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Abstract

We propose a new family of multilevel methods for unconstrained minimization. The resulting
strategies are multilevel extensions of high-order optimization methods based on q-order Taylor
models (with q ≥ 1) that have been recently proposed in the literature. The use of high-order
models, while decreasing the worst-case complexity bound, makes these methods computationally
more expensive. Hence, to counteract this effect, we propose a multilevel strategy that exploits a
hierarchy of problems of decreasing dimension, still approximating the original one, to reduce the
global cost of the step computation. A theoretical analysis of the family of methods is proposed.
Specifically, local and global convergence results are proved and a complexity bound to reach first
order stationary points is also derived. A multilevel version of the well known adaptive method
based on cubic regularization (ARC, corresponding to q = 2 in our setting) has been implemented.
Numerical experiments clearly highlight the relevance of the new multilevel approach leading to
considerable computational savings in terms of floating point operations compared to the classical
one-level strategy.

1 Introduction

We propose a new family of high-order multilevel optimization methods for unconstrained minimiza-
tion. Exploiting ideas stemming from multilevel methods allows us to reduce the cost of the step
computation, which represents the major cost per iteration of the standard single level procedures.
We have been mainly inspired by two driving ideas: the use of high-order models in optimization as
introduced in [2], and the multilevel recursive strategy proposed in [13].

When solving unconstrained minimization problems, quadratic models are widely used. These
are usually regularized by a quadratic term. For example, trust-region methods have been widely
studied and used to globalize Newton-like iterations [12, 22]. Lately in the literature, a different
option has received a growing attention: the use of a cubic overestimator of the objective function
as a regularization technique for the computation of the step from one iterate to the next, giving
rise to quadratic models with cubic regularization. This idea first appeared in [14] and then was
reconsidered in [21], where the authors proved that the method has a better worst-case complexity
bound compared to standard trust-region methods. Later, in [8, 10], an adaptive variant of the
method has been proposed, based on a dynamical choice of the regularization parameters and on
an approximate solution of the subproblems. The resulting method is known as adaptive method
based on cubic regularization (ARC) and is shown to preserve the attractive global complexity bound
established in [21]. In recent years the method has attracted further interest, see for example [9, 23, 26].

In recent publications also methods of higher order start to gain interest, see for example [2, 24]. In
[2] in particular, it has been observed that the good complexity bound of ARC can be made even lower,
if one is willing to use higher-order derivatives. In specific applications this computation is indeed
feasible, for example when considering partially separable functions [11]. The authors in [2] present
a family of methods that generalizes ARC, and that uses high-order regularized models. Specifically,
they are based on models of order q ≥ 1, regularized by a term of order q + 1. ARC belongs to
this family and corresponds to the choice q = 2. The authors in [2] propose a unifying framework to
describe the theoretical properties of the methods in this class. It is proved that the method based

on the q-th order model requires at most O
(

ǫ−
q+1

q

)

function evaluations to find a first-order critical

point, where ǫ denotes the absolute accuracy level.
However, the use of higher-models come along with higher computational costs. The main cost

per iteration of the methods described in [2] is represented by the step computation through the
model minimization. This cost is proportional to the dimension of the problem, it can therefore be
significant for large-scale problems. For second-order models this issue has been faced for example in
[13], where the authors exploit ideas coming from multigrid [15] to reduce the cost of the minimization.
Indeed, the idea of making use of more grids to solve a large-scale problem has been extended also to
optimization, see for example [13, 16, 17, 18, 19, 20, 25]. These methods share with classical multigrid
methods the idea of exploiting a hierarchy of problems (in this case a sequence of nonlinear functions)
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defined on lower dimensional spaces, approximating the original objective function f . The simplified
expressions of the objective function are used to build models that are cheaper to minimize, and are
used to define the step. Specifically, in [13], the authors present an extension of classical multigrid
methods for nonlinear optimization problems, [4, 5] or [6, Ch. 3], to a class of multilevel trust-region
based optimization algorithms.

Our contributions Inspired by the ideas presented in [2, 13], we propose a family of multilevel
optimization methods using high-order regularized models that generalizes the methods proposed in
both papers. The aim is to decrease the computational cost of the methods in [2], extending the
ideas in [13] to higher-order models. We also develop a theoretical analysis for the resulting family
of methods. The main theoretical results are provided in Theorems 1, 2 and 3, respectively. In
these theorems we successively prove the global convergence property of the methods, then evaluate a
worst-case complexity bound to reach a first-order critical point and finally provide local convergence
rates. The global convergence analysis generalizes the results in [2] and appears as much simpler than
that in [13]. Moreover we establish local convergence results towards second-order stationary points,
that are not present neither in [2] nor in [13]. These results not only generalize those in [27], that are
valid only for q = 2, but also apply to the one level methods in [2]. From a practical point of view, we
implemented the method of the family corresponding to q = 2. This represents a multilevel version
of ARC method.

To the best of our knowledge, this is the first time that multilevel optimization strategies, based
on models of generic order q ≥ 1, are proposed, and that a unifying framework is introduced to
study their convergence. Moreover, multilevel versions of ARC have never been analysed or tested
numerically before.

The manuscript is organized as follows. In Section 2, we briefly introduce the family of optimization
methods using high-order regularized models considered in [2]. Section 3 and Section 4 represent our
main contribution. We introduce in Section 3 the multilevel extensions of the methods presented
in Section 2, and we provide a theoretical analysis in Section 4. Specifically, we focus on global
convergence in Section 4.1, worst-case complexity in Section 4.2 and local convergence in Section 4.3.
In Section 5 we then present results related to numerical experiments performed with the multilevel
method corresponding to q = 2. Finally, conclusions are drawn in Section 6.

2 High-order iterative optimization methods

Let q ≥ 1 be an integer. Let us consider a minimization problem of the form:

min
x∈Rn

f(x) (1)

with f : Rn → R a bounded below and q-times continuously differentiable function, called the objective
function.

Classical iterative optimization methods for unconstrained minimization are based on the use of
a model to approximate the objective function at each iteration. In this section, we describe the
iterative optimization methods using high-order models presented in [2].

2.1 Model definition and step acceptance

At each iteration k, given the current iterate xk, the objective function is approximated by the Taylor
series Tq,k of f(xk + s) (with s ∈ R

n) truncated at order q. The Taylor model of order q denoted as
mq,k is then defined as:

mq,k(xk, s) = Tq,k(xk, s). (2)

A step sk is then found minimizing (possibly approximately) the regularized model

Tq,k(xk, s) +
λk

q + 1
‖s‖q+1, (3)

where λk is a positive value called regularization parameter. The step sk is used to define a trial point
i.e. xk+1 = xk + sk. At each iteration, it has to be decided whether to accept the step or not. This
decision is based on the accordance between the decrease in the function and in the model. More
precisely, at each iteration both the decrease achieved in the model, that we call predicted reduction,
pred = mq,k(xk) − mq,k(xk, sk), and that achieved in the objective function, that we call actual
reduction, ared = f(xk)− f(xk + sk), are computed. The step acceptance is then based on the ratio:

ρk =
ared

pred
=

f(xk)− f(xk + sk)

mq,k(xk)−mq,k(xk, sk)
. (4)

If the model is accurate, ρk will be close to one. Then, the step sk is accepted if ρk is larger than or
equal to a chosen threshold η1 ∈ (0, 1) and is rejected otherwise. In the first case, the step is said to
be successful, and otherwise the step is unsuccessful.

After the step acceptance, the regularization parameter is updated for the next iteration. The
update is still based on the ratio (4). If the step is successful, the regularization parameter is decreased,

2



otherwise it is increased. The whole procedure is stopped when a minimizer of f is reached. Usually,
the stopping criterion is based on the norm of the gradient, i.e. given an absolute accuracy level ǫ > 0
the iterations are stopped as soon as ‖∇xf(xk)‖ < ǫ. The whole procedure is sketched in Algorithm
1.

