START_REF] Gratton | Minimizing convex quadratic with variable precision Krylov methods[END_REF], then [START_REF] Freund | QMR: A quasi-minimal residual method for non-Hermitian linear systems[END_REF] and ( 16), we obtain

(R k D -1 k ) -1 2 ≤ 2 b 2 2 + 2 D k y k 2 2 1/2 t k 2 = 2 b 2 2 + 2 k j=1 η 2 j (e T j y k ) 2 1/2 t k 2 ≤ 2 b 2 2 + k j=1 φ 2 j 2 b 2 2 1/2 t k 2 = √ 2 b 2 t k 2 .
Therefore, in [START_REF] Higham | Squeezing a matrix into half precision, with an application to solving linear systems[END_REF],

N k R -1 k 2 ≤ √ 2k b 2 t k 2 ≤ 6k b 2 t k 2 1 4 .
If [START_REF] Higham | Simulating low precision floating-point arithmetic[END_REF] does not hold, then 7) and ( 9), we have

N k R -1 k 2 ≤ 1 /4. From (
F k 2 ≤ 2 U k 2 = 2 N k R -1 k 2 , (20) 
with the matrix F k defined in [START_REF] Drkošová | Numerical stability of GMRES[END_REF]. Thus, F k 2 ≤ 1 2 < 1 and we can apply Lemma 2 with Q = V k+1 and δ = 1 2 . There is a symmetric positive definite matrix

W = I n + M such that [b, AV k ] = V k+1 [βe 1 , H k ], V T k+1 W V k+1 = I k+1 , κ 2 (W ) ≤ 1 + δ 1 -δ = 3.
The Arnoldi algorithm implemented with inexact inner products has computed an W -orthonormal basis for the Krylov subspace K k (A, b). The iterate x k is the same as the iterate that would have been obtained by running W -GMRES exactly, and ( 4) implies [START_REF] Higham | A multiprecision world[END_REF]. Therefore, if the |η ij | are bounded by tolerances η j chosen as in [START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF], either (17) holds, or (18) holds.

Theorem 1 can be interpreted as follows. If at all steps j = 1, 2, . . . of GM-RES the inner products are computed inaccurately with tolerances η j in [START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF], then convergence at the same rate as exact GMRES is achieved until a relative residual of essentially k is reached. Notice that η j is inversely proportional to the residual norm. This allows the inner products to be computed more and more inaccurately as as the iterations proceed.

Practical considerations

If no more than K max iterations are to be performed, we can let φ j = K -1 /2 max (although more elaborate choices for φ j could be considered; see for example [START_REF] Gratton | Minimizing convex quadratic with variable precision Krylov methods[END_REF]). Then the factor φj / √ 2 in ( 16) can be absorbed along with the k in [START_REF] Higham | Simulating low precision floating-point arithmetic[END_REF]. One important difficulty with [START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF] is that σ min (H k ) is required to pick η j at the start of step j, but H k is not available until the final step k. A similar problem occurs in GMRES with inexact matrix-vector products; see [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF][START_REF] Eshof | Inexact Krylov subspace methods for linear systems[END_REF] and the comments in Section 4. In our experience, is often possible to replace σ min (H k ) in ( 16) by 1, without significantly affecting the convergence of GMRES. This leads to following: Aggressive threshhold :

η j = b 2 t j-1 2 , j = 1, 2, . . . . (21) 
In exact arithmetic, σ min (H k ) is bounded below by σ min (A). If the smallest singular value of A is known, one can estimate σ min (H k ) ≈ σ min (A) in ( 16), leading to the following:

Conservative threshhold :

η j = σ min (A) b 2 t j-1 2 , j = 1, 2, . . . . (22) 
This prevents potential early stagnation of the residual norm, but is often unnecessarily stringent. (It goes without saying that if the conservative threshold is less than u A 2 , where u is the machine precision, then the criterion is vacuous: according to this criterion no inexact inner products can be carried out at iteration j.) Numerical examples are given in Sections 5 and 6.

