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 30 

Abstract 31 

Regularity detection, or statistical learning, is regarded as a fundamental component of our 32 

cognitive system. To test the ability of human participants to detect regularity in a more 33 

ecological situation (i.e., mixed with random information), we used a simple letter-naming 34 

paradigm in which participants were instructed to name single letters presented one at a time 35 

on a computer screen. The regularity consisted of a triplet of letters that were systematically 36 

presented in that order. Participants were not told about the presence of this regularity. A 37 

variable number of random letters were presented between two repetitions of the regular 38 

triplet making this paradigm similar to a Hebb repetition task. Hence, in this Hebb-naming 39 

task, we predicted that if any learning of the triplet occurred, naming times for the predictable 40 

letters in the triplet would decrease as the number of triplet repetitions increased. 41 

Surprisingly, across four experiments, detection of the regularity only occurred under very 42 

specific experimental conditions and was far from a trivial task. Our study provides new 43 

evidence regarding the limits of statistical learning and the critical role of contextual 44 

information in the detection (or not) of repeated patterns. 45 

Keywords: regularity detection, statistical learning, implicit learning 46 
47 
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Detection of Regularities in a Random Environment 
48 

 We often encounter the same objects, symbols, sounds and sensations time and time 49 

again, and they tend to show up in a variety of contexts. One of the basic functions 50 

underlying human cognitive processes is our ability to detect such invariant or regular 51 

information within environmental variations. Regularity detection, also often labelled 52 

statistical learning (SL), implicit learning, or implicit statistical learning (Christiansen, 2019; 53 

Monaghan & Rebuschat, 2019; Perruchet & Pacton, 2006; Thiessen, Kronstein, & Hufnagle, 54 

2013; Rey, Minier, Malassis, Bogaerts, & Fagot, 2018) is commonly assumed to be a gradual 55 

process by which individuals experience a patterned sensory input and, by mere repeated 56 

exposure to this regularity, implicitly derive knowledge of its underlying structure, using it to 57 

update their predictions of future events (e.g., Fine & Jaeger, 2013; Misyak, Christiansen, & 58 

Tomblin, 2010).  59 

 Standard SL tasks involve a visual or auditory familiarization stream, comprising a set 60 

of regularities, that is usually followed by an offline test phase (e.g., Aslin, Saffran, & 61 

Newport, 1998; Fiser & Aslin, 2001; Reber, 1967; Saffran, Aslin & Newport, 1996). In the 62 

test phase, participants are asked to judge the familiarity of sequences that are either 63 

consistent or inconsistent with the familiarization stream. The test score captures the total 64 

amount of learning that occurred by the end of the familiarization phase (see Siegelman, 65 

Bogaerts, Christiansen, & Frost, 2016). The seminal findings of Saffran and colleagues 66 

inspired a large research community to focus on the ability to extract adjacent patterns of 67 

visual or auditory input, with little variation in the information contained in the stream. In 68 

most experiments, therefore, the familiarization phase featured a set of regular patterns of 69 

different kinds that were combined in a semirandom manner to form a continuous 70 

familiarization stream (e.g., 11 syllables arranged in six triplets; Batterink, Reber, Neville, & 71 
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Paller, 2015; 24 abstract shapes arranged in eight triplets; Bogaerts, Siegelman, & Frost, 72 

2016; 12 aliens arranged in four triplets; Arciuli & Simpson, 2012).  73 

The present study featured a slightly different situation - possibly slightly more 74 

ecological - in which a single regular pattern was inserted into random information. 75 

Participants were shown a series of single letters displayed one at a time in the centre of a 76 

computer screen, and were simply instructed to name each letter. A single triplet of letters 77 

repeatedly appeared, in between random sequences of other letters. Participants were not, 78 

however, informed about the presence of a repeated pattern. If participants started to 79 

anticipate the predictable letters in the triplet (i.e., the second and third letters for which the 80 

transitional probability was equal to 1), then naming onsets for these letters would gradually 81 

decrease over time.  82 

The presentation of a single regularity interspersed by noise sequences is very similar 83 

to the Hebb repetition task (Hebb, 1961). Hebb asked his participants to perform an 84 

immediate serial recall task in which one specific supraspan sequence was repeated every 85 

third trial. He found that the recall performances improved with the repetition of the regular 86 

pattern (for more recent studies using the Hebb task, see Bogaerts, Siegelman, Ben-Porat, & 87 

Frost, 2017; Ordonez Magro, Attout, Majerus, & Szmalec, 2018; Page & Norris, 2009; 88 

Szmalec, Duyck, Vandierendonck, Mata, & Page, 2009). Our experimental paradigm differed 89 

from the Hebb task on the nature of the regularity (letter triplet vs. supraspan sequence of 90 

items), the process elicited by the task (serial recall vs. naming), and the dependent variable 91 

(recall performance vs. response times). However, due to its similarities with the Hebb 92 

repetition task, it could be identified as a “Hebb-naming task”.  93 

Studying regularity extraction under these specific conditions as opposed to standard 94 

offline tasks has two main advantages. First, if learning is observed with standard SL tasks, it 95 

is usually difficult to determine what has been learned exactly (e.g., did participants learn a 96 
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little about each of the patterns, or did they pick up on just a few? see Siegelman, Bogaerts, 97 

Armstrong, & Frost, 2019), whereas the answer to that question should be more 98 

straightforward in the present situation. Second, the naming task could serve as an online 99 

learning measure, allowing us to trace the trajectory of learning. The reasoning here was that 100 

if participants managed to extract the regularity, the predictability of its constituent elements 101 

would increase over time (i.e., with repeated presentations of the regularity), leading to a 102 

decrease in naming latencies for predictable letters. By looking at the change in naming 103 

latencies across repeated presentations of the regularity, we would be able to study the 104 

temporal dynamics of regularity detection under different learning conditions. 105 

Although the idea of using naming as an online measure of regularity detection is 106 

relatively novel, the idea of measuring regularity extraction online is not. Several recent 107 

studies have used other novel behavioural experimental strategies to track learning as it 108 

unfolds, in both SL and artificial grammar learning (AGL) paradigms. These strategies 109 

typically involve asking participants to detect a target (e.g., Batterink, 2017; Gómez, Bion, & 110 