Algorithm 1 ARq(x0, λ0, ǫ) (Adaptive Regularization method of order q)

1: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0.
2: Input: x0 ∈ R

n, λ0 > λmin, ǫ > 0.
3: k = 0
4: while ‖∇xf(xk)‖ > ǫ do
5: • Initialization: Define the model mq,k as in (2).
6: • Model minimization: Find a step sk that sufficiently reduces the model.

7: • Acceptance of the trial point: Compute ρk =
f(xk)− f(xk + sk)

mq,k(xk)−mq,k(xk, sk)
.

8: if ρk ≥ η1 then

9: xk+1 = xk + sk
10: else

11: xk+1 = xk.
12: end if

13: • Regularization parameter update:

14: if ρk ≥ η1 then

15:

λk+1 =

{
max{λmin, γ2λk}, if ρk ≥ η2,
max{λmin, γ1λk}, if ρk < η2,

16: else

17: λk+1 = γ3λk.
18: end if

19: k = k + 1
20: end while

2.2 Minimization of the model

The main computational work per iteration in this kind of methods is represented by the minimization
of the regularized model (3). This is the most expensive task, and the cost naturally depends on the
dimension of the problem. However, from the convergence theory of such methods, it is well known
that it is not necessary to minimize the model exactly to get a globally convergent method.

A well-known possibility is to minimize the model until the Cauchy decrease is achieved, i.e.
until a fraction of the decrease provided by the Cauchy step (the step that minimizes the model in
the direction of the negative gradient) is obtained. In [2] the authors consider a different stopping
criterion for the inner iterations, the one originally proposed in [8, 10], which has the advantage of
allowing for simpler convergence proofs. The inner iterations are stopped as soon as the norm of the
gradient of the regularized model becomes lower or equal than a multiple of the power q of the norm
of the step sk:

‖∇smq,k(xk, sk) + λk‖sk‖q−1sk‖ ≤ θ‖sk‖q, (5)

for a chosen constant θ > 0.
For very large-scale problems however, even an approximate minimization of (3) may be really

costly. Then, in the next section we propose multilevel variants of the procedures, that rely on
simplified models of the objective function, cheaper to optimize, allowing to reduce the global cost of
the optimization procedure.

3 Multilevel optimization methods

We describe the multilevel extension of the family of methods presented in Section 2. The procedures
are inspired by the multilevel trust-region approach presented in [13], where only second-order models
with quadratic regularization have been considered. Here, we generalize this approach by allowing
also higher-order models, i.e. q > 2.

3.1 Preliminaries and notations

In standard optimization methods the minimization of (3) represents the major cost per iteration,
which crucially depends on the dimension n of the problem. When n is large, the solution cost is
therefore often significant. We want to reduce this cost by exploiting the knowledge of alternative
simplified expressions of the objective function. More specifically, we assume that we know a collection
of functions {fl}lmax

l=1 such that each fl is a q-times continuously differentiable function from R
nl → R

and f lmax(x) = f(x) for all x ∈ R
n. We will also assume that, for each l = 2, . . . , lmax, fl is more costly

to minimize than fl−1. This is the typical scenario when the problem arises from the discretization
of an infinite dimensional problem and fl represent increasingly finer discretizations. In this case,
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nl ≥ nl−1 for all l, but of course this is not the only possible application. As we do not assume the
hierarchy to come from a discretization process, we do not use the terminology typically used in the
field of multigrid methods. We will then use ’levels’ rather than ’grids’.

The methods we propose are recursive procedures, so it suffices to describe the two-level case.
Then, for sake of simplicity, from now on, we will assume that we have just two approximations to
our objective f at disposal. This amounts to consider lmax = 2.

For ease of notation, we will denote by fh : Dh ⊆ R
nh → R the approximation at the highest

level (fh(x) = f lmax(x) in the notation previously used) and by fH : DH ⊆ R
nH → R the other

approximation available, that is cheaper to optimize. The quantities on the highest level will be
denoted by a superscript h, whereas the quantities on the lower level will be denoted by a superscript
H . Let xh

k denote the k-th iteration at the highest level. In the following ‖·‖ will denote the Euclidean
norm. We will use the same notation for all the spaces we will consider, the space on which the norm
is defined will be clear by the context.

Remark 1. To deal with high order derivatives, and to properly handle the concept of coherence
between lower and higher level model, we will need to use a tensor notation, that we introduce here
for convenience of the reader, see [3]. We first consider a tensor of order three, and then extend the
definition to a tensor of order i ∈ N.

Definition 1. Let T ∈ R
n×n×n, and u, v, w ∈ R

n. Then T (u, v, w) ∈ R, T (u, v) ∈ R
n and

T (u, v, w) =

n∑

i=1

n∑

j=1

n∑

k=1

T (i, j, k)u(i)v(j)w(k),

T (v, w)(i) =

n∑

j=1

n∑

k=1

T (i, j, k)v(j)w(k), i = 1, . . . , n.

Definition 2. Let i ∈ N and T ∈ R
ni

, and u1, . . . , ui ∈ R
n. Then T (u1, . . . , ui) ∈ R, T (u1, . . . , ui−1) ∈

R
n and

T (u1, . . . , ui) =
n∑

j1=1

· · ·
n∑

ji=1

T (j1, . . . , ji)u1(j1) . . . ui(ji),

T (u1, . . . , ui−1)(j1) =

n∑

j2=1

· · ·
n∑

ji=1

T (j1, . . . , ji)ui(j2), . . . ui−1(ji), j1 = 1, . . . , n.

3.2 Construction of the lower level model

The main idea is to use fH to construct, in the neighbourhood of the current iterate, an alternative
model mH

q,k to the Taylor model mh
q,k in (2) for fh = f [13]. The alternative model mH

q,k should be

cheaper to optimize than mh
q,k, and will be used, whenever suitable, to define the step. Of course, for

fH to be useful at all in minimizing fh, there should be some relation between the variables of these
two functions. We henceforth assume the following.

Assumption 1. Let us assume that there exist two full-rank linear operators R : Rnh → R
nH and

P : RnH → R
nh such that P = αRT , for a fixed scalar α > 0. Let us assume also that it exists κR > 0

such that max{‖R‖, ‖P‖} ≤ κR, where ‖ · ‖ denotes the matrix norm induced by the Euclidean norm
at the fine level.

In the following, we can assume α = 1, without loss of generality, as the problem can be easily
scaled to handle the case α 6= 1.

At each iteration k at highest level we set xH
0,k = R xh

k , i.e. the initial iterate at the lower level is

set as the projection of the current iterate, and we define the lower level model mH
q,k as a modification

of the coarse function fH . Given q, fH is modified adding q correction terms, to enforce the following
relation:

∇i
sm

H
q,k(x

H
0,k, s

H , . . . , sH
︸ ︷︷ ︸

i times

) = [R(∇i
xf

h(xh
k))](s

H , . . . , sH
︸ ︷︷ ︸

i times

), i = 1, . . . , q, (6)

where R(∇i
xf

h(xh
k)) is such that for all i = 1, . . . , q and sH1 , . . . , sHi ∈ R

nH

[R(∇i
xf

h(xh
k))](s

H
1 , . . . , sHi ) := ∇i

xf
h(xh

k , P sH1 , . . . , P sHi ), (7)

〈[R(∇i
xf

h(xh
k))](s

H
1 , . . . , sHi−1), s

H
i 〉 := 〈∇i

xf
h(xh

k , P sH1 , . . . , P sHi−1), P sHi 〉, (8)

where ∇i
xf

h,∇i
sm

H
q,k denote the i-th order tensor of fh and mH

q,k respectively, 〈·, ·〉 denotes the

scalar product, and for generic g : Rn → R and s1, . . . , si ∈ R
n, ∇ig(x, s1, . . . , si) is the same as

∇ig(x)(s1, . . . , si), which is given in Definition 2.
For instance, if q = 2, relation (6) simply becomes:

∇sm
H
q,k(x

H
0,k)

T sH = (R ∇xf
h(xh

k))
T sH , (sH)T∇2

xm
H
q,k(x

H
0,k)s

H = (sH)TR ∇2
xf

h(xh
k) PsH .
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Relation (6) crucially ensures that the behaviours of fh and mH
q,k are coherent up to order q in a

neighbourhood of xh
k and xH

0,k. To achieve (6), we define mH
q,k as

mH
q,k(x

H
0,k, s

H) = fH(xH
0,k + sH) +

q
∑

i=1

1

i!
[R(∇i

xf
h(xh

k))−∇i
xf

H(xH
0,k)](s

H , . . . , sH
︸ ︷︷ ︸

i times

), (9)

with R(∇i
xf

h(xh
k)) defined in (7)-(8). When q = 2 this is simply:

mH
2,k(x

H
0,k, s

H) =fH(xH
0,k + sH) + (R∇xf

h(xh
k)−∇xf

H(xH
0,k))

T sH

+
1

2
(sH)T (R∇2

xf
h(xh

k)P −∇2
xf

H(xH
0,k))s

H .

