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Analytical properties of Graetz modes in parallel
and concentric configurations

Charles Pierre . Franck Plouraboué

Abstract The generalized Graetz problem refers to

stationary convection–diffusion in uni-directional

flows. In this contribution we demonstrate the analyt-

icity of generalized Graetz solutions associated with

layered domains: either cylindrical (possibly concen-

tric) or parallel. Such configurations are considered as

prototypes for heat exchangers devices and appear in

numerous applications involving heat or mass transfer.

The established framework of Graetz modes allows to

recast the 3D resolution of the heat transfer into a 2D

or even 1D spectral problem. The associated eigen-

functions (called Graetz modes) are obtained with the

help of a sequence of closure functions that are

recursively computed. The spectrum is given by the

zeros of an explicit analytical series, the truncation of

which allows to approximate the eigenvalues by

solving a polynomial equation. Graetz mode compu-

tation is henceforth made explicit and can be per-

formed using standard software of formal calculus. It

permits a direct and mesh-less computation of the

resulting solutions for a broad range of configurations.

Some solutions are illustrated to showcase the interest

of mesh-less analytical derivation of the Graetz

solutions, useful to validate other numerical

approaches.

Keywords Heat and mass transfer � Convection–

diffusion �Reduced problem � Separation of variables �
Analytical solutions

1 Introduction

Parallel convective heat exchangers are relevant in

many application contexts such as heating/cooling

systems [23], dialysis’s [9], as well as convective heat

exchangers [14]. A number of works devoted to

parallel convective heat exchangers in simple two

dimensional configurations [11, 12, 15, 16, 24, 25,

27, 28] can be found to cite only a few, whilst many

others can be found in a recent review [6].

As quoted in [6] conjugate heat transfer are mixed

parabolic/hyperbolic problems which makes them

numerically challenging. In many applications the

ratio between the solid and fluid thermal conductance

is high (larger than one thousand in many cases). The

convection is dominating, so that the ratio of convec-

tion to diffusion effects provided by the so-called

Péclet number is very high (e.g. larger than 105 in
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2 Setting the problem

2.1 Physical problem

We study stationary convection–diffusion in a circular

duct made of several concentric layers (fluid or solid).

The domain is set to X� ða; bÞ with ða; bÞ � R an

interval and X the disk with center the origin and

radius R. The longitudinal coordinate is denoted by

z and cylindrical coordinates ðr;uÞ are used in the

transverse plane. Then X is split into m different

compartments Xj, j ¼ 1. . .m, either fluid or solid and

centered on the origin: X1 is the disk of radius r1

whereas Xj, j� 2, is the annular with inner and outer

radius rj�1 and rj for a given sequence

0\r1\ � � �\rm ¼ R. Two such configurations are

depicted on Fig. 1.

The physical framework is set as follows:

1. Velocity: vðr;u; zÞ ¼ vðrÞ ez with ez the unit

vector along the z direction. We denote vj ¼
vjXj
¼ vjðrÞ ez the restriction of the velocity to

compartment Xj. In case this compartment is solid

we have vjðrÞ ¼ 0. We make the mathematical

assumption that each vjðrÞ is analytic, though

v(r) is allowed to be discontinuous at each

interface.

2. Conductivity: kðr;u; zÞ ¼ kðrÞ and moreover

kjXj
¼ kj [ 0 is a constant.