Mehler, 2011; Turk-Browne, Jungé, & Scholl, 2005) or presenting an auditory sequence 111 

where the participants’ task is to select the written equivalent of the auditory stimuli from a 112 

grid of options on the monitor (e.g., Dale, Duran, & Morehead, 2012; Misyak et al., 2010). 113 

Additional examples are self-paced SL and AGL tasks (Karuza, Farmer, Fine, Smith, & 114 

Jaeger, 2014; Siegelman, Bogaerts, Kronefeld, & Frost, 2016), in which participants follow 115 

the familiarization sequence at their own speed. In all these paradigms, faster button press or 116 

mouse click responses for predictable stimuli than for unpredictable stimuli are assumed to be 117 

an indication of (implicit) regularity learning1. 118 

We know from the extensive SL, AGL and implicit learning literature that individuals 119 

are able to extract structure, and two main theoretical approaches to regularity learning have 120 
 

1 Several studies also used EEG recordings to track online changes in event-related potentials when participants 
are exposed to an artificial language (e.g., Abla, Katahira, & Okanoya, 2008; François et al., 2017; Rodríguez-
Fornells, Cunillera, Mestres-Missé, & de Diego-Balaguer, 2009). 
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been applied to date: the bracketing approach and the clustering approach (Swingley, 2005; 121 

see also Frank, Goldwater, Griffiths, & Tenenbaum, 2010). The bracketing approach, with 122 

the simple recurrent network (SRN, Elman, 1990) as its most famous computational instance, 123 

assumes that we learn to predict the next stimulus in a given context, based on the transitional 124 

probabilities between sequence elements. The clustering approach, by contrast, assumes that 125 

sensitivity to co-occurrences arises from the chunking that results from the repetition of 126 

groups of elements. PARSER (Perruchet & Vinter, 1998) and TRACX (French, Addyman, & 127 

Mareschal, 2011) are probably the best known models instantiating this approach (see also 128 

McCauley & Christiansen, 2019).  129 

Although they assume different learning mechanisms, these approaches are actually 130 

quite hard to tell apart, as they make similar predictions regarding most experimental SL 131 

settings. Interestingly, they do make different predictions regarding the temporal dynamics of 132 

learning small regular sequences embedded within larger ones (e.g., a sequence of three 133 

items, ABC, where A was consistently followed by B, and B by C). Based on the assumption 134 

that prior contextual information can influence pattern extraction, the SRN model predicts an 135 

advantage for the final part of an embedded sequence (e.g., slower learning of the first two 136 

items than of the final one). By contrast, PARSER assumes that the input material is subjected 137 

to random attentional exploration, and predicts that there will be no difference between the 138 

beginning and end of the sequence. TRACX assumes that chunks are constructed on a left-to-139 

right basis, leading to the prediction that AB will be learned before BC.  140 

Evidence accumulated over the past decade supports the chunking approach (e.g., 141 

Giroux & Rey, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008; but see also Franco & 142 

Destrebecqz, 2012), and TRACX has been proved to outperform the other models in 143 

simulating several benchmark effects of regularity extraction (French et al., 2011). However, 144 

the results of some recent studies have highlighted new constraints for chunking-based 145 
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models (Kim, Seitz, Feenstra, & Shams, 2009; Turk-Browne et al., 2005; see also Minier, 146 

Fagot, & Rey, 2016, for similar results in baboons). These studies of learning 3-item patterns 147 

found that C is learned faster than B, which can be interpreted as an effect of the strong 148 

contextual information AB preceding C, compared with the weaker contextual information A 149 

preceding B. This can be accounted for by an associative learning mechanism, but runs 150 

counter to the predictions by the aforementioned chunking models. However, to date, it is not 151 

clear whether the learning advantage for the final stimulus in a repeated pattern is observed in 152 

other learning situations, such as the extraction of a single regular pattern hidden in noise. 153 

The first goal of the present set of experiments was therefore to study the detection dynamics 154 

of a regular letter triplet and to test the replicability of previous findings showing faster 155 

learning for the letter in the last position of the triplet (i.e., C) compared with the one in the 156 

second position (i.e., B).  157 

The second goal was to ask how regularity extraction is influenced by different 158 

learning conditions, that is, how do the characteristics of the pattern and its environment 159 

affect learning? Interestingly, SL models (e.g., SRN, PARSER or TRACX) state that if the 160 

contextual information is made up of different elements of the regular pattern, then the 161 

critical factors for detecting this regularity will be the number of repetitions and the amount 162 

of interfering information inserted between two repetitions of the regular pattern. With a 163 

sufficient number of repetitions and a limited amount of interfering information, these models 164 

therefore predict that participants will have no difficulty detecting the regular pattern. We 165 

examined whether the evidence yielded by the present set of experiments supported this 166 

claim.  167 

Overview of the Experiments 168 

Our study comprised four experiments. Experiment 1 tested the extraction of a 169 

repeated triplet made up of consonants that alternated with random noise (sequences of two to 170 
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five letters, randomly selected from a set of five different consonants). Experiment 2 tested 171 

the extraction of a similar statistical regularity, but in contrast to the first experiment, the 172 

repeated triplet was made up of vowels. In Experiment 3, we changed the nature of the 173 

random (i.e., unstructured) noise separating the triplet repetitions, such that although the 174 

noise sequences were still two to five letters long, these were drawn from a set of 14 175 

consonants. Finally, Experiment 4 was identical to Experiment 3, except that the random 176 

sequences between repetitions of the triplet were shorter (no more than three letters). The 177 

data yielded by these four experiments are available on Open Science Framework at 178 

https://osf.io/dyb4u/?view_only=d35620f91740450b9a915643f6c49308.  179 

Experiment 1 180 

Method 181 

 Participants 182 

 A total of 21 adults (7 men, 14 women; Mage = 20.15 years), all native French speakers 183 

and students at Aix-Marseille University, took part in the study in exchange for a course 184 

credit. All reported normal or corrected-to-normal vision, and none reported a history of 185 

attention problems or reading disabilities.  186 

Procedure and materials 187 

The experiment was run on a portable computer equipped with a serial response box 188 

and an Audio-Technica microphone. The microphone was fixed to an adjustable stand and 189 

positioned approximately 3 cm from the participant’s mouth.  190 

The naming task, administered via E-Prime 2.0 (Schneider, Eschman, & Zuccolotto, 191 