3.3 Step computation and step acceptance

At each generic iteration k of our method, a step shk has to be computed to define the new iterate.
Then, one has the choice between the Taylor model (2) and a lower level model (9).

Obviously, it is not always possible to use the lower level model. For example, it may happen
that ∇xf

h(xh
k) lies in the nullspace of R and thus that R∇xf

h(xh
k) is zero while ∇xf

h(xh
k) is not. In

this case, the current iterate appears to be first-order critical for mH
q,k while it is not for fh. Using

the model mH
q,k is hence potentially useful only if ‖∇sm

H
q,k(x

H
0,k)‖ = ‖R∇xf

h(xh
k)‖ is large enough

compared to ‖∇xf
h(xh

k)‖ [13]. We therefore restrict the use of the model mH
q,k to iterations where

‖R∇xf
h(xh

k)‖ ≥ κH‖∇xf
h(xh

k)‖ and ‖R∇xf
h(xh

k)‖ > ǫH , (10)

for some constant κH ∈ (0,min{1, ‖R‖}) and where ǫH ∈ (0, 1) is a measure of the first-order criticality
for mH

q,k that is judged sufficient at level H [13]. Note that, given ∇xf
h(xh

k) and R, this condition is
easy to check before even attempting to compute a step at a lower level.

If the Taylor model is chosen, then we just compute a step as in standard methods, minimizing
(possibly approximately) the corresponding regularized model (3). If the lower level model is chosen,
we then minimize the following regularized model:

mH
q,k(x

H
0,k, s

H) +
λk

q + 1
‖sH‖q+1 (11)

(possibly approximately) and obtain a point xH
∗,k such that (if the minimization is successful) the

value of the regularized model has been reduced, and a step sHk = xH
∗,k − xH

0,k (note that the iteration
indices always refer to the highest level, we are not indexing the iterations on the lower level for the
minimization of the lower level model). This step has to be prolongated back on the fine level, i.e. we
define shk = PsHk .

Then, mh
q,k will be defined as:

mh
q,k(x

h
k , s

h
k) =

{

T h
q,k(x

h
k , s

h
k) (Taylor model),

mH
q,k(Rxh

k , s
H
k ), shk = PsHk (lower level model).

(12)

In both cases, after the step is found, we have to decide whether to accept it or not. The step
acceptance is based on the ratio:

ρk =
fh(xh

k)− fh(xh
k + shk)

mh
q,k(x

h
k)−mh

q,k(x
h
k , s

h
k)

,

where we remind that, from (12), the denominator is defined as:

mh
q,k(x

h
k)−mh

q,k(x
h
k , s

h
k) =

{

T h
q,k(x

h
k)− T h

q,k(x
h
k + shk), (Taylor model),

mH
q,k(Rxh

k)−mH
q,k(Rxh

k , s
H
k ), (lower level model).

(13)

As in the standard form of the methods, the step is accepted if it provides a sufficient decrease in the
function, i.e. if given η1 > 0, ρk ≥ η1. The regularization parameter is also updated as in Algorithm
1. We sketch the whole procedure in Algorithm 2.

Some comments are necessary to explain Step 6 in Algorithm 2. The generic framework sketched
in Algorithm 2 comprises different possible methods. Specifically, one of the flexible features (inher-
ited by the method in [13]) is that, to ensure convergence, the minimization at lower levels can be
stopped after the first successful iteration, as we will see in the next section. This therefore opens
the possibility to consider both fixed form recursion patterns and free form ones. A free form pattern
is obtained when Algorithm 2 is run carrying the minimization at each level out, until the norm of
the gradient becomes small enough. The actual recursion pattern is then uniquely determined by the
progress of minimization at each level and may be difficult to forecast. By contrast, the fixed form
recursion patterns are obtained by specifying a maximum number of successful iterations at each level,
a technique directly inspired from the definitions of V- and W-cycles in multigrid algorithms [15].
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Algorithm 2 MARq(l, f l, xl
0, λ

l
0, ǫ

l) (Multilevel Adaptive Regularization method of order q)

1: Input: l ∈ N (index of the current level, 1 ≤ l ≤ lmax, lmax being the highest level), f l : Rnl → R

function to be optimized (f lmax = f), xl
0 ∈ R

nl , λl
0 > λmin, ǫ

l > 0.
2: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0.
3: Rl denotes the restriction operator from level l to l − 1, Pl the prolongation operator from level

l − 1 to l.
4: k = 0
5: while ‖∇xf

l(xl
k)‖ > ǫl do

6: • Model choice: If l > 1 compute Rl∇xf
l(xl

k) and check (10). If l = 1 or (10) fails, go to
Step 7. Otherwise, choose to go to Step 7 or to Step 8.

7: • Taylor step computation: Define ml
q,k(x

l
k, s

l) = T l
q,k(x

l
k, s

l), the Taylor series of f l(xl
k+sl)

truncated at order q. Find a step slk that sufficiently reduces ml
q,k(x

l
k, s

l) +
λl
k

q+1‖sl‖q+1. Go to
Step 9.

8: • Recursive step computation: Define

ml−1
q,k (Rl x

l
k, s

l−1) = f l−1(Rl x
l
k, s

l−1)

+

q
∑

i=1

1

i!
[R(∇i

xf
l(xl

k))−∇i
xf

l−1(Rl x
l
k)](s

l−1, . . . , sl−1

︸ ︷︷ ︸

i times

).

Choose ǫl−1 and call MARq(l− 1, ml−1
q,k ,Rl x

l
k, λ

l
k, ǫ

l−1) yielding an approximate solution xl−1
∗,k

of the minimization of ml−1
q,k . Define slk = Pl (x

l−1
∗,k −Rl x

l
k) and ml

q,k(x
l
k, s

l) = ml−1
q,k (Rl x

l
k, s

l−1)

for all sl = Psl−1.

9: • Acceptance of the trial point: Compute ρlk =
f l(xl

k)− f l(xl
k + slk)

ml
q,k(x

l
k)−ml

q,k(x
l
k, s

l
k)
.

10: if ρlk ≥ η1 then

11: xl
k+1 = xl

k + slk
12: else

13: xl
k+1 = xl

k.
14: end if

15: • Regularization parameter update:

16: if ρlk ≥ η1 then

17:

λl
k+1 =

{
max{λmin, γ2λ

l
k}, if ρlk ≥ η2,

max{λmin, γ1λ
l
k}, if ρlk < η2

18: else

19: λl
k+1 = γ3λ

l
k.

20: end if

21: k = k + 1
22: end while
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4 Convergence theory

In this section, we provide a theoretical analysis of the proposed family of multilevel methods. Inspired
by the convergence theory reported in [2], we prove global convergence of the proposed methods to first-
order critical points and we provide a worst-case complexity bound to reach such a point, generalizing
the theory proposed in [2, 13]. At the same time the proposed analysis also appears as simpler than
that in [13], since the regularization parameter λk is directly updated, rather than the trust-region
radius, and since we use the stopping criterion (5) as in [2]. The use of this criterion allows for
simpler convergence proofs and enables us to concentrate on the multilevel algorithm, that is the
main contribution of the paper. Moreover, we also propose local convergence results, which also apply
to the methods in [2], and that extend those in [27] to higher-order models.

Note that, as the methods are recursive, we can restrict the analysis to the two-level case. For the
analysis we need the following regularity assumptions as in [2].