Incorporating inexact matrix-vector products

As mentioned in the introduction, there is already a literature on the use of inexact matrix-vector products in GMRES. These results are obtained by assuming that the Arnoldi vectors are orthonormal and analyzing the inexact Arnoldi relation

AV k + E k = V k+1 H k , V T k V k = I.
In practice, however, the computed Arnoldi vectors are very far from being orthonormal, even when all computations are performed in double precision arithmetic; see for example [START_REF] Drkošová | Numerical stability of GMRES[END_REF][START_REF] Greenbaum | Numerical behaviour of the Modified Gram-Schmidt GMRES implementation[END_REF][START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF]. The purpose of this section is to show that the framework used in [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF] and [START_REF] Eshof | Inexact Krylov subspace methods for linear systems[END_REF] to analyze inexact matrix-vector products in GMRES is still valid when the orthogonality of the Arnoldi vectors is lost, i.e., under the inexact Arnoldi relation

AV k + E k = V k+1 H k , V T k V k = I -F k . ( 23 
)
We assume that the errors η ij in computing the inner products is sufficiently small that F k 2 ≤ δ < 1, as per Section 3. Then from Lemma 2 there exists a symmetric positive definite matrix

W = I n + M ∈ R n×n such that V T k+1 W V k+1 = I k+1
, and with singular values bounded as in (35).

Bounding the residual gap

As in previous sections, we use x k = V k y k to denote the computed GMRES iterate, with r k = b -Ax k for the actual residual vector and t k = β 1 e 1 -H k y k for the residual vector updated in the GMRES iterations. From

r k 2 ≤ r k -V k+1 t k 2 + V k+1 t k 2 , if max { r k -V k+1 t k 2 , V k+1 t k 2 } ≤ 2 b 2 (24) then r k 2 ≤ b 2 . ( 25 
)
From the fact that the columns of W 1 /2 V k+1 are orthonormal as well as (35), we obtain

V k+1 t k 2 ≤ W -1 /2 2 W 1 /2 V k+1 t k 2 = W -1 /2 2 t k 2 ≤ √ 1 + δ t k 2 .
In GMRES, t k 2 → 0 with increasing k, which implies that V k+1 t k 2 → 0 as well. Therefore, we focus on bounding the residual gap r k -V k+1 t k 2 in order to satisfy [START_REF] Paige | Scaled total least squares fundamentals[END_REF] and [START_REF] Paige | Properties of a unitary matrix obtained from a sequence of normalized vectors[END_REF]. Suppose the matrix-vector products in the Arnoldi algorithm are computed inexactly, i.e., line 4 in Algorithm 1 is replaced by

w j = (A + E j )v j , (26) 
where E j 2 ≤ j for some given tolerance j . Then in [START_REF] Paige | Bounds for the least squares distance using scaled total least squares[END_REF],

E k = E 1 v 1 , E 2 v 2 , . . . , E k v k . (27) 
The following proposition bounds the residual gap at step k in terms of the tolerances j , for j = 1, . . . , k. This is a direct corollary of results in [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF] and [START_REF] Eshof | Inexact Krylov subspace methods for linear systems[END_REF].

Proposition 1. Suppose that the inexact Arnoldi relation [START_REF] Paige | Bounds for the least squares distance using scaled total least squares[END_REF] holds, where E k is given in ( 27) with E j 2 ≤ j for j = 1, . . . , k. Then the resulting residual gap satisfies

r k -V k+1 t k 2 ≤ H † k 2 k j=1 j t j-1 2 . ( 28 
)
4.2 A strategy for picking the j Proposition 1 suggests the following strategy for picking the tolerances j that bound the level of inexactness E j 2 in the matrix-vector products in [START_REF] Pestana | On the choice of preconditioner for minimum residual methods for non-Hermitian matrices[END_REF]. Similarly to Theorem 1, let φ j be any positive numbers such that

k j=1 φ j = 1. If for all steps j = 1, . . . , k, j ≤ φ j σ min (H k ) 2 b 2 t j-1 2 , (29) 
then from [START_REF] Simoncini | Theory of inexact Krylov subspace methods and applications to scientific computing[END_REF] the residual gap in [START_REF] Paige | Scaled total least squares fundamentals[END_REF] satisfies

r k -V k+1 t k 2 ≤ 2 b 2 .
Interestingly, this result is independent of the accuracy of the inner products. Similarly to [START_REF] Haidar | Investigating half precision arithmetic to accelerate dense linear system solvers[END_REF], the criterion for picking j at step j involves H k that is only available at the final step k. A large number of numerical experiments [START_REF] Eshof | Inexact Krylov subspace methods for linear systems[END_REF][START_REF] Bouras | Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy[END_REF] indicate that σ min (H k ) can often be replaced by 1. Absorbing the factor φj /2 into in (29) and replacing σ min (H k ) by 1 or by σ min (A) leads, respectively, to the same aggressive and conservative thresholds for j as we obtained for η j in [START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF] and in [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF]. This suggests that matrix-vector products and inner products in GMRES can be computed with the same level of inexactness. We illustrate this with numerical examples in the next section.