2002), involved the sequential presentation of individual letters in 70-point Arial white font 192 

in the centre of a black background. Participants were instructed to read aloud each letter as 193 

fast as possible. Speech onset and accuracy were recorded for each letter. Accuracy was 194 

scored by an experimenter present in the testing room, who scored errors but also (rare) 195 
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microphone failures as incorrect responses. Each letter stayed on the screen until the 196 

microphone was triggered at speech onset. The next letter then appeared after a fixed 197 

interstimulus interval (ISI) of 800 ms. 198 

Participants first performed a microphone test, which also allowed them to familiarize 199 

themselves with the task. The microphone test consisted of 12 randomly selected naming 200 

trials. The actual rapid naming experiment consisted of 3 blocks of 100 trials (i.e., individual 201 

letter presentations) each. The letter stream that participants were exposed to was constructed 202 

from a set of printed consonants (F, H, L, M, N, P, R, S, T). Eight letters were randomly 203 

drawn from this set for each participant: three letters were used for the repeated triplet, and 204 

triplet repetitions (15 per block, 45 in total) were always separated by two to five random 205 

consonants, chosen from the five remaining letters. Frequency was balanced across the noise 206 

letters for each block of 100 trials. The repeated triplet was never a three-letter alphabetic run 207 

(e.g., LMN) or a well-known (French) abbreviation. The letters making up the triplet and 208 

their serial order were counterbalanced across participants.  209 

Participants could take a break after every block. After Blocks 1 and 2, participants 210 

received oral feedback telling them that they were performing well, but had to try to speed up 211 

(this feedback was given independently of their actual performance or speed). In total, the 212 

naming task lasted approximately 10-15 minutes. 213 

All participants responded to a short questionnaire after completing the naming task. 214 

In standard SL experiments participants are typically tested after the exposure phase with a 2-215 

alternative forced choice task, testing the recognition of regular patterns against different 216 

foils. Given that our focus is on a learning situation with only one regular triplet, building a 217 

2-AFC task was problematic because it would be impossible to control for the frequency of 218 

the regular triplet and the foils. We therefore opted for a questionnaire to get information 219 

about the participants’ explicit knowledge of the regularity (acknowledging that this might be 220 
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qualitatively different from the ability to recognise a regularity).  221 

The experimenter asked them “Did you notice anything in particular in this 222 

experiment? Yes/No” and, in case of a “Yes” answer, the follow-up question “Can you 223 

explain what you noticed?” If participants reported noticing the repeated presentation of a 224 

sequence or sequences of letters, they were asked “Can you recall which sequence(s) of 225 

letters was repeated?” If the answer to the first question was “No”, or participants provided 226 

an explanation that was unrelated to the presence of repeated patterns, the experimenter 227 

explicitly asked them “Did you notice the repetition of a sequence of letters? Yes/No” and 228 

“Can you recall which sequence of letters was repeated?” 229 

Results 230 

Speech onset latency 231 

Only trials with correct naming responses (97.97% of the data) were analysed. Those 232 

where the stimulus presentation onset was delayed by more than 10 ms were excluded 233 

(0.96% of the data). Figure 1 shows that the distribution of speech onset latencies (SOLs) was 234 

close to normal in our task2. Given that we expected anticipatory naming responses, we 235 

included fast responses, and excluded only 6 data points with a SOL exceeding 800 ms.  236 

The summary statistics are set out in Table 1, and further results are provided in 237 

Figure 2.  238 

-- Table 1 about here – 239 

-- Figure 1 about here – 240 

-- Figure 2 about here – 241 

 First, to study the learning trajectory across triplet repetitions as a function of the 242 

position of the stimulus (within the triplet), we used the lme4 package in R (CRAN project; R 243 

Foundation for Statistical Computing, 2009) to run a linear mixed model with SOL as the 244 
 

2 This was due to the presence of anticipatory responses that distorted to the left the usually right-skewed 
distribution.  
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dependent variable. The fixed effect variables included in the model were position (1-3) and 245 

repetition number (1–45), as well as their two-way interaction. Position was sum-coded 246 

(Position 1: -1 1; Position 2: 1 0; Position 3: 0 1), and repetition was mean-centred here and 247 

in all subsequent models. The model included the maximum random effect structure that 248 

allowed convergence (Barr, 2013; Barr et al., 2013): SOL ~ Position + Repetition + 249 

Position:Repetition (1 + Position + Repetition + Position:Repetition | Participant)3. In other 250 

words, we had a random intercept for participant and a random by-participant slope for 251 

position, repetition and the Position x Repetition interaction. It should be noted that triplet 252 

learning was predicted to result in a main effect of position (with faster SOLs for predictable 253 

2nd and 3rd positions) and a Position x Repetition interaction. 254 

The results of the model are summarized in Table 2. We only found a significant effect 255 

of repetition, with the negative coefficient for this effect reflecting an acceleration (faster 256 

SOLs) over the course of the experiment. Model comparison with a likelihood-ratio test 257 

(following the guidelines established by Barr et al., 2013) revealed that neither the main 258 

effect of position, χ2(2) = 0.58, p = 0.75, nor the Position x Repetition interaction effect, χ2(2) 259 

= 3.25, p = 0.20, significantly improved the model fit.  260 

-- Table 2 about here -- 261 

In a second analysis, we tested whether there was evidence for significant learning at 262 

the group level for each of the blocks. Learning was quantified as the difference score 263 

between mean log-transformed naming SOLs for unpredictable letters (Position 1) versus 264 

predictable letters (Positions 2 and 3). As such, a positive score could be interpreted as 265 

evidence for learning. We opted for the use of log-transformed SOLs (rather than the raw 266 

 
3 It should be noted that we did not include letter identity as a random effect in the model, as this would have led 
to many instances of nonconvergence (across the four experiments). Although this could potentially have left us 
with more unexplained variance, it was not a concern, as in each experiment, the triplets were either randomly 
selected for each participant and/or letter position was counterbalanced, ensuring that any biases for individual 
letters were averaged out. 
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values) to control for the baseline differences in the speed of participants’ naming responses 267 