Assumption 2. Let fh and fH be q-times continuously differentiable and bounded below functions.
Let us assume that the q-th derivative tensors of fh and fH are Lipschitz continuous, i.e. that there
exist constants Lh, LH such that

‖∇qfh(x) −∇qfh(y)‖T ≤ (q − 1)!Lh ‖x− y‖ for all x, y ∈ Dh,

‖∇qfH(x) −∇qfH(y)‖T ≤ (q − 1)!LH ‖x− y‖ for all x, y ∈ DH ,

where ‖ · ‖T is the tensor norm recursively induced by the Euclidean norm on the space of q-th order
tensors, which for a tensor H of order q is given by

‖H‖T def
= max

‖u1‖=···=‖uq‖=1
|H(u1, . . . , uq)|

where the action of H on (u1, . . . , uq) is given in Definition (2).

We remind three useful relations, following from Taylor’s theorem, see for example relations (2.3)
and (2.4) in [2].

Lemma 1. Let g : Rn → R be a q-times continuously differentiable function with Lipschitz continu-
ous q-th order tensor, with L the corresponding Lipschitz constant. Given its Taylor series Tq(x, s)
truncated at order q, it holds:

g(x+ s) =Tq(x, s) +
1

(q − 1)!

∫ 1

0

(1− ξ)q−1[∇qg(x+ ξs)−∇qg(x)](

q times
︷ ︸︸ ︷
s, . . . , s) dξ, (14)

|g(x+ s)− Tq(x, s)| ≤
L

q
‖s‖q+1, (15)

‖∇g(x+ s)−∇sTq(x, s)‖ ≤ L‖s‖q. (16)

4.1 Global convergence

In this section we prove the global convergence property of the method. Our analysis proceeds in
three steps. First, we bound the quantity |1 − ρk| to prove that λk must be bounded above. Then,
we relate the norm of the step and the norm of the gradient. Finally, we use these two ingredients to
conclude proving that the norm of the gradient goes to zero.

4.1.1 Upper bound for the regularization parameter λk

At iteration k we either minimize (decrease) the regularized Taylor model (3), or the regularized lower
level model (11). Consequently, it respectively holds:

T h
q,k(x

h
k)− T h

q,k(x
h
k , s

h
k) ≥

λk

q + 1
‖shk‖q+1, (17a)

mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k ) ≥ λk

q + 1
‖sHk ‖q+1. (17b)

In both cases, the minimization process is stopped as soon as the stopping condition

‖∇sT
h
q,k(x

h
k , s

h
k) + λk‖shk‖q−1shk‖ ≤ θ‖shk‖q, or

‖∇sm
H
q,k(x

H
0,k, s

H
k ) + λk‖sHk ‖q−1sHk ‖ ≤ θ‖sHk ‖q, (18)

for θ > 0 is satisfied, respectively. In both cases we are sure that it will exist a point that satisfies
(18), as when the level is selected, a standard one-level optimization method is used, and the analysis
in [2] applies.

Let us consider the quantity

|1− ρk| =
∣
∣
∣
∣
∣
1− fh(xh

k)− fh(xh
k + shk)

mh
q,k(x

h
k)−mh

q,k(x
h
k , s

h
k)

∣
∣
∣
∣
∣
, (19)
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with the denominator defined in (13). If at step k the Taylor model is chosen, from relation (15)
applied to fh and (17a) we obtain the inequality:

|1− ρk| =
∣
∣
∣
∣
∣

fh(xh
k + shk)− T h

q,k(x
h
k , s

h
k)

mh
q,k(x

h
k)−mh

q,k(x
h
k , s

h
k)

∣
∣
∣
∣
∣
≤ Lh(q + 1)

λkq
.

If the lower level model is used, we have

|1− ρk| =
∣
∣
∣
∣
∣

mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )− (fh(xh

k)− fh(xh
k + shk))

mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )

∣
∣
∣
∣
∣
.

Let us consider the numerator in this expression. From relations (9) and (14) applied to fH , using
its Taylor series TH

q,k, it follows

mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )

(9)
=

TH
q,k(x

H
0,k, s

H
k )− fH(xH

0,k + sHk )−
q
∑

i=1

1

i!

[
R(∇i

xf
h(xh

k))
]
(

i times
︷ ︸︸ ︷

sHk , . . . , sHk ),

(14)
= − 1

(q − 1)!

∫ 1

0

(1 − ξ)q−1
[
∇qfH(xH

0,k + ξsHk )−∇qfH(xH
0,k)
]
(

q times
︷ ︸︸ ︷

sHk , . . . , sHk )dξ

−
q
∑

i=1

1

i!

[
R(∇i

xf
h(xh

k))
]
(

i times
︷ ︸︸ ︷

sHk , . . . , sHk ). (20)

Similarly the relation (14) applied to fh yields

fh(xh
k)− fh(xh

k + shk) = fh(xh
k)− T h

q,k(x
h
k , s

h
k)

− 1

(q − 1)!

∫ 1

0

(1 − ξ)q−1[∇qfh(xh
k + ξshk)−∇qfh(xh

k)](

q times
︷ ︸︸ ︷

shk , . . . , s
h
k)dξ. (21)

From relation (6) we can rewrite fh(xh
k)− T h

q,k(x
h
k , s

h
k) as:

fh(xh
k)− T h

q,k(x
h
k , s

h
k) =−

q
∑

i=1

1

i!
(∇i

xf
h)(xh

k ,

i times
︷ ︸︸ ︷

PsHk , . . . , P sHk )

=−
q
∑

i=1

1

i!

[
R(∇i

xf
h(xh

k))
]
(

i times
︷ ︸︸ ︷

sHk , . . . , sHk ).

Then, subtracting (21) from (20), we obtain

mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )− (fh(xh

k)− fh(xh
k + shk)) =

− 1

(q − 1)!

∫ 1

0

(1− ξ)q−1[∇qfH(xH
0,k + ξsHk )−∇qfH(xH

0,k)](

q times
︷ ︸︸ ︷

sHk , . . . , sHk ) dξ

+
1

(q − 1)!

∫ 1

0

(1− ξ)q−1[∇qfh(xh
k + ξshk)−∇qfh(xh

0,k)](

q times
︷ ︸︸ ︷

shk , . . . , s
h
k) dξ.

Using Assumption 2, we obtain:

|mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )− (fh(xh

k)− fh(xh
k + shk))|

≤ 1

(q − 1)!

∫ 1

0

(1 − ξ)q−1|[∇qfH(xH
0,k + ξsHk )−∇qfH(xH

0,k)](

q times
︷ ︸︸ ︷

sHk , . . . , sHk )| dξ

+
1

(q − 1)!

∫ 1

0

(1− ξ)q−1|[∇qfh(xh
k + ξshk)−∇qfh(xh

k)](

q times
︷ ︸︸ ︷

shk , . . . , s
h
k)| dξ

≤ 1

q!
‖sHk ‖q max

ξ∈[0,1]
‖∇qfH(xH

k + ξsHk )−∇qfH(xH
k )‖T

+
1

q!
‖shk‖q max

ξ∈[0,1]
‖∇qfh(xh

k + ξshk)−∇qfh(xh
k)‖T ≤ 1

q

(

LH + Lhκ
q+1
R

)

‖sHk ‖q+1.

From relation (17b) we finally obtain:

|1− ρk| ≤
(q + 1)

(

LH + Lhκ
q+1
R

)

qλk
.
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Then, in both cases (when either a Taylor model or a lower level model is used), it exists a strictly
positive constant K such that the following relation holds:

|1− ρk| ≤
K

λk
, K =







(q + 1)Lh

q
(Taylor model),

(q + 1)
(

LH + Lhκ
q+1
R

)

q
(lower level model).