The general equation for stationary heat convec-

tion–diffusion reads

Fig. 1 Two possible configurations. Above: fluid flowing inside

a circular tube with a solid wall. Below: fluid flowing inside an

annular between a solid core and a solid external wall

[20, 21]). When dealing with such highly hyperbolic 
situations, numerical convergence might be an issue. 
The increase in computer power has permitted and 
popularized the use of direct numerical simulations to 
predict heat exchangers performances [7, 13, 20, 21, 
26]. The derivation of analytic mesh-less reference 
solutions allows to evaluate the accuracy and the 
quality of the discrete solutions, as done in 
[2, 5, 8, 17, 18] in a finite-element framework. In 
most cases, it is interesting to validate the numerical 
solution in simple configurations as well as being able 
to test the solution quality for extreme values of the 
parameters, when rapid variations of the temperature 
might occur in localized regions. However, few 
analytic solutions are known, apart from very simpli-

fied cases. Namely, such analytic solutions can be 
obtained for axi-symmetric configurations, when the 
longitudinal diffusion has been neglected whilst 
assuming a parabolic velocity profile, as originally 
studied by Graetz [10]. In this very special case, the 
Graetz problem maps to a Sturm–Liouville ODE class, 
and the resulting analytic solutions can be formulated 
from hyper-geometric functions, see [4] or for exam-

ple [25].

In this contribution we introduce analytic general-

ized Graetz modes: including longitudinal diffusion, 
for any regular velocity profile, and for general 
boundary conditions. The derivation of the general-

ized Graetz modes follows an iterative process that can 
be performed using a standard formal calculus soft-

ware. Then, Sect. 2.1 sets notations (mainly for the 
cylindrical case) and provides the physical context as 
well as the constitutive equations under study. Sec-

tion 2.2 gives the necessary mathematical background 
for the subject, with an emphasis on most recent 
results useful for the presented analysis. Section 3.1 
shows that discrete mode decomposition also holds for 
non-axi-symmetric configuration. Section 3.3 gives 
the central result of this contribution regarding the 
analyticity of the generalized Graetz modes. Finally 
Sect. 4 illustrate specific applications obtained with 
the method with explicit analytic computations.



divðr;u;zÞ
�
vT � krðr;u;zÞT

�
¼ 0:

With the assumptions we have made, it simplifies to

divðkrTÞ þ ko2
z T ¼ vozT in X� ða; bÞ; ð1Þ

where we denoted by div ¼ divðr;uÞ and r ¼ rðr;uÞ
the gradient and divergence operators restricted to the

transverse plane. The following boundary conditions,

either of Dirichlet or Neumann type, are considered

T ¼ gðzÞ or krT ¼ gðzÞ on oX� ða; bÞ:
ð2Þ

2.2 Mathematical background

Problem reformulation Adding a supplementary vec-

tor unknown p:X! R2, problem (1)–(2) has been

reformulated in [2, 8, 17, 18] into a system of two

coupled PDEs of first order:

ozW ¼ AW with W ¼ ðT ; pÞ;

A ¼ vk�1 � k�1divð�Þ
kr� 0

� �
;

on the spaceH ¼ L2ðXÞ � ½L2ðXÞ�2 and involving the

differential operator A:DðAÞ � H ! H. The defini-

tion of the domain D(A) of the operator A depends on

the chosen Dirichlet or Neumann boundary condition.

For simplicity we briefly recall the properties of

operator A in the Dirichlet case, as presented in [8, 18].

These properties have been extended to the Neumann

case in [17] and to the Robin case in [3]. For a Dirichlet

boundary condition, we set DðAÞ ¼ H1
0ðXÞ�H div ðXÞ.

Then A is self-adjoin with compact resolvent. Apart

from the kernel space K :¼ kerA ¼ fð0; pÞ; p 2
H div ðXÞ; div p ¼ 0g the spectrum of A is composed

of a set K of eigenvalues of finite multiplicity. It has

been shown in [18] that K decomposes into a double

sequence of eigenvalues ki,

�1 � ki� � � � � k1\0\k�1�
� � � � k�i ! þ1:

ð3Þ

We call upstream eigenvalues the positive eigenvalues

fki; i\0g and downstream eigenvalues the negative

ones fki; i[ 0g. The associated eigenfunctions

ðWiÞi2ZH form an orthogonal (Hilbert) basis of K?.