(see Siegelman et al., 2019).4 When we compared the mean learning difference score for each 268 

of the three blocks (see Table 1) with the hypothetical mean 0 using a one-sample t test, and 269 

found no evidence of significant learning (i.e., mean SOL difference score significantly 270 

greater than zero) in any of the blocks (all ts > 1 and pone-tailed > .10). 271 

Questionnaire 272 

Eight of the 21 participants reported noticing a repeated pattern. Only one of them 273 

correctly recalled the triplet (i.e., all three letters in the right order), but five other participants 274 

correctly reported one subsequence (either Letters 1&2 or Letters 2&3).  275 

Discussion 276 

 Surprisingly, the results of this first experiment showed that there was no significant 277 

acceleration for predictable letters. Furthermore, SOLs were not influenced by the serial 278 

position of the letter within the triplet. A number of participants noticed the presence of a 279 

repeated sequence, but most were unable to accurately recall the triplet. Although the 280 

presence of the repeated triplet looked obvious from the point of view of the experimenters, 281 

the majority of participants did not even notice it. Regularity detection in this specific 282 

experimental situation, in which attentional processing was oriented toward the naming of 283 

each letter, was apparently very limited for most participants.   284 

 This surprising result is at odds with the predictions of current SL models. Assuming 285 

that participants have to pay attention and process each letter in order to retrieve and produce 286 

 
4 To exemplify the influence of the log transformation, let us consider two participants with a mean difference of 
100 ms between unpredictable and predictable letters, but a different baseline SOL: P1 unpredictable = 500 ms, 
predictable = 400 ms; P2 unpredictable = 300 ms, predictable = 200 ms. Because of the baseline difference, P2’s 
relative acceleration for predictable stimuli was far greater. The difference between predictable and 
unpredictable stimuli after log-transforming the SOLs reflects this, with 0.22 for P1 and 0.41 for P2. 
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its name, these models predict that the residual activation for Letter 1 generated at trial t-1 287 

should enhance the activation of Letter 2 at trial t, merely through associative learning 288 

mechanisms. With sufficient repetitions, these transient memory traces should be reinforced, 289 

and the activation of Letter 1 should gradually come to predict and pre-activate the neural 290 

population coding for Letter 2. Apparently, for the majority of participants, the present 291 

experimental conditions were ineffective in producing this mandatory associative learning of 292 

adjacent patterns, indicating that we reached the limit of these mechanisms here.  293 

The three following experiments were conducted to clarify this surprising result. In 294 

Experiment 2, we tested the extraction of a repeated triplet of vowels (e.g., A, O, U). Given 295 

that the letters for the triplet were drawn from a different category than the set of random 296 

letters, which were all consonants, we expected the repeated triplet to be more salient, and the 297 

detection of the regularity more efficient.  298 

Experiment 2 299 

Method 300 

 Participants 301 

 A different sample of 21 native French adults (2 men, 19 women; Mage = 19.81 years) 302 

took part in the experiment in exchange for a course credit or payment. As in the previous 303 

experiment, all the participants had normal or corrected-to-normal vision, and none of them 304 

reported a history of attention problems or reading disabilities.  305 

Procedure and materials 306 

The naming task procedure was identical to the one used in Experiment 1. The 307 

material, however, was different, in that the regular triplet was made up of three vowels. We 308 

always used the same three vowels (A, O, U), but their order was counterbalanced across 309 

participants. The regular triplet was inserted into a random sequence of consonants drawn 310 

from a set of five consonants (F, L, N, R, S), and the triplet repetitions (15 per block) were 311 
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always separated by two to five random consonants.  312 

 313 

Results 314 

Only correct responses (97.22% of the data) were analysed. Trials where the stimulus 315 

presentation onset was delayed by more than 10 ms were excluded (0.98% of the data), as 316 

were four data points with SOLs exceeding 800 ms. 317 

Table 3 summarizes the results of Experiment 2. The plot in Figure 3 suggests that 318 

letter predictability had a strong effect on SOLs, and this was confirmed by the results of our 319 

statistical analysis.  320 

 -- Table 3 about here – 321 

 -- Figure 3 about here – 322 

The mixed model used to analyse the data of Experiment 2 was identical to the model 323 

we used in Experiment 1. Its results are summarized in Table 4.  324 

 -- Table 4 about here – 325 

 We found a significant effect of repetition, with the negative coefficient for this effect 326 

reflecting a decrease in SOLs. The coefficients for the effect of Position 3 reflect the fact that 327 

SOLs were significantly faster for predictable Position 3 letters relative to the mean SOL 328 

across all positions. Finally, a significant negative interaction coefficient indicated a 329 

significantly greater acceleration for Position 3 letters relative to the mean acceleration across 330 

all positions. Model comparison revealed that both the main effect of position, χ2(2) = 21.80, 331 

p < 0.001, and the Position x Repetition interaction effect, χ2(2) = 70.43, p < 0.001, were 332 

significant. A follow-up analysis revealed that pairwise position contrasts were significant for 333 

Position 1 - Position 2, t(21.01) = 4.58, Tukey-adjusted p < 0.001, and Position 1 - Position 3, 334 

t(20.13) = 5.99, Tukey-adjusted p < 0.001, but not for Position 2 - Position 3, t(19.97) = 2.38, 335 

Tukey-adjusted p = 0.07). 336 
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 When we looked at learning as the difference score between log-transformed SOLs 337 

for unpredictable and predictable letters, we found strong evidence for learning even in the 338 

first block, t(20) = 5.09, pone-tailed < .001, and learning increased further with exposure, t(20) = 339 

3.21, pone-tailed < .001 for Block 2; t(20) = 4.03, pone-tailed < .001 for Block 3 (see Table 3)5.  340 

Questionnaire 341 

  Nineteen of the 21 participants reported noticing a repeated pattern, and 14 of them 342 

correctly recalled the triplet. Two other participants correctly reported one subsequence 343 

(Letters 1&2 or Letters 2&3).  344 

Discussion 345 

 The results of Experiment 2, in contrast to those of our first experiment, revealed clear 346 

effects of predictability on SOLs. Shorter SOLs were observed for the second and third letters 347 

in the repeated triplet, and this difference increased across repetitions. Results further showed 348 

an increased naming advantage for Position 3 over Position 2-a pattern consistent with 349 

previous findings (e.g., Minier et al., 2016). 350 

The use of different letter categories for the structured and unstructured material 351 