(22)

Using this last relation and the updating rule of the regularization parameter, we deduce that λk

must be bounded above. Indeed, in case of unsuccessful iterations, λk is increased. If λk is increased,
the ratio appearing in the right hand side of (22) is progressively decreased, until it becomes smaller
than 1− η1. In this case, ρk > η1, so a successful step is taken and λk is decreased. Hence λk cannot
be greater than

λmax =
K

1− η1
. (23)

4.1.2 Relating the steplength to the norm of the gradient

Our next step is to show that the steplength cannot be arbitrarily small, compared to the norm of
the gradient of the objective function. If the Taylor model is used, from [2, Lemma 2.3] it follows:

‖∇xf
h(xh

k + shk)‖ ≤ (Lh + θ + λk)‖shk‖q := K1‖shk‖q. (24)

If the lower level model is chosen, we have:

‖R∇xf
h(xh

k + shk)‖ ≤
∥
∥
∥R
[
∇xf

h(xh
k + shk)−∇sT

h
q,k(x

h
k , s

h
k)
]
∥
∥
∥

+ ‖R∇sT
h
q,k(x

h
k , s

h
k)−∇sm

H
q,k(x

H
0,k, s

H
k )‖

+ ‖∇sm
H
q,k(x

H
0,k, s

H
k ) + λk‖sHk ‖q−1sHk ‖+ λk‖sHk ‖q.

By (16), the first term can be bounded by κRLh‖shk‖q. Considering that shk = PsHk and ‖P‖ ≤ κR,
we obtain the upper bound κ2

RLh‖sHk ‖q. Regarding the second term, taking into account that from
relations shk = PsHk , R = PT , and (8), for all pH ∈ R

nH it holds:

〈[R(∇i
xf

h(xh
k))](s

H
k , . . . , sHk
︸ ︷︷ ︸

i−1 times

), pH〉 = 〈∇i
xf

h(xh
k , P sHk , . . . , P sHk
︸ ︷︷ ︸

i−1 times

), PpH〉

= 〈R[∇i
xf

h(xh
k , P sHk , . . . , P sHk
︸ ︷︷ ︸

i−1 times

)], pH〉,

we can write

R∇sT
h
q,k(x

h
k , P sHk ) =

q
∑

i=1

1

(i− 1)!
R∇i

xf
h(xh

k)(PsHk , . . . , P sHk
︸ ︷︷ ︸

i−1 times

)

=

q
∑

i=1

1

(i− 1)!

[
R(∇i

xf
h(xh

k))
]
(sHk , . . . , sHk
︸ ︷︷ ︸

i−1 times

).

Then, from

∇sm
H
q,k(x

H
0,k, s

H
k ) =∇xf

H(xH
0,k + sHk )

+

q
∑

i=1

1

(i− 1)!

[
R(∇i

xf
h(xh

k))−∇i
xf

H(xH
0,k)
]
(sHk , . . . , sHk
︸ ︷︷ ︸

i−1 times

), (25)

we obtain

‖R∇sT
h
q,k(x

h
k , s

h
k)−∇sm

H
q,k(x

H
0,k, s

H
k )‖ =

∥
∥
∥∇xf

H(xH
0,k + sHk )−∇sT

H
q,k(x

H
0,k, s

H
k )
∥
∥
∥,

which represents the Taylor remainder for the approximation of ∇xf
H by ∇sT

H
q,k. Therefore, by

relation (16), this quantity can be bounded above by LH‖sHk ‖q. The third term, from (18), is less
than θ‖sHk ‖q. Then, since λk ≤ λmax, we finally obtain

‖R∇xf
h(xh

k + shk)‖ ≤
(
κ2
RLh + LH + θ + λmax

)
‖sHk ‖q := K2‖sHk ‖q. (26)

4.1.3 Proof of global convergence

Let us consider the sequence of successful iterations (ρk ≥ η1). They are divided into two groups, Ks,f

the successful iterations at which the fine model has been employed and Ks,l the ones at which the
lower level model has been employed. Let us define k1 the index of the first successful iteration. We
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remind that at successful iterations ρk ≥ η1. Due to the updating rule of the regularization parameter
in Algorithm 2 we have λk ≥ λmin. Hence from relations (13), (17), (24) and (26), (10) it follows that:

fh(xh
k1
)− lim inf

k→∞
fh(xh

k) ≥
∑

ksucc

fh(xh
k)− fh(xh

k + shk)

(13)

≥ η1
∑

Ks,l

(mH
q,k(x

H
0,k)−mH

q,k(x
H
0,k, s

H
k )) + η1

∑

Ks,f

(T h
q,k(x

h
k)− T h

q,k(x
h
k , s

h
k))

(17)

≥ η1λk

q + 1




∑

Ks,l

‖sHk ‖q+1 +
∑

Ks,f

‖shk‖q+1





(24)+(26)

≥ η1λmin

q + 1

(

1

K
q+1

q

2

∑

Ks,l

‖R∇xf
h(xh

k + shk)‖
q+1

q +
1

K
q+1

q

1

∑

Ks,f

‖∇xf
h(xh

k + shk)‖
q+1

q

)

(10)

≥ η1λmin

q + 1

(

1

K
q+1

q

2

∑

Ks,l

κ
q+1

q

H ‖∇xf
h(xh

k + shk)‖
q+1

q +
1

K
q+1

q

1

∑

Ks,f

‖∇xf
h(xh

k + shk)‖
q+1

q

)

. (27)

Hence we conclude that
∑

Ks,f∪Ks,l
‖∇xf

h(xh
k+shk)‖ is a bounded series and therefore has a convergent

subsequence. Then, ‖∇xf
h(xh

k + shk)‖ converges to zero on the subsequence of successful iterations.
We can then state the global convergence property towards first-order critical points in the following

theorem.

Theorem 1. Let Assumptions 1 and 2 hold. Let {xh
k} be the sequence of fine level iterates generated

by Algorithm 2. Then, {‖∇xf
h(xh

k)‖} converges to zero on the subsequence of successful iterations.

4.2 Worst-case complexity

We now want to evaluate the worst-case complexity of our methods, to reach a first order stationary
point. We assume then that the procedure is stopped as soon as ‖∇xf

h(xh
k)‖ ≤ ǫ for ǫ > 0. The proof

is similar to that of Theorem 2.5 in [2].
To evaluate the complexity of the proposed methods, we have to bound the number of successful

and unsuccessful iterations performed before the stopping condition is met. Let us then define kf
the index of the last iterate for which ‖∇xf

h(xh
k)‖ > ǫ, Ks = {0 < j ≤ kf | ρj ≥ η1} the set of

successful iterations before iteration kf , and Ku its complementary in {1, . . . , kf}. We can use the
same reasoning as that used to derive (27), but considering in the sum just the successful iterates
in Ks. Remind that before termination ‖∇xf

h(xh
k)‖ > ǫ and, in case the lower level model is used,

‖R∇fH(xh
k)‖ > κH‖∇fH(xh

k)‖ > κHǫ (otherwise at that iteration the Taylor model would have been
used). It then follows:

fh(xh
k1
)− lim inf

k→∞
fh(xh

k) ≥ fh(xh
k1
)− fh(xh

kf+1) =
∑

j∈Ks

fh(xh
k)− fh(xh

k + shk)

≥ η1λmin

q + 1
min

{κH

K2
,
1

K1

} q+1

q |Ks|ǫ
q+1

q ,

from which we get the desired bound on the total number of successful iterations. We can then
bound the cardinality of Ku, with respect to the cardinality of Ks. From the updating rule of the
regularization parameter, it holds:

γ1λk ≤ λk+1, k ∈ Ks γ3λk = λk+1, k ∈ Ku.

Then, proceeding inductively, we conclude that:

λ0γ
|Ks|
1 γ

|Ku|
3 ≤ λkf

≤ λmax.

Then,

|Ks| log γ1 + |Ku| log γ3 ≤ log
λmax

λ0
,

and, given that γ1 < 1, we obtain:

|Ku| ≤
1

log γ3
log

λmax

λ0
+ |Ks|

|log γ1|
log γ3

.

We can then state the following result.