Numerical examples with emulated accuracy

We illustrate our results with a few numerical examples. We run GMRES with different matrices A and right-hand sides b, and compute the inner products and matrix-vector products inexactly as in ( 5) and ( 26), as described in Algorithm 2 below. Note that the inner product h j+1,j in line 17 of Algorithm 2 is also computed inexactly. In Section 3, to simplify the analysis, we supposed that each v j+1 was normalized exactly. However, our numerical experiments indicate that h j+1,j can be computed with the same level of inexactness as the other inner products at step j.

We pick η ij randomly, uniformly distributed between -η j and η j , and pick E j to be a matrix of independent standard normal random variables, scaled to have norm j . Thus we have

|η ij | ≤ η j , E j 2 ≤ j ,
for chosen tolerances η j and j . Throughout this first set of experiments, we use the same level of inexactness for inner products and matrix-vector products, i.e., η j = j .

In the associated figures, the solid curve is the relative residual b-Ax k 2 / b 2 . For reference, the dashed curve is the relative residual if GMRES is run in double precision. The crossed curve corresponds to the loss of orthogonality F k 2 in (6). The dotted curve is the chosen tolerance η j .

Relationship between η ij and loss of orthogonality

Our first example illustrates the relationship between the errors η ij in the inner products and the loss of orthogonality in the GMRES algorithm.

In this example, A is the 100 × 100 Grcar matrix of order 5. This is a highly non-normal Toeplitz matrix. The right hand side is b = A[sin(1), . . . , sin(100)] T . Results are shown in Figure 1. 

Algorithm 2 A variable precision GMRES

Require: A ∈ R n×n , b ∈ R n , > 0, K max ∈ N, Conservative ∈ {0, 1} 1: if Conservative then 2:
Compute or estimate σ min (A)

3: end if 4: β = √ b T b 5: v 1 = b/β 6: for j = 1, 2, . . . , K max do 7:
if Conservative then 8:

Compute η j and j according to the bound [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF] 9: Compute w j = (A + E j )v j with E j 2 ≤ j 13:

for i = 1, . . . , j do

14:

Compute h ij = v T i w j + η i,j with |η i,j | ≤ η j 15:

w j = w j -h ij v i 16:
end for

17:

Compute h j+1,j = w T j w j + η j+1,j with |η j+1,j | ≤ η j 18:

if h j+1,j = 0 then v j+1 = w j /h j+1,j

22:

Compute y j and t j 2 , the solution and residual of min y∈R j βe 1 -H j y 2 .

23:

if t j 2 < then 24:

Goto 27

25:

end if 26: end for 27: Set x j = V j y j

In Example 1(a),

η j = j =      10 -8 A 2 , for 20 ≤ j ≤ 30, 10 -4 A 2 , for 40 ≤ j ≤ 50, 2 -52 A 2 , otherwise.
The large increase in the inexactness of the inner products at iterations 20 and 40 immediately leads to a large increase in F k 2 . This clearly illustrates the connection between the inexactness of the inner products and the loss of orthogonality in the Arnoldi vectors. As proven in Theorem 1, until F k 2 ≈ 1, the residual norm is the same as it would have been had all computations been performed in double precision. Due to its large increases at iterations 20 and 40, F k 2 approaches 1, and the residual norm starts to stagnate, long before the relative residual norm reaches the double precision machine precision.

In Example 1(b), the tolerances are chosen according to the aggressive criterion ( 21) with = 2 -52 A 2 . With this choice, F k 2 does not reach 1, and the residual norm does not stagnate until convergence.