(vowels in the triplet and consonants in the noise) may, of course, have served as a cue that 352 

facilitated the parsing of the continuous sequence and the extraction of the regular triplet 353 

pattern. Participants’ responses to the awareness questionnaire suggest that, for at least 90% 354 

of them, the resulting knowledge about the structure was conscious. This result therefore 355 

indicates that regularity detection is possible within this experimental paradigm, though only 356 

if the regular triplet is made more salient than the random information.  357 

 Returning to the question of why no learning was observed in Experiment 1, one 358 

possible explanation is that the regularity was presented within noise that was still relatively 359 
 

5 It should be noted that we only compared predictable versus unpredictable vowels here, so even though vowels 
and consonants may not trigger the voice key in the same way (thus affecting SOLs), this could not bias our 
analyses. 
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structured. That is, given that the noise letters were drawn from a set of just five consonants, 360 

the theoretical mean transitional probability between the different noise letters was .25. 361 

Participants’ responses on the post-task questionnaire indicated that regularities were also 362 

detected in the unstructured noise material. We tentatively suggest that the structure 363 

perceived in the noise may have interfered with the extraction of the actual triplet. In 364 

Experiment 3, we sought to increase the signal-to-noise ratio, without giving any cues for the 365 

regular triplet. We tested whether we could find evidence for regularity detection in a 366 

consonant-only version of the task using noisier noise. Therefore, instead of selecting them 367 

from a set of five consonants, we drew the noise letters from a set of 14 consonants, making 368 

the transitional probabilities between noise letters much smaller than they were in Experiment 369 

2.  370 

Experiment 3 371 

Method 372 

 Participants 373 

 A sample of 22 native French speakers (7 men, 15 women; Mage = 21.73 years) took 374 

part in the study in exchange for either a course credit or a payment.  375 

Procedure and materials 376 

The procedure was identical to the one used in Experiments 1 and 2. The letter stream 377 

was constructed with the full set of 20 French consonant letters minus W (referred to in 378 

French as double V [double U], and the low-frequency letters Q and X (hence, a set of 17). 379 

Three letters were used to construct the triplet (as before, the letter organization of the triplet 380 

was counterbalanced across participants), while the 14 remaining letters were used for the 381 

unstructured noise. Triplet repetitions (15 per block) were always separated by two to five 382 

randomly structured consonants, as in the previous experiments. 383 
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Results 384 

  Only correct responses (96.27 % of the data) were analysed. Trials where the stimulus 385 

presentation onset was delayed by more than 10 ms were excluded (0.94% of the data). One 386 

participant was excluded from the analysis as she failed to give rapid naming responses. Her 387 

mean SOL for triplet letters (493.29 ms) exceeded the sample’s mean (391.26 ms) + 1.5*SD 388 

(58.31 ms).  389 

  Table 5 summarizes the results of Experiment 3. The plot in Figure 4 suggests a 390 

learning effect, but a substantially smaller one than the effect we observed in Experiment 2.  391 

 -- Table 5 about here – 392 

 -- Figure 4 about here – 393 

  The mixed model we used was identical to the ones used in Experiments 1 and 2. The 394 

results of the model are summarized in Table 6.  395 

 -- Table 6 about here – 396 

  Results were somewhat mixed. Only the position coefficient for Position 3 397 

approached the significance threshold (b = -12.3, CI [-23.7, -0.9], p = .06) indicating that 398 

SOLs were faster for predictable Position 3 letters relative to the mean SOL across positions. 399 

Model comparisons revealed that the main effect of position was also approaching 400 

significance, χ2(2) = 5.66, p = .058, while the Block x Position interaction did not 401 

significantly improve the model fit, χ2(2) = 2.49, p = .29. A follow-up analysis contrasting 402 

Position 1, 2 and 3 revealed similar trends: Position 1 - Position 2, t(18.97) = 1.81, Tukey-403 

adjusted p = 0.19; Position 1 - Position 3, t(18.99) = 2.49, Tukey-adjusted p = 0.055; Position 404 

2 – Position 3, t(18.99) = 1.69, Tukey-adjusted p = 0.23. 405 

 One-sample t tests revealed that in Block 1, participants did not exhibit learning of the 406 
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underlying statistical structure of the letter stream − as reflected by a difference score 407 

between SOLs for unpredictable and predictable letters that was significantly greater than 408 

zero, t(20) = .99, pone-tailed = .17. Significant learning was apparent in the subsequent learning 409 

blocks: t(20) = 2.64, pone-tailed < .01 for Block 2, and t(20) = 1.69, pone-tailed = .05 for Block 3 410 

(see Table 5).  411 

Questionnaire 412 

 Thirteen of the 21 participants reported noticing a recurrent letter sequence. Three of 413 

them could recall the whole triplet, and two others correctly recalled one subsequence 414 

(Letters 1&2 or Letters 2&3).  415 

Discussion 416 

In line with the results of Experiment 2, the difference in SOLs between unpredictable 417 

and predictable letters increased across blocks. It should be noted that the online learning 418 

effect was substantially smaller than the one observed for the vowel triplet. Significant 419 

learning also emerged later (in the second block rather than in the very first). Unsurprisingly, 420 

in the absence of any cue other than the statistical properties of the stream, far fewer 421 

participants were able to explicitly recall the repeated triplet (3/21 vs. 14/21 for Experiment 422 

2).  423 

A key result of these first three experiments was that the context in which the regular 424 

patterns were presented influenced online learning performances. To account for the lack of 425 

online learning in our first experiment, we tentatively hypothesized that the statistical 426 

structure in the noise interfered with the extraction of the actual triplet. The fact that we 427 

found learning under nearly identical learning conditions, the only difference being the set of 428 

letters used to construct the noise sequences, suggests that the degree of latent structure in the 429 
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noise sequences affected the detection of the regularity6. This result is problematic for most 430 

SL models. Recall of the letters making up the regular triplet should not have been affected 431 

by the manipulation of the noise information in Experiment 3, and results should have been 432 

the same as those in Experiment 1.   433 

Previous research has demonstrated that learners form expectations about the kind of 434 

structure present in an information stream, based on previous exposure to other streams 435 

(Lew-Williams & Saffran, 2012), and may therefore fail to learn structures that conflict with 436 

their expectations (Gebhart, Aslin, & Newport, 2009). A similar conflict may occur within a 437 

single stream when wrong expectations are formed on the basis of the noise information 438 