Theorem 2. Let Assumptions 1 and 2. Let flow denote a lower bound on f and let k1 denote the
index of the first successful iteration in Algorithm 2. Then, given an absolute accuracy level ǫ > 0,
Algorithm 2 needs at most

K3
(f(xk1

)− flow)

ǫ
q+1

q

(

1 +
|log γ1|
log γ3

)

+
1

log γ3
log

(
λmax

λ0

)
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iterations in total to produce an iterate xh
k such that ‖∇xf(xk)‖ ≤ ǫ, where

K3 :=
q + 1

η1λmin
max

{

K1,
K2

κH

}q+1/q

,

with K1 and K2 defined in (24), (26), γ1, γ3, λ0, λmin defined in Algorithm 2 and λmax defined in (23).

Theorem 2 reveals that the use of lower level steps does not deteriorate the complexity of the

method, and that the complexity bound O(ǫ−
q+1

q ) is preserved. This is a very satisfactory result,
because each iteration of the multilevel methods will be less expensive than one iteration of the
corresponding one-level method, thanks to the use of the cheaper lower level models. Consequently, if
the number of iterations in the multilevel strategy is not increased, we can expect global computational
savings.

4.3 Local convergence

In this section we study the local convergence of the proposed methods towards second-order stationary
points. We assume q ≥ 2 in this section, otherwise the problem is not well-defined. Thanks to the use
of high order models, our methods are expected to attain a fast local convergence rate, especially for
growing q. The results reported here are inspired by [27] and extend the analysis proposed therein.

We denote by X the set of second-order critical points of f , i.e. of points x∗ satisfying the second-
order necessary conditions:

∇xf(x
∗) = 0, ∇2

xf(x
∗) � 0,

i.e. ∇2
xf(x

∗) is a symmetric positive semidefinite matrix. We denote by B(x, ρ) = {y s.t. ‖y− x‖ ≤ ρ}
and for all x ∈ R

n, L(f(x)) = {y ∈ R
n | f(y) ≤ f(x)} for f : Rn → R.

Remark 2. From the assumption that f is a q times continuously differentiable function, it follows
that its i-th derivative tensor is locally Lipschitz continuous for all i ≤ q − 1.

Following [27], we first prove an intermediate lemma that allows us to relate, at generic iteration k,
the norm of the step and the distance of the current iterate from the space of second-order stationary
points. This lemma holds without need of assuming a stringent non-degeneracy condition, but rather
under a local error bound condition, which is a much weaker requirement as it can be satisfied also
when f has non isolated second-order critical points.

Assumption 3. There exist strictly positive scalars κEB, ρ > 0 such that

dist(x,X ) ≤ κEB‖∇xf(x)‖, ∀x ∈ N (X , ρ), (28)

where X is the set of second-order critical points of f , dist(x,X ) denotes the distance of x to X and
N (X , ρ) = {x | dist(x,X ) ≤ ρ}.

This condition has been proposed for the first time in [27]. It is different from other error bound
conditions in the literature as, in contrast to them, X is not the set of first-order critical points, but of
second-order-critical points. In addition to being useful for proving convergence, it is also interesting
on its own, as it is shown to be equivalent to a quadratic growth condition ([27, Theorem 1]) under
mild assumptions on f .

Lemma 2. Let Assumptions 1 and 2 hold. Let {xh
k} be the sequence generated by Algorithm 2 and

x∗
k be a projection point of xh

k onto X . Assume that it exists a strictly positive constant ρ such that

{xh
k} ∈ B(x∗

k, ρ) and that ∇2
xf is Lipschitz continuous in B(x∗

k, ρ) with Lipschitz constant L2. Then,
it holds:

‖shk‖ ≤ C dist(xh
k ,X ), (29)

with

C =







Cf =
1

2λmax

[

L2 +
√

L2
2 + 4L2λmax

]

, (Taylor model),

κRCc =
κR

2λmax

[

κRL2 +
√

κ2
RL

2
2 + 4L2κRλmax

]

, (lower level model),

with λmax and κR defined respectively in (23) and Assumption 1.

The proof of the lemma is reported in the appendix. This lemma can be used to prove that if
it exists an accumulation point of {xh

k} that belongs to X , then the full sequence converges to that
point and that the rate of convergence depends on q. First, we can prove that the set of accumulation
points is not empty.

Lemma 3. Let Assumptions 1 and 2 hold. Let {xh
k} be the sequence of fine level iterates generated

by Algorithm 2. If L(f(xh
k)) is bounded for some k ≥ 0, then the sequence has an accumulation point

that is a first-order stationary point.

Proof. As {f(xh
k)} is a decreasing sequence, and L(f(xh

k)) is bounded for some k ≥ 0, {xh
k} is a

bounded sequence and it has an accumulation point. From Theorem 1, all the accumulation points
are first-order stationary points.
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Theorem 3. Let Assumptions 1 and 2 hold. Let {xh
k} be the sequence of fine level iterates generated

by Algorithm 2. Assume that L(f(xh
k)) is bounded for some k ≥ 0 and that it exists an accumulation

point x∗ such that x∗ ∈ X . Then, the whole sequence {xh
k} converges to x∗ and it exist strictly positive

constants c ∈ R and k̄ ∈ N such that:

‖xh
k+1 − x∗‖

‖xh
k − x∗‖q ≤ c, ∀k ≥ k̄. (30)

Proof. As x∗ is an accumulation point, we have that lim
k→∞

dist(xh
k ,X ) = 0. Then, it exist ρ and k1

such that xh
k ∈ N (X , ρ) for all k ≥ k1. Therefore, from Assumption 3 it holds

dist(xh
k ,X ) ≤ κEB ‖∇xf

h(xh
k)‖, ∀k ≥ k1. (31)

Moreover, from Remark 2, ∇2
xf is locally Lipschitz continuous, so Lemma 2 applies to all k ≥ k1.

Let us first consider the case in which the Taylor model is employed. It follows from (31), (24)
and (29) that for all k ≥ k1

dist(xh
k+1,X ) ≤κEB ‖∇xf

h(xh
k+1)‖ ≤ κEB K1 ‖shk‖q ≤ κEB K1 C

q
f dist

q(xh
k ,X ).

If the lower level model is employed, from (31), (10), (26) and (36) it follows that for all k ≥ k1

dist(xh
k+1,X ) ≤κEB ‖∇xf

h(xh
k+1)‖ ≤ κEB κH ‖R∇xf

h(xh
k+1)‖

≤κEB κH K2 ‖sHk ‖q ≤ κEB κH K2C
q
c dist

q(xh
k ,X ).

Then in both cases, it exists C̄ such that

dist(xh
k+1,X ) ≤ C̄ distq(xh

k ,X ), ∀k ≥ k1,

where

C̄ =

{

κEBK1C
q
f (Taylor model),

κEBκH K2C
q
c (lower level model).

With this result, we can prove the convergence of {xh
k} with standard arguments. We repeat for

example the arguments of the proof of [27, Theorem2] for convenience. Let η > 0 be an arbitrary
value. As limk→∞ dist(xh

k ,X ) = 0, it exists k2 ≥ 0 such that

dist(xh
k ,X ) ≤ min

{ 1

2C̄
,
η

2C

}

, ∀k ≥ k2.

Then,

dist(xh
k+1,X ) ≤ C̄distq(xh

k ,X ) ≤ 1

2
dist(xh

k ,X ), ∀k ≥ k̄ = max{k1, k2}.

From (29), it then holds for all k ≥ k̄ and j ≥ 0:

‖xh
k+j − xh

k‖ ≤
∞∑

i=k

‖xh
i+1 − xh

i ‖ ≤
∞∑

i=k

Cdist(xh
i ,X )

≤ Cdist(xh
k ,X )

∞∑

i=0

1

2i
≤ 2Cdist(xh

k ,X ) ≤ η,

i.e. that {xh
k}k≥k̄ is a Cauchy sequence and so the whole sequence is convergent. Finally we establish

the q-th order rate of convergence of the sequence. For any k ≥ k̄,

‖x∗ − xh
k+1‖ = lim

j→∞
‖xh

k+j+1 − xh
k+1‖ ≤ 2Cdist(xh

k+1,X ) ≤ 2CC̄distq(xh
k ,X ). (32)

Combining this with dist(xh
k ,X ) ≤ ‖xh

k − x∗‖, and setting c = 2CC̄ we obtain the thesis (30).
Therefore {xh

k} converges at least with order q to x∗.