Eigenmodes Let us write Wi ¼ ðHi; piÞ the eigen-

functions. Their vector component satisfies

pi ¼ krHi=ki. It is important to understand that

Hi:X 7!R only is the scalar component of the associ-

ated eigenfunction Wi. As a result the ðHiÞi2ZH are not

eigenfunctions themselves, they are neither orthogo-

nal nor form a basis of L2ðXÞ. To clarify this

distinction we refer to Hi as an eigenmode associated

with ki.
Eigenmodes can be directly defined through a

generalized eigenvalue problem. A function H:X!
R is an eigenmode if H 2 H1ðXÞ, krH 2 H div ðXÞ
and their exists a scalar k so that

div ðkðrÞrHÞ þ k2kðrÞH ¼ kvðrÞH on X; ð4Þ

with H ¼ 0 or rH � n ¼ 0 on oX depending on the

considered Dirichlet or Neumann boundary condition.

In that situation, k is an eigenvalue of A associated

with the eigenfunction Wi ¼ ðH; krH=kÞ. As a con-

sequence, the eigenmodes always are real functions

since the operator A is symmetric.

The upstream and downstream eigenmodes have

the following important property (proved in [8]):

• The upstream eigenmodes fHi; i\0g form a

(Hilbert) basis of L2ðXÞ.
• The downstream eigenmodes fHi; i[ 0g also

form a basis of L2ðXÞ.

Problem resolution The problem (1)–(2) can be

solved by separation of variables. General solutions

for non-homogeneous boundary conditions of Dirich-

let, Neumann or Robin type have been derived in

[2, 3, 8, 17, 18]. Such solutions are detailed in Sect. 4.

We simply recall their formulation for a homogeneous

Dirichlet boundary condition:

Tðr;u; zÞ ¼
X

i2ZH

ciðzÞHiðr;uÞ ekiz:

The functions ciðzÞ are determined with the help of the

eigenmodes, of the boundary condition g(z) and of the

inlet/outlet conditions. As an illustration, we precise

that derivation in two cases. In the case of a

homogeneous boundary condition gðzÞ ¼ 0 in (2),

then ciðzÞ ¼ ci 2 R are constant scalars. On a semi-

infinite domain X� ð0;þ1Þ, the upstream coeffi-

cients are zero, ci ¼ 0 for i\0, and



Tðr;u; zÞ ¼
X

i2Zþ
ciHiðr;uÞ ekiz:

The coefficients ci for i[ 0 are given by the inlet

condition Ti ¼ Tjz¼0

Ti ¼
X

i2Zþ
ciHi:

If the domain is finite, equal to X� ð0; LÞ, then the

upstream coefficients are no longer equal to zero, the

upstream and downstream coefficients ci satisfy

Ti ¼
X

i2Zþ
ciHi þ

X

i2Z�
ciHie

�kiL;

To ¼
X

i2Zþ
ciHie

kiL þ
X

i2Z�
ciHi;

where To ¼ Tjz¼L is the outlet condition.

3 Analyticity of the generalized Graetz modes

3.1 Series decomposition

To take advantage of the azimuthal symmetry of the

physical problem we perform the Fourier decomposi-

tion of the eigenmodes. Their Fourier series expansion

is composed by terms of the form TðrÞ cosðnuÞ or

TðrÞ sinðnuÞ. We prove here that we have a finite

number of such terms and characterize T(r). Let us

introduce the operator Dn

Dnf ¼
1

r

d

dr
r

d

dr
f

� �
� n2

r2
f :

Consider H an eigenmode associated with k 2 K and

assume that Hðr;uÞ ¼ TðrÞ cosðnuÞ or Hðr;uÞ ¼
TðrÞ sinðnuÞ. Then T is a solution of the following

ODEs

k2kjT þ kjDnT ¼ kvjT ; on ðrj�1; rjÞ; j ¼ 1. . .m;