(which was not sufficiently noisy in Experiment 1). In that case, participants may keep in 439 

mind a random repetition (which is more likely to occur in Experiment 1 due to the small 440 

number of filler letters) and this expectation may interfere with the discovery of the genuine 441 

regularity. An alternative (though not necessarily mutually exclusive) interpretation relates to 442 

memory constraints (Frank & Gibson, 2011; Frank, Goldwater, Griffiths, & Tenenbaum, 443 

2010). The presence of quasi-regularities in the noise sequences may be disadvantageous if 444 

they are being kept active in working memory. This could be especially true in the context of 445 

a demanding task such as rapid naming that presumably takes up capacity itself.  446 

 In the fourth and final experiment, we aimed to determine the effect of reducing the 447 

distance between occurrences of the regular pattern. All SL models predict that shorter noise 448 

sequences between triplet repetitions should lead to improved learning.  449 

 450 

 
6  It should be noted that although the triplet was repeated the same number of times (45) in each of the 
experiments, the relative frequency of triplet letters versus noise letters was higher in Experiment 3 than in 
Experiment 1. This factor may have contributed to participants’ better learning performances. Faster SOLs for 
Position 1 than for noise letters (see Fig. 5) suggest that participants also picked up on the greater frequency of 
the first letter in the triplet. However, given that the difference between unpredictable Position 1 and predictable 
Positions 2 and 3 increased, this frequency effect cannot fully account for the data.   
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Experiment 4 451 

Method 452 

 Participants 453 

 A sample of 24 native French speakers (4 men, 20 women; Mage = 20.1 years) took part 454 

in the study in exchange for a course credit.  455 

Procedure and materials 456 

The procedure used in Experiment 4 was identical to the one used in Experiment 3, 457 

except that triplet repetitions were always separated by no more than three randomly arranged 458 

consonants (rather than the two to five randomly arranged consonants in Experiments 1-3). 459 

As the total number of trials was identical to the number in the three previous experiments 460 

(300 trials in three blocks of 100 trials), there were 62 rather than 45 triplet repetitions.  461 

Results 462 

 Only correct responses (97.17% of the data) were analysed. Trials where the stimulus 463 

presentation onset was delayed by more than 10 ms were excluded (0.97% of the data), as 464 

were 11 data points with SOLs exceeding 800 ms. 465 

 The results of Experiment 4 are summarized in Table 7 and Figure 5.  466 

 -- Table 7 about here – 467 

 -- Figure 5 about here -- 468 

  The model included the maximum random effect structure that allowed convergence 469 

(Barr, 2013; Barr et al., 2013): SOL ~ Position + Repetition + Position x Repetition (1 + 470 

Position + Position x Repetition | Participant). The results of the model are summarized in 471 

Table 8.   472 

 -- Table 8 about here – 473 

  There was a significant effect of repetition and the predicted effect of position: overall 474 
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SOLs were significantly faster for the predictable Position 3 compared with the mean across 475 

all positions. Finally, the significant negative interaction coefficient indicated greater 476 

acceleration for Position 3 across repetitions, relative to the mean acceleration for all 477 

positions. Model comparisons revealed a significant main effect of position, χ2(2) = 12.82, p 478 

< .01, and a significant Position x Repetition interaction, χ2(2) = 8.05, p = .018. Pairwise 479 

position contrasts were significant for Position 1 - Position 2, t(23.02) = 3.85, Tukey-adjusted 480 

p < 0.01, and Position 1 - Position 3, t(22.98) = 3.647, Tukey-adjusted p < 0.01, but not for 481 

Position 2 - Position 3, t(22.94) = 1.32, Tukey-adjusted p = 0.40. 482 

  One-sample t tests revealed that participants already exhibited significant learning of 483 

the underlying statistical structure of the letter stream in the first block, t(23) = 2.94, pone-tailed 484 

< .01, which remained significant in subsequent learning blocks, with t(23) = 2.89, pone-tailed < 485 

.001 for Block 2, and t(23) = 3.84, pone-tailed < .001 for Block 3 (see Table 7). 486 

 To directly compare learning in the current experiment with learning in Experiment 3, 487 

we ran another linear mixed model on the data for the two experiments, subsetting the data of 488 

Experiment 4 to include only the first 45 repetitions. In this model, learning score was the 489 

dependent variable, and experiment, repetition and the Experiment x Repetition interaction 490 

were fixed effects with a random by-participant intercept. Experiment was sum-coded 491 

(Experiment 3: -1; Experiment 4: 1). We found significant main effects of Experiment (β = 492 

0.04, SE = 0.01, p < .001) and Repetition (β = 0.005, SE = 0.001, p < .001), and a significant 493 

interaction effect (β = 0.002, SE = 0.001, p < .001), confirming stronger learning in 494 

Experiment 4 than in Experiment 3 (see also Fig. 6). 495 

 -- Figure 6 about here -- 496 

 Questionnaire 497 

 Nineteen of the 24 participants reported noticing a recurrent letter sequence. Thirteen 498 
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could recall the whole triplet, while four others correctly recalled one subsequence (Letters 499 

1&2 or Letters 2&3).  500 

Discussion 501 

In Experiment 4, we tested the prediction that shorter noise sequences between triplet 502 

repetitions would further improve learning in the naming task. Results showed that overall 503 

learning scores were indeed higher than in Experiment 3. With its 17 additional repetitions, 504 

the present experiment also provided information regarding the trajectory of SOLs in the later 505 

stages of pattern learning. Interestingly, the decrease in SOLs for predictable letters continued 506 

unabated across the 62 repetitions (no sign of reaching asymptote). 507 

General Discussion 508 

In the present study, participants had to name out loud single letters that were 509 

displayed one at a time on a computer screen. Unbeknownst to them, the stream contained a 510 

repeated letter triplet. Our data suggest that SOLs were sensitive to online statistical 511 

computations: with exposure, SOLs for the predictable second and third letters in the repeated 512 

triplet decreased. However, this effect was only present when the information stream had 513 

what could be described as a high signal-to-noise ratio. To be detected, the triplet either had 514 

to have a salient feature compared with the noise information (Exp. 2), or the noise sequences 515 

between successive presentations of the regular pattern had to be sufficiently noisy (Exp. 3) 516 

or short (Exp. 4). Otherwise, the regular pattern remained undetectable for most participants 517 