5 Numerical results

In this section, we report on the practical performance of a method in the family.
We have implemented the method corresponding to q = 2 in Algorithm 2 in Julia [1] (version

0.6.1). This is a multilevel extension of the method AR2 in Algorithm 1, which is better known
as ARC [8, 10]. We will therefore denote the implemented multilevel method as MARC (multilevel
adaptive method based on cubic regularization), rather than MAR2.

We consider the following two-dimensional nonlinear problem in the unit square domain S2:
{

−∆u(x, y) + eu(x,y) = g(x, y) in S2,

u(x, y) = 0 on ∂S2,

where g is obtained such that the analytical solution to this problem is given by

u(x, y) = sin(2πx(1 − x)) sin(2πy(1 − y)).
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nh = 4096
u0 Method itT /itf RMSE save

ū1 ARC 6/6 10−4

MARC 9/4 10−4 1.7-2.0-2.3
ū2 ARC 17/17 10−4

MARC 10/3 10−4 1.9-5.8-8.3

Table 1: Solution of the minimization problem (33) with the one level ARC method and a four level
ARC (MARC) (case of nh = 4096) with ū1 = 1 rand(nh, 1), ū2 = 3 rand(nh, 1). itT denotes the
average number of iterations over ten simulations, itf the average number of iterations in which the
fine level model has been used, RMSE the root-mean square error with respect to the true solution
and save the ratio between the total number of floating point operations required for the Cholesky
factorizations in ARC and MARC, respectively.

The negative Laplacian operator is discretized using finite difference, giving a symmetric positive
definite matrix A, that also takes into account the boundary conditions. The discretized version of
the problem is then a system of the form Au + eu = g, where u, g, eu are vectors in R

nh , in which
the columns of matrices U , G, E are stacked, with Ui,j = u(xi, yj), Gi,j = g(xi, yj), Ei,j = eu(xi,yj),
for xi, yj grid points, i, j = 1, . . . ,

√
nh.

The MARC algorithm is then used on the nonlinear minimization problem

min
u∈R

nh

1

2
uTAu+ ‖eu/2‖2 − gTu, (33)

which is equivalent to the system Au + eu = g. The coarse approximations to the objective function
arise from a coarser discretization of the problem. Each coarse two-dimensional grid has a dimension
that is four times lower than the dimension of the grid on the corresponding upper level.

The prolongation operators Pℓ from level ℓ − 1 to ℓ are based on the nine-point interpolation

scheme defined by the stencil





1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4



 and the full weighting operators defined by Rℓ = 1
4P

T
ℓ are

used as restriction operators [6].
We compare the one-level ARC with MARC. Parameters common to both methods are set as:

ǫlmax = 10−7, γ1 = 0.85, γ2 = 0.5, γ3 = 2, λ0 = 0.05 η1 = 0.1, η2 = 0.75. For MARC we set κ = 0.1
and ǫℓ = ǫℓmax for all ℓ.

At each iteration we find an approximate minimizer of the cubic models as described in [8, §6.2].
This requires a sequence of Cholesky factorizations, which represents the dominant cost per nonlinear
iteration. We measure the performance of the methods in terms of total number of floating point
iterations required for these factorizations.

We study the effect of the multilevel strategy on the convergence of the method for problems of
fixed dimension nh. We then consider the solution of problem (33) using two different discretizations
with nh = 4096 (Table 1) and nh = 16384 (Table 2), respectively. We allow 4 levels in MARC. We
report the results of the average of ten simulations with different random initial guesses of the form
u0 = a rand(nh, 1), for different values of a. In each simulation the random starting guess is the same
for the two considered methods. All the quantities reported in Tables 1 and 2 are the average of the
values obtained over the ten simulations. itT denotes the number of total iterations, itf denotes the
number of iterations in which the Taylor model has been used, RMSE is the root-mean square error
with respect to the true solution and save is the ratio between the total number of floating point
operations required for the Cholesky factorizations by ARC and MARC, respectively. For the save

quantity, we report three values: the minimum, the average and the maximum value obtained over
the ten simulations.

The results reported in Tables 1 and 2 confirm the relevance of MARC as compared to ARC. The
numerical experiments highlight the different convergence properties of both algorithms. The use of
MARC is especially convenient when the initial guess is not so close to the true solution. Indeed, the
performance of ARC deteriorates as the distance of the initial guess from the true solution increases,
while MARC seems to be much less sensible to this choice. For the problem of smaller dimension,
ARC still manages to find a solution for further initial guesses, even if this requires an higher number
of iterations, while for the problem of larger dimension the method fails to find a solution in feasible
time. The new multilevel approach is found to lead to considerable computational savings in terms of
floating point operations compared to the classical one-level strategy.

6 Conclusions

We have introduced a family of multilevel methods of order q ≥ 1 for unconstrained minimization.
These methods represent an extension of the higher-order methods presented in [2] and of the multilevel
trust-region method proposed in [13]. We have proposed a unifying framework to analyse these
methods, which is useful to prove their convergence properties and evaluate their worst-case complexity
to reach first-order stationary points. As expected, we show that the local rate of convergence and
the complexity bound depend on q and high values of q allow both fast local convergence and lower
complexity bounds.
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nh = 16384
u0 Method itT /itf RMSE save

ū1 ARC 6/6 10−5

MARC 12/3 10−5 1.5-2.0-2.5
ū3 ARC FAIL FAIL

MARC 18/5 10−5 -

Table 2: Solution of the minimization problem (33) with the one level ARC method and a four level
ARC (MARC) (case of nh = 16384) with ū1 = 1 rand(nh, 1), ū3 = 6 rand(nh, 1). itT denotes the
average number of iterations over ten simulations, itf the average number of iterations in which the
fine level model has been used, RMSE the root-mean square error with respect to the true solution
and save the ratio between the total number of floating point operations required for the Cholesky
factorizations in ARC and MARC, respectively.

We believe this represents a contribution in the optimization field, as the use of multilevel ideas
allows to reduce the major cost per iteration of the high-order methods. This gives a first answer to
the question posed in [2] about whether the approach presented there can have practical implications,
in applications for which computing q derivatives is feasible.

We have implemented the multilevel method corresponding to q = 2 and presented numerical
results that show the considerable benefits of the multilevel strategy in terms of savings in floating
point operations. Additional numerical results can be found in [7], where the authors apply the
multilevel method in the family corresponding to q = 1 to problems arising in the training of artificial
neural networks for the approximate solution of partial differential equations. This case is particularly
interesting as it allows to show the efficiency of multilevel methods even for problems without an
underlying geometrical structure.
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A Proof of Lemma 4.5

In this appendix we report the proof of Lemma 2. We restate it here for convenience of the reader.

Lemma (Lemma 4.5). Let Assumptions 1 and 2 hold. Let {xh
k} be the sequence generated by Algorithm

2 and x∗
k be a projection point of xh

k onto X . Assume that it exists a strictly positive constant ρ such

that {xh
k} ∈ B(x∗

k, ρ) and that ∇2
xf is Lipschitz continuous in B(x∗

k, ρ) with Lipschitz constant L2.
Then, it holds:

‖shk‖ ≤ C dist(xh
k ,X ),

with

C =







Cf =
1

2λmax

[

L2 +
√

L2
2 + 4L2λmax

]

, (Taylor model),

κRCc =
κR

2λmax

[

κRL2 +
√

κ2
RL

2
2 + 4L2κRλmax

]

, (lower level model),

with λmax and κR defined respectively in (23) and Assumption 1.

Proof. The proof is divided into two parts. We first consider the case in which shk has been obtained
from the approximate minimization of the Taylor model, and then the case in which it has been
obtained as prolongation of the step obtained from the approximate minimization of the coarse model.