ð5Þ

that are coupled with the transmission conditions

Tðr�j Þ ¼ Tðrþj Þ; kj
d

dr
Tðr�j Þ ¼ kjþ1

d

dr
Tðrþj Þ; j ¼ 1. . .m� 1:

ð6Þ

Lemma 1 For all k 2 C and all n 2 N there exists a

unique function Tn;kðrÞ: ð0;RÞ ! R that satisfies (5)–

(6) together with the normalization condition

Tn;kðrÞ	 rn as r ! 0þ: ð7Þ

An eigenmode H associated with the eigenvalue k
decomposes as a finite sum of terms of the form

Tn;kðrÞ cosðnuÞ or Tn;kðrÞ sinðnuÞ.
The eigenvalue set K decomposes in the Dirichlet

case as

K ¼
[

n2N
Kn; Kn ¼ k 2 C; Tn;kðRÞ ¼ 0

� �
; ð8Þ

and in the Neumann case as

K ¼
[

n2N
Kn; Kn ¼ k 2 C;

d

dr
Tn;kðRÞ ¼ 0

� 	

ð9Þ

Finally, if k 2 Kn, then the associated eigenmodes are

Tn;kðrÞ cosðnuÞ and Tn;kðrÞ sinðnuÞ.

Proof of Lemma 1 The well posedness of the

function Tn;k definition is obtained by induction on

the intervals ½rj�1; rj�. Assume that Tn;k is given on

½rj�1; rj� for some j� 1. On ½rj; rjþ1� the ODE (5) is

regular and has a space of solution of dimension two,

therefore Tn;k is uniquely determined by the two initial

conditions (6).

Now on ½0; r1�: the ODE (5) is singular at r ¼ 0. The

Frobenius method (see e.g. [22]), with the assumption

that v(r) is analytic on ½0; r1�, states that the space of

solutions is generated by two functions whose behav-

ior near r ¼ 0 can be characterized:

• for n[ 0, one solution is OðrnÞ at the origin and

the second is Oðr�nÞ,
• for n ¼ 0, one solution is O(1) at the origin and the

second is OðlogðrÞÞ,

Therefore condition (7) ensures existence and unique-

ness for Tn;k.

Let H be an eigenmode for k 2 K. On each sub-

domain Xj, Eq. (4) can be rewritten as

DH ¼ 1

kj
kvjðrÞH� k2H
� �

:

Using the assumption that vjðrÞ is analytic on ½rj�1; rj�,
elliptic regularity properties imply that H 2 C1ðXjÞ.



Moreover, since H 2 H1ðXÞ and krH 2 H div ðXÞ, it

follows that H and krH � n are continuous on each

interface between Xj and Xjþ1. We consider the

Fourier series expansion for H

H ¼
X

n2Z
hnðrÞe�inu:

Since H 2 C1ðXjÞwe can differentiate under the sum

to obtain

DH ¼
X

n2Z
Dn hnðrÞð Þe�inu:

and so Eq. (4) ensures that each Fourier mode hnðrÞ
satisfies the ODEs (5). It also satisfies the transmission

conditions (6) because of the continuity of H and of

krH � n at each interface. We already studied the

behavior of the solution of (4) at the origin. Among the

two possible behaviors characterized by the Frobenius

method, H 2 H1ðXÞ and rH 2 L2ðXÞ ensure that

hnðrÞ ¼ OðrjnjÞ. As a result we have hnðrÞ ¼
ajnjTjnj;kðrÞ.