(Exp. 1).  518 

Taken together, the results of our four experiments have two main implications for 519 

models of implicit SL. First, they show that although SL mechanisms are powerful, they also 520 

have limitations. The detection of co-occurrences and regularities does not systematically 521 

take place when participants are exposed to a repeated regular pattern of adjacent items, even 522 

if this pattern is relatively simple. Mere repetition is not a sufficient condition for a regularity 523 
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to stand out from a stream of variable information, and for participants to detect it. The 524 

regular pattern will be detected either because of a feature that makes it salient with respect to 525 

the surrounding variable information (i.e., vowels vs. consonants; Exp. 2) or because the 526 

mean interval between two repetitions is small enough for the memory trace of the co-527 

occurrences to be sufficiently reinforced (Exp. 4). This raises important issues, such as the 528 

role of regularity learning in more natural contexts, as well as educational ones. In language 529 

learning in particular, a field in which SL has become a dominant theoretical construct in 530 

recent years, the current findings point to the limitations of our implicit co-occurrence 531 

learning abilities.  532 

Second, the present results indicate that the context or surrounding information in 533 

which the regularities are presented may matter for SL (Exp. 1 & 3). If the variable context is 534 

not variable enough, associative learning mechanisms may extract co-occurrences that have 535 

sufficiently strong transitional probabilities, but which are irrelevant. This is an issue that has 536 

so far received too little attention, as almost all previous research has used input streams with 537 

a similar latent structure, repeating n (usually between four and eight) triplets or pairs with a 538 

transitional probability of 1 between the items within each one (Siegelman et al., 2016).   539 

The present data also replicate previous findings on the dynamics of regularity 540 

extraction. The results of Experiment 2, where we tested a vowel triplet in consonant noise, 541 

revealed greater acceleration for Position 3 versus Position 2 letters, and we saw a similar 542 

trend in Experiments 3 and 4. This could be interpreted as an effect of context on the learning 543 

of the final stimulus in a repeated triplet (i.e., the final stimulus benefits from the contextual 544 

information provided by the stimuli that consistently precede it), in line with the effect 545 

described by Minier et al. (2016) in the motor sequence learning trajectory of baboons. It 546 

therefore suggests that in a verbal SL task, greater contextual information facilitates 547 

prediction (see also Rey, Minier, Malassis, Bogaerts, & Fagot, 2018). As argued by Minier et 548 
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al. (2016), this learning advantage for the final item or embedded pattern is predicted by the 549 

SRN model, but poses challenges for chunking models such as PARSER, which predicts no 550 

difference between learning for the initial (Letters 1&2 in a triplet) and final (Letters 2&3) 551 

embedded patterns, or TRACX, which predicts faster learning for the initial one (Letters 552 

1&2) - the opposite of what we found.  553 

Prospects and limitations  554 

We believe that the Hebb-naming paradigm described here offers a simple 555 

behavioural approach to studying learning dynamics online, suitable for studying how fast 556 

and with which trajectory learners capture the statistical properties of incoming sensory 557 

information. It could be used to complement existing offline measures and might help to 558 

overcome some of the psychometric shortcomings of offline measures, such as test 559 

interference. As a more implicit and direct measure (see also Isbilen, Frost, Monaghan, & 560 

Christiansen, 2018), SOL might prove particularly useful for studying SL in young children 561 

(e.g., Arnon, 2019; Lammertink, van Witteloostuijn, Boersma, Wijnen, & Rispens, 2018) or 562 

certain patient groups (e.g., amnesic patients; Schapiro, Gregory, Landau, McCloskey, & 563 

Turk-Browne, 2014) who have difficulty with the 2-AFC testing format. It also has a 564 

considerable advantage (over for example the RT-based measure in an SRT task) due to the 565 

many degrees of freedom in constructing the regular sequence (e.g., contrary to the SRT task, 566 

it is possible to have several sequences with transitional probabilities of 1). It could be 567 

employed with all sorts of nameable stimuli with large set sizes (e.g., pictures, words) and 568 

with different types of regularities. By extension, this measure could also be included in 569 

verbal AGL and Hebb repetition paradigms. 570 

The above formulation “as a more implicit and direct measure” requires some further 571 

clarification. We worked on the premise that faster SOLs for predictable letter stimuli can 572 

occur when learning is implicit, that is, when the stream of letters is processed without “the 573 
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conscious intention to find out whether the input information contains regularities” (Hulstijn, 574 

2005, p. 131). However, this does not mean that the learning trajectories we observed were 575 

uniquely shaped by implicit learning processes (Andringa & Rebushat, 2015). In each of the 576 

experiments, by the end of the task (i.e., after several dozen repetitions) several participants 577 

displayed conscious knowledge of the regularity that had been learned, and the pattern of 578 

questionnaire results across our four experiments suggests that either awareness emerged 579 

with increased implicit learning, or some emerging awareness of the regularity (while 580 

participants were engaged in the naming task) amplified the online learning effect as we 581 

measured it. Splitting participants from Experiment 4 in two groups of similar sizes (i.e., 582 

participants who could recall vs. who could not recall the repeated sequence of letters (with N 583 

= 13 and N = 11, respectively), we indeed found that the interaction between Position 3 and 584 

Repetition was significant for those who could recall the sequence (b = -1.22, CI [-2.06, -585 

0.37], p < .02) but not for the other group (b = -0.51, CI [-1.23, 0.21], p = 0.191). 586 

Although the present investigation goes some way toward the development of a Hebb 587 

naming SL task, future research will have to examine whether the task can be adapted to 588 

other types of verbal stimuli and to the auditory modality (where the participants are asked to 589 

shadow rather than to name), and whether it can also be employed to study different types of 590 

regularities (e.g., nonadjacent co-occurrences). Furthermore, from a psychometric 591 

perspective, it is important to examine whether the online naming measure can reliably tap 592 

into individual performances on the task and predict offline performance. 593 

Conclusion 594 

We asked participants to name letters presented in continuous letter sequences and 595 

measured their SOLs in four experiments. Overall, our data suggest that SOLs are sensitive to 596 

stimulus predictability and to online statistical computations. Our results also highlight the 597 

influence of the context in which a regular pattern is presented, and a major limitation of 598 
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implicit co-occurrence learning abilities in the context of an active naming task. 599 

  600 
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Table 1 757 

Means and Standard Deviations for Raw Speech Onset Latencies (SOLs) and Learning 758 