Le us then assume that the Taylor model has been employed. Reminding that ∇xf
h(x∗) = 0 for

each x∗ ∈ X , and definition (2) we obtain:

∇s

(

mh
q,k(x

h
k , s

h
k) +

λk

q + 1
‖shk‖q+1

)

=−∇xf
h(x∗

k) +∇xf
h(xh

k) +∇2
xf

h(xh
k)s

h
k

+H(shk) + λk‖shk‖q−1shk , (34)

with

H(shk) =

q
∑

i=3

1

(i − 1)!
∇i

xf
h(xh

k , s
h
k , . . . , s

h
k

︸ ︷︷ ︸

i−1 times

).

Some algebraic manipulations (adding ∇2
xf

h(x∗
k)(x

h
k+1 − x∗

k) to both sides of (34) and expressing

(xh
k+1 − x∗

k) = shk + (xh
k − x∗

k)) lead to:
(
∇2

xf
h(x∗

k) + λk‖shk‖q−1
)
(xh

k+1 − x∗
k) =

∇s

(

mh
q,k(x

h
k , s

h
k) +

λk

q + 1
‖shk‖q+1

)

+∇xf
h(x∗

k)−∇xf
h(xh

k)−∇2
xf

h(x∗
k)(x

∗
k − xh

k)

−H(shk) + (∇2
xf

h(x∗
k)−∇2

xf
h(xh

k))s
h
k − λk‖shk‖q−1(x∗

k − xh
k).
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Using the fact that ∇2
xf

h(x∗
k) � 0, the stopping criterion (18), and the triangle inequality, it follows

λk‖shk‖q−1‖xh
k+1 − x∗

k‖ ≤ θ‖shk‖q + ‖∇xf
h(x∗

k)−∇xf
h(xh

k)−∇2
xf

h(x∗
k)(x

∗
k − xh

k)‖+
‖H(shk)‖ + ‖∇2

xf
h(x∗

k)−∇2
xf

h(xh
k)‖‖shk‖+ λk‖shk‖q−1‖x∗

k − xh
k‖.

Using the Lipschitz continuity of ∇2
xf in B(x∗

k, ρ), the relation (16) with q = 2 and the triangle

inequality ‖xh
k+1 − x∗

k‖ ≥ ‖xh
k+1 − xh

k‖ − ‖xh
k − x∗

k‖ = ‖shk‖ − ‖xh
k − x∗

k‖, we obtain:

λk‖shk‖q ≤ θ‖shk‖q + L2‖xh
k − x∗

k‖2 + ‖H(shk)‖+ L2‖x∗
k − xh

k‖‖shk‖+ 2λk‖shk‖q−1‖x∗
k − xh

k‖.

Notice that

θ‖shk‖q + L2‖xh
k − x∗

k‖2 + ‖H(shk)‖+ L2‖x∗
k − xh

k‖‖shk‖+ 2λk‖shk‖q−1‖x∗
k − xh

k‖
≥ L2‖xh

k − x∗
k‖2 + L2‖x∗

k − xh
k‖‖shk‖.

We can then study when the inequality holds

λk‖shk‖q ≤ L2‖xh
k − x∗

k‖2 + L2‖x∗
k − xh

k‖‖shk‖.

The right hand side of the inequality is expressed as a polynomial of ‖shk‖ of order 1 with positive
value in 0, so the inequality will be true if ‖shk‖ is small enough. We can then assume ‖shk‖ < 1, so
that ‖shk‖q ≤ ‖shk‖2 if q ≥ 2. Then, we have that

λk‖shk‖q ≤ λk‖shk‖2.

We can then solve

L2‖xh
k − x∗

k‖2 + L2‖x∗
k − xh

k‖‖shk‖ − λk‖shk‖2 ≥ 0.

The solution leads to

‖shk‖ ≤ Cf‖xh
k − x∗

k‖, Cf =
1

2λk

[

L2 +
√

L2
2 + 4L2λk

]

. (35)

Let us now consider the case in which the lower level model is used. The idea is similar as in the
previous case. Reminding (25) and that R∇xf

h(x∗
k) = 0, we have:

∇s

(

mH
k (xH

0,k, s
H
k ) +

λk

q + 1
‖sHk ‖q+1

)

=∇xf
H(xH

0,k + sHk )−∇sT
H
q,k(x

H
0,k, s

H
k ) +R∇xf

h(x∗
k)+

q
∑

i=1

1

(i− 1)!
R(∇i

xf
h(xh

k)) (s
H
k , . . . , sHk )

︸ ︷︷ ︸

i−1 times

+λk‖sHk ‖q−1sHk .

Algebraic manipulations (adding R∇2
xf

h(x∗
k)(x

h
k+1 − x∗

k) to both sides and expressing (xh
k+1 − x∗

k) =

shk + (xh
k − x∗

k)) lead to:

R∇2
xf

h(x∗
k)(x

h
k+1 − x∗

k) = ∇s

(

mH
k (xH

0,k, s
H
k ) +

λk

q + 1
‖sHk ‖q+1

)

−∇xf
H(xH

0,k + sHk )

+∇sT
H
q,k(x

H
0,k, s

H
k ) +R∇xf

h(x∗
k)−R∇xf

h(xh
k)−R∇2

xf
h(x∗

k)(x
∗
k − xh

k)

−HH(sHk ) +R(∇2
xf

h(x∗
k)−∇2

xf
h(xh

k))s
h
k − λk‖sHk ‖q−1sHk ,

where

HH(sHk ) =

q
∑

i=3

1

(i− 1)!

[
R(∇i

xf
h(xH

k ))
]
(sHk , . . . , sHk
︸ ︷︷ ︸

i−1 times

).

Further, we can write R∇2
xf

h(x∗
k)(x

h
k+1 − x∗

k) = R∇2
xf

h(x∗
k)(x

h
k+1 − xh

k) + R∇2
xf

h(x∗
k)(x

h
k − x∗

k) =

R∇2
xf

h(x∗
k)PsHk +R∇2

xf
h(x∗

k)(x
h
k − x∗

k):

(R∇2
xf

h(x∗
k)P+λk‖sHk ‖q−1)sHk = ∇s

(

mH
q,k(x

H
k , sHk ) +

λk

q + 1
‖sHk ‖q

)

−∇xf
H(xH

0,k + sHk )

+∇sT
H
q,k(x

H
0,k, s

H
k ) +R∇xf

h(x∗
k)−R∇xf

h(xh
k)−R∇2

xf
h(x∗

k)(x
∗
k − xh

k)

−HH(sHk ) +R(∇2
xf

h(x∗
k)−∇2

xf
h(xh

k))PsHk −R∇2
xf

h(x∗
k)(x

h
k − x∗

k).

We can again use relation (16) (applied to fH , TH
q,k with constant LH and to f, T h

2,k with constant

L2), (18), the fact that R∇2
xf

h(x∗
k)P is still positive definite, and Assumption 1 together with relation

shk = PsHk , to deduce that:

λk‖sHk ‖q ≤ (θ + LH)‖sHk ‖q + κRL2‖x∗
k − xh

k‖2 + ‖HH(sHk )‖
+ κ2

RL2‖x∗
k − xh

k‖‖sHk ‖+ ‖R∇2
xf

h(x∗
k)(x

h
k − x∗

k)‖.
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We remark that

(θ + LH)‖sHk ‖q + κRL2‖x∗
k − xh

k‖2 + ‖HH(sHk )‖+ κ2
RL2‖x∗

k − xh
k‖‖sHk ‖

+‖R∇2
xf

h(x∗
k)(x

h
k − x∗

k)‖ ≥ κRL2‖x∗
k − xh

k‖2 + κRL2‖x∗
k − xh

k‖‖sHk ‖.

As previously, we can solve the following inequality:

λk‖sHk ‖2 ≤ κRL2‖x∗
k − xh

k‖2 + κ2
RL2‖x∗

k − xh
k‖‖sHk ‖,

and conclude that:

‖sHk ‖ ≤ Cc‖xh
k − x∗

k‖, Cc =

[

κRL2 +
√

κ2
RL

2
2 + 4L2κRλk

]

2λk
. (36)

We can then use the fact that λk ≤ λmax for all k and that ‖shk‖ ≤ κR‖sHk ‖ to conclude that in all
cases it exists a constant C such that ‖shk‖ ≤ C‖xh

k − x∗
k‖.
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