Finally, H being a real function, we can recombine

the Fourier modes to get,

H ¼
X

n� 0

bjnjTn;kðrÞ cosðnuÞ þ
X

n[ 0

cjnjTn;kðrÞ sinðnuÞ:

We also proved that each term Tn;kðrÞ cosðnuÞ or

Tn;kðrÞ sinðnuÞ itself is an eigenmode for k which

obviously are linearly independent. But each eigen-

value k 2 K being of finite multiplicity, the sums

above are finite. h

3.2 Closure functions

Assuming the following decomposition:

Tn;kðrÞ ¼
X

p2N
tn;pðrÞkp; ð10Þ

and formally injecting this expansion into problem (5)

provides recursive relations on tn;pðrÞ,

kjDntn;p þ kjtn;p�2 ¼ vðrÞtn;p�1:

which allows an explicit analytic computation of the

functions tn;pðrÞ. We prove in Sect. 3.3 that such a

decomposition exists. The functions tn;p are called the

closure functions. They are precisely defined in

Sect. 3.2.1 and their construction with the help of

closure problems is given in Sect. 3.2.2.

A consequence is that the spectrum in (8) and (9)

are given by the zeros of the following analytical series

K ¼
[

n2N
Kn; Kn ¼ k 2 C;

X

p2N
cn;pk

p ¼ 0

( )

;

ð11Þ

where the coefficients cn;p are given by cn;p ¼ tn;pðRÞ
in the Dirichlet case or by cn;p ¼ d

dr
tn;pðRÞ in the

Neumann case. In practice:

1. By truncating the series in Eq. (11) at order M, we

can compute approximate eigenvalues by search-

ing the zeros of the polynomial in k
PM

p¼0 cn;pk
p ¼ 0.

2. If �k is an approximate eigenvalue, the correspond-

ing approximate eigenmode is
PM

p¼0 tn;pðrÞ�k
p.

For more simplicity we fix in the sequel the value of

n 2 N and denote tn;p ¼ tp and Tn;k ¼ Tk.

3.2.1 Definition

We consider the ODEs, for j ¼ 1. . .m,

kjDntp þ kjtp�2 ¼ vðrÞtp�1 on ðrj�1; rjÞ; ð12Þ

together with the transmission conditions for

j ¼ 1. . .m� 1,

tpðrþj Þ ¼ tpðr�j Þ; kj
d

dr
tpðrþj Þ ¼ kjþ1

d

dr
tpðr�j Þ;

ð13Þ

and the normalization condition at the origin,

lim
r!0

tpðrÞ
rn
¼ 0: ð14Þ

Lemma 2 Setting t�1 ¼ 0 and t0 ¼ rn, then the

closure functions ðtpðrÞÞp� 1 satisfying (12)–(14) for

p� 1 are uniquely defined.

The proof is set-up by construction in Sect. 3.2.2.



3.2.2 Construction

We assume that for some p� 1, tp�2ðrÞ and tp�1ðrÞ are

known. We hereby derive tpðrÞ. Let us first introduce

the operators Fj for j ¼ 1; . . .m, defined for a function f

Fj½f �ðrÞ :¼ rn
Z r

rj�1

1

x2nþ1

Z x

rj�1

ynþ1f ðyÞ dydx; ð15Þ

which is the inverse of operator Dn. We denote

w1ðrÞ ¼ rn and w2ðrÞ ¼ r�n if n[ 0 or w2ðrÞ ¼ lnðrÞ
if n ¼ 0, that are the basis solution of Dnf ¼ 0. We

consider the right hand side fp�1

fp�1 :¼ v

k
tp�1 � tp�2: ð16Þ

Then on each compartment ðrj�1; rjÞ, tpðrÞ is solution

of (12) and therefore reads,

tpðrÞ ¼ ajw1ðrÞ þ bjw2ðrÞ þ Fj½fp�1�ðrÞ:

We finally show how to compute the constants aj and

bj.
First compartment ½0; r1�Assume that tp�1 ¼ OðrnÞ

and fp�1 ¼ OðrnÞ at r = 0, which is true for p ¼ 1.

We get that F1½fp�1� ¼ Oðrnþ2Þ and the normaliza-

tion condition (13) sets a1 ¼ b1 ¼ 0. We then have,

tpðrÞ ¼ F1½fp�1�ðrÞ on ½0; r1�: ð17Þ

It follows that tp ¼ Oðrnþ2Þ ¼ OðrnÞ and fp ¼ OðrnÞ.
Further compartments ½rj; rjþ1�, j� 1 We assume

that tpðrÞ has been computed on the compartment

½rj�1; rj� and determine tpðrÞ on ½rj; rjþ1�, j� 1.