Scores in Experiment 1 759 

 Block 1 Block 2 Block 3 Total 

Raw SOL     

Position 1 411 (68) 382 (67) 376 (71) 389 (70) 

Position 2 413 (73) 388 (67) 364 (84) 388 (77) 

Position 3 415 (67) 389 (73) 376 (72) 393 (72) 

Learning score 0 -.02 .02  

 760 

 761 

Table 2 762 

Results of the Mixed Model for Experiment 1 763 

Predictor β CI SE p  

(Intercept) 390.3 [376.3 , 404.3] 7.1 < .001 *** 

Position 2 -1.9 [-8.7 , 4.8] 3.4 .58 
 

Position 3 2.9 [-4.8 , 10.6] 3.9 .47  

Repetition -1.2 [-1.7 , -0.8] 0.2 < .001 *** 

Position 2: Repetition -0.2 [-0.5 , 0.1] 0.2 .14 
 

Position 3: Repetition 0 [-0.3 , 0.3] 0.2 .99  

Note. Position was sum-coded. 764 

765 
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Table 3 766 

Means and Standard Deviations for Raw Speech Onset Latencies (SOLs) and Learning 767 

Scores in Experiment 2 768 

 Block 1 Block 2 Block 3 Total 

Raw SOL     

Position 1 382 (66) 343 (64) 334 (73) 352 (71) 

Position 2 364 (76) 299 (84) 270 (93) 311 (93) 

Position 3 352 (75) 284 (106) 248 (107) 295 (106) 

Learning score .07 .16 .25  

 769 

 770 

Table 4 771 

Results of the Mixed Model for Experiment 2 772 

Predictor β CI SE p  

(Intercept) 320.2 [299.9 , 340.5] 
 

10.3 < .001 *** 

Position 2 -8.9 [-17.2 , -0.7] 
 

4.2 .04 * 

Position 3 -24.3 [-33.1 , -15.4] 
 

4.5 < .001 *** 

Repetition -2.5 [-3.3 , -1.8] 
 

0.4 < .001 *** 

Position 2: Repetition -0.4 [-0.8 , -0.02] 
 

0.2 .05 * 

Position 3: Repetition -0.8 [-1.2 , -0.3] 
 

0.2 0.004 *** 

Note. Position was sum-coded. 773 

 774 

  775 
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Table 5 776 

Means and Standard Deviations for Raw Speech Onset Latencies (SOLs) and Learning 777 

Scores in Experiment 3 778 

 Block 1 Block 2 Block 3 Total 

Raw SOL     

Position 1 404 (57) 397 (66) 396 (66) 399 (63) 

Position 2 404 (59) 377 (72) 376 (80) 386 (72) 

Position 3 390 (58) 363 (92) 370 (89) 375 (82) 

Learning score .01 .07 .09  

  779 

 780 

Table 6 781 

Results of the Mixed Model for Experiment 3 782 

Predictor β CI SE p  

(Intercept) 386 [351 , 421] 
 

17.91 < .001 *** 

Position 2 -0.9 [-5.6 , 3.7] 
 

2.37 .71  

Position 3 -12.3 [-23.7 , -0.9] 
 

5.81 .06  

Repetition -0.5 [-1.4 , 0.35] 
 

0.45 .26  

Position 2: Repetition -0.3 [-0.68 , 0.09] 
 

0.19 .16  

Position 3: Repetition -0.1 [-0.64 , 0.44] 
 

0.28 .72 	

Note. Position was sum-coded.783 
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Table 7 784 

Means and Standard Deviations for Raw Speech Onset Latencies (SOLs) and Learning 785 

Scores in Experiment 4 786 

 Block 1 Block 2 Block 3 Total 

Raw SOL     

Position 1 429 (64) 414 (69) 418 (75) 420 (70) 

Position 2 405 (78) 377 (95) 344 (120) 375 (102) 

Position 3 404 (82) 357 (122) 328 (127) 363 (116) 

Learning score .08 .21 .34  

 787 

 788 

 789 

Table 8 790 

Summary of the Fixed Effects in the Mixed Model for Experiment 4 791 

Predictor β CI SE p  

(Intercept) 395.3 [374.3 , 416.4] 
 

10.2 < .001 *** 

Position 2 -7.3 [-14.9 ,  0.4] 
 

3.8 .07  

Position 3 -17.8 [-30.6 , -5] 
 

6.1 < .01 ** 

Repetition -1.4 [-2.2 , -0.6] 
 

0.4 < .001 *** 

Position 2: Repetition -0.05 [-0.3 ,  0.2] 
 

0.14 .74  

Position 3: Repetition -0.8 [-1.4 , -0.3] 
 

0.2 < .01 ** 

Note. Position was sum-coded. 792 

 793 

  794 
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Figure Captions 795 

 796 

Figure 1. Density plot of speech onset latencies showing the fitted normal distribution in blue, 797 

with a red line indicating our cut-off score. 798 

Figure 2. Plot with smoothed estimate of mean speech onset times in Experiment 1 as a 799 

function of letter position and number of repetitions. Grey-shaded areas indicate 95% 800 

confidence intervals around linear regression lines. Dashed lines represent the best linear fit. 801 

Figure 3. Plot with smoothed estimate of mean speech onset times in Experiment 2 as a 802 

function of letter position and number of repetitions. Grey-shaded areas indicate 95% 803 

confidence intervals around linear regression lines. Dashed lines represent the best linear fit. 804 

Figure 4. Plot with smoothed estimate of mean speech onset times in Experiment 3 as a 805 

function of letter position and number of repetitions. Grey-shaded areas indicate 95% 806 

confidence intervals around linear regression lines. Dashed lines represent the best linear fit. 807 

Figure 5. Plot with smoothed estimate of mean speech onset times in Experiment 4 as a 808 

function of letter position and number of repetitions. Grey-shaded areas indicate 95% 809 

confidence intervals around linear regression lines. Dashed lines represent the best linear fit. 810 

Figure 6. Comparison of learning scores and their changes across repetitions for all-811 

consonant triplet in consonant-noise experiments. Grey-shaded areas indicate 95% 812 

confidence intervals around linear regression lines. Dashed lines represent the best linear fit. 813 

 814 

 815 
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Figure 1 822 
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Figure 2827 
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Figure 3 831 
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Figure 4 838 
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