Conservative vs aggressive thresholds

In our second example, A is the matrix 494 bus from the SuiteSparse matrix collection [START_REF] Davis | The University of Florida sparse matrix collection[END_REF]. This is a 494 × 494 matrix with condition number κ 2 (A) ≈ 10 21) with = 2 -52 A 2 . In this more ill-conditioned problem, the residual norm starts to stagnate before full convergence to double precision. In Example 2(b), the tolerances are chosen according to the conservative threshhold ( 22) with = 2 -52 A 2 , and there is no more such stagnation. Because of these lower tolerances, the inner products and matrix-vector products have to be performed in double precision until about iteration 200. This example illustrates the tradeoff between the level of inexactness and the maximum attainable accuracy. The more ill-conditioned the matrix A is, the less opportunity there is for performing floating-point operations inexactly in GMRES.

Numerical experiments using variable floatingpoint arithmetic

In this section, we run variable floating-point arithmetic in order to assess the performances of the approach in the context of half, simple and double precisions. These experiments are done with the Julia 1 language which allows to switch on demand between different floating-point types (Float16, Float32 and Float64). We compute the inner products and matrix-vector products in lower floating-point precision u (low) once either the aggressive threshold in [START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF] or the conservative threshold in [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF] has increased above u (low) A 2 .

Compared to the previous experiments, we must now take into account the magnitudes of both the vectors and matrix perturbations in order to select the precision of the computation. When no floating-point overflow arise, the perturbation of the matrix is simply computed from the difference between the norm of the matrix stored in Float64 and its conversion to Float16 and Float32. Regarding the inner products, we estimate their magnitude based on the sum of the exponents of the two vectors involved (plus 1 for the product of the mantissa). This explains the oscillating behavior of the accuracies observed in Figures 3 and4: even if the precision has not changed, the estimated amplitude of the value of the inner products induces changes in the associated perturbations [START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF] and [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF].

We focus only on the 494 bus matrix using both the conservative and agressive thresholds. The tolerances are chosen equal to = 10 -6 A and = 10 -12 A in order to illustrate the potential of the algorithm when moderate and high accuracies are required. In Figure 3, when a moderate decrease of the internally-recurred residual is required, we note that the conservative threshold results in a quick degradation of the precision for both the matrix-vector and inner products. All the matrix-vector products are computed in simple precision after 20 iterations, while the inner products start to be computed in simple precision after 30 iterations, precision that is mostly used after 90 iterations. We note a jump in the loss of orthogonality when the simple precision is triggered in the computation of the inner products. However, as expected from the theory, this does not degrade the decrease of the residual which is similar to the one observed with GMRES in double 1 https://julialang.org/ precision. When the aggressive threshold is used, we note that the simple precision is triggered after a few iterations for both the matrix-vector and inner products. The matrix-vector products are then computed in half precision from iteration 90 to convergence, while the precision of the inner products oscillate between half and single depending on the amplitude of the vectors. The consequences are a complete loss of orthogonality after 100 iterations, which results in a slowing down in the decrease of the internally-recurred residual and a stagnation of the residual.

The effect of requiring a higher accuracy is mainly a delay in the exploitation of the multi-arithmetic. The results shown in Figure 4 are similar to those obtained with a coarser tolerance, except for the delay in triggering the computation in simple, and half precisions. We note again a similar decrease in the residuals compared to the GMRES algorithm in double precision. The loss of orthogonality is more severe when the agressive threshold is used, due to an earlier use of the simple precision in the inner products, as well as the use of the half precision in the latest iterations. The residual does not decrease anymore until the maximum number of iterations is reached.

This once again illustrates the tradeoff between the level of inexactness of the computations and the maximum attainable accuracy.

Conclusion

We have shown how inner products can be performed inexactly in MGS-GMRES without affecting the convergence or final achievable accuracy of the algorithm. We have also shown that a known framework for inexact matrix-vector products is still valid despite the loss of orthogonality in the Arnoldi vectors. It would be interesting to investigate the impact of scaling or preconditioning on these results. Additionally, in future work, we plan to address the question of how much computational savings can be achieved by this approach on massively parallel computer architectures.