We clearly have Fjþ1½f �ðrjÞ ¼ 0 and d
dr
Fj½f �ðrjÞ ¼ 0.

Then Eq. (13) at rj reformulates as

ajw1ðrjÞ þ bjw2ðrjÞ ¼ tpðr�j Þ

aj
d

dr
w1ðrjÞ þ bj

d

dr
w2ðrjÞ ¼

kj

kjþ1

d

dr
tpðr�j Þ;

Tn;kðrÞ ¼
X

p2N
tn;pðrÞkp; on ½0;R�

d

dr
Tn;kðrÞ ¼

X

p2N

d

dr
tn;pðrÞkp; on ½rj�1; rj�; j¼ 1. . .m;

where the ðtn;pðrÞÞp2N are the closure functions

introduced in the previous section.

3.3.1 Proof of Theorem 1

We fix the value of n 2 N and simply denote tn;p ¼ tp
and Tn;k ¼ Tk.

Assume that the three functions TkðrÞ, d
dr
TkðrÞ and

DnTkðrÞ are analytic for r 2 ½rj�1; rj� and k 2 C. We

can write TkðrÞ ¼
P

p� 0 spðrÞk
p. The derivation the-

orem imply that d
dr
TkðrÞ ¼

P
p� 0

d
dr
spðrÞkp and that

DnTkðrÞ ¼
P

p� 0 DnspðrÞkp. Injecting this in (5)

shows the spðrÞ satisfy (5). Similarly the transmission

and normalization conditions (6)–(7) imply that the

spðrÞ satisfy (13)–(14). Uniqueness in Lemma 2 then

imply that spðrÞ ¼ tpðrÞ.
Let us then prove that TkðrÞ, d

dr
TkðrÞ and DnTkðrÞ

are analytic for r 2 ½rj�1; rj� and k 2 C for all

j ¼ 1. . .m. We proceed by induction.

Assume that this is true on ½rj�1; rj�. Then the initial

data k! TkðrjÞ and k! orTkðrjÞ are analytic. On

½rj; rjþ1�, Tk is the solution of the regular ODE (5) that

analytically depends on k, r and whose initial condi-

tions (6) at rj also analytically depend on k. Classical

results on ODEs (see e.g. [1, section 32.5]) state that

TkðrÞ analytically depends on k and r on ½rj; rjþ1�. This

is also true for DnTk since DnTk ¼ �k2Tk þ kv=kTk.
Finally this is also true for d

dr
Tk by integration.

It remains to prove the result for r 2 ½0; r1�. This is

harder because of the singularity at r ¼ 0. The

problem being local at r ¼ 0, we can assume r1� 1:

We formally introduce the series,

AkðrÞ ¼
X

p� 0

tpðrÞkp;

BkðrÞ ¼
X

p� 0

d

dr
tpðrÞkp;

CkðrÞ ¼
X

p� 0

DntpðrÞkp:

Let us denote F½f � ¼ F1½f � for F1½f � defined in (15).

We introduce FðiÞ ¼ F 
 . . . 
 F the ith iterate of

which equation has a unique solution since w1 and w2 
form a basis for the solutions of the homogeneous

equation Dnf ¼ 0.

3.3 Series expansion of the eigenmodes

Our main result is the following.

Theorem 1 The functions Tn;k satisfy,



F. Let us define si ¼ FðiÞ½t0� for t0ðrÞ ¼ rn the 0th

closure function. It is easy to compute si,

siðrÞ ¼ Kir
nþ2i; K�1

i ¼ 22ii!ðiþ 1Þ. . .ðiþ nÞ:
ð18Þ

We consider the constant M ¼ maxðkv=kk1; 1Þ� 1.