Conservative threshold [START_REF] Paige | Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES[END_REF] Aggressive threshold ( 21 

A Appendix

A.1 Proof of (9)

In line 7 of Algorithm 1, in the th pass of the inner loop at step j, we have w ( ) (31)

j = w ( -1) j -h j v ( 
Because the inner products h ij are computed inexactly as in [START_REF] Davis | The University of Florida sparse matrix collection[END_REF], from (30) we have

w (i) j = w (i-1) j -h ij v i = w (i-1) j -(v T i w (i-1) j + η ij )v i = (I -v i v T i )w (i-1) j -η ij v i .
Therefore, v T i w (i) j = -η ij . Multiplying (31) on the left by -v T i gives

η ij = - j+1 =i+1 h j (v T i v ), (32) 
which is the entry in position (i, j) of the matrix equation As for [START_REF] Gratton | Minimizing convex quadratic with variable precision Krylov methods[END_REF], for any γ > 0, the smallest singular value of the matrix βγe 1 , H k D -1 k is the scaled total least squares (STLS) distance [START_REF] Paige | Scaled total least squares fundamentals[END_REF] for the estimation problem H k D -1 k z ≈ βe 1 . As shown in [START_REF] Paige | Bounds for the least squares distance using scaled total least squares[END_REF], it can be bounded by the least squares distance min We now show that if γ = ( b 2 ) -1 and D k satisfies [START_REF] Giraud | Convergence in backward error of relaxed GMRES[END_REF], then τ k ≤ 1 / √ 2. From the upper bound in (33) we immediately have

z βe 1 -H k D -1 k z 2 = βe 1 -H k D -1 k z k 2 = βe 1 -H k y k 2 = t k
σ min βγe 1 , H k D -1 k ≤ γ t k 2 = t k 2 b 2 .
Also,

σ min H k D -1 k = min z =0 H k D -1 k z 2 z 2 = min z =0 H k z 2 D k z 2 ≥ min z =0 H k z 2 D k 2 z 2 = σ min (H k ) D k 2 .
Therefore, if [START_REF] Giraud | Convergence in backward error of relaxed GMRES[END_REF] holds,

τ k ≤ t k 2 b 2 D k 2 σ min (H k ) ≤ 1 √ 2 .
Substituting γ = ( b 2 ) -1 and τ k ≤ 1 / √ 2 into (33) gives [START_REF] Gratton | Minimizing convex quadratic with variable precision Krylov methods[END_REF].
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 1 Figure 1: GMRES in variable precision: Grcar matrix.
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 10 Compute η j and j according to the bound[START_REF] Paige | A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors[END_REF] 

  6 . The right hand side is once again b = A[sin(1), . . . , sin(100)] T . Example 2(a) Example 2(b)
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 2 Figure 2: GMRES in variable precision: 494 bus matrix
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 34 Figure 3: GMRES with variable precision floating-point arithmetic: Experiments with the 494 bus matrix and = 10 -6 A 2 . The bottom figure corresponds to GMRES in double precision.

=-j

  Av j . Writing this equation for = i + 1 to j, we havew h i+2,j v i+2 , . . . w (j) j = w (j-1) j -h j,j v j .Summing the above and cancelling identical terms that appear on the left and right hand sides gives w = v j+1 h j+1,j , this reduces to w

A. 2 1 Equation† k β 1 e 1 -β 1 e 1 -

 2111 Proof of Lemma y k | = |e T j H † k β 1 e 1 | = e T j H H j-1 y j-1 0 ≤ H † k 2 t j-1 2 .

2 ,k 2 γ - 2 + D k y k 2 2 /( 1 -τ 2 k ) 1 / 2 ≤ 1 k≤ γ t k 2 ,

 222211212 where z k = D k y k . From[START_REF] Paige | Bounds for the least squares distance using scaled total least squares[END_REF] Theorem 4.1], we havet σ min βγe 1 , H k D -(33) provided τ k < 1, where τ k ≡ σ min βγe 1 , H k D -1 k σ min H k D -1 k .
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A.3 Proof of Lemma 2

Note from [START_REF] Greenbaum | Numerical behaviour of the Modified Gram-Schmidt GMRES implementation[END_REF] that the singular values of Q satisfy

Equation ( 14) is equivalent to the linear matrix equation

It is straightforward to verify that one matrix M satisfying this equation is

Notice that the above matrix M is symmetric. It can also be verified using the singular value decomposition of Q that the eigenvalues and singular values of I n +M are

which implies that the matrix I n + M is positive definite. From the above and (34), provided F 2 ≤ δ < 1,

from which [START_REF] Haidar | Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers[END_REF] follows.