Lemma 3 If r1� 1, then on ½0; r1� we have,

jtpðrÞj � ap;
d

dr
tpðrÞ











� ap; jDntpðrÞj � ap:

with ap ¼ ð2MÞpKi�1 for p ¼ 2i or p ¼ 2iþ 1.

With definition (18) of the coefficients Ki, it is clear

that the series
P

p� 0 apk
p converges over C. The three

series AkðrÞ, BkðrÞ and CkðrÞ therefore are normally

converging for r 2 ½0; r1� and for k in any compact in

C. As a result the integration theorem implies that

Bk ¼ orAk and Ck ¼ DnAk. Relation (12) ensures that

Ak satisfies (5) whereas relation (14) together with

t0 ¼ rn ensures that Ak satisfies (7). Uniqueness in

Lemma 1 then implies that Ak ¼ Tk. This proves

Theorem 1 on [0, R] and ends this proof.

Proof of Lemma 3 We will systematically use that

r� 1, that Ki and siðrÞ in (18) are decreasing and that

the operator F satisfies,

h1� h2 ) F½h1� �F½h2�; jF½h�j �F½jhj�:

With definitions (16)–(17) we have the upper bound,

jtpj �F½jfp�1j� �MðF½jtp�1j þ F½jtp�2jÞ:

By recursion, we obtain an upper bound involving the

si ¼ FðiÞðt0Þ of the form

jtpj �
X

k

Mnksmk
:

The number of terms in the sum is less than 2p. Index

nk is smaller than p and Mnk �Mp. The minimal value

for mk is i if p ¼ 2i or iþ 1 if p ¼ 2iþ 1, so that

smk
� si or smk

� siþ1 respectively. Therefore,

jtpj �
ð2MÞpKir

nþ2i if p ¼ 2i

ð2MÞpKiþ1r
nþ2ðiþ1Þ if p ¼ 2iþ 1;

�

which upper bound ensures the first inequality in

Lemma 3.

From that last inequality it is easy to check that

jtpj þ jtp�1j � 2ð2MÞpKir
nþ2i if p ¼ 2i or p ¼ 2iþ 1.

For p ¼ 2i or p ¼ 2iþ 1 it follows that

fp ¼ jDntpþ1j �M jtpj þ jtp�1j
� �

�ð2MÞpþ1
Kir

nþ2i:

This gives the third inequality in Lemma 3.

By differentiating (17) we get,

d

dr
tpþ1ðrÞ ¼nrn�1

Z r

0

1

x2nþ1

Z x

0

ynþ1fpðyÞ dydx

þ 1

rn

Z r

0

ynþ1fpðyÞ dy

It follows that

d

dr
tpþ1ðrÞ











�ð2MÞ
pþ1

KiC;

with,

C ¼ nrn�1

Z r

0

1

x2nþ1

Z x

0

y2nþ2iþ1 dydx

þ 1

rn

Z r

0

y2nþ2iþ1 dy

� nrn�1

Z r

0

1

x2nþ1

Z x

0

y2n dydx

þ 1

rn

Z r

0

y2n dy ¼ nrn þ rnþ1

2nþ 1
� 1;

implying the second inequality in Lemma 3. h

3.4 Extension to planar configurations

We consider layered planar configurations as depicted

on Fig. 2. The transverse coordinate perpendicular to

the layers is denoted by x. The coordinate x is

homologous to the radial coordinate r in the cylindri-

cal case. The origin is set at the center so that

�R� x�R with 2R the total thickness of the

geometry.

Actually, the results that we obtained for concentric

cylindrical configurations are easier to establish in the

Fig. 2 Example of a planar configurations



case of layered planar configurations. This is because

the operator Dn :¼
�

d2

dx2 þ n2
�

associated with the y-

periodic decomposition

Hðx; yÞ ¼
X

n� 0

Tn;kðxÞ cosðn2pyÞ þ
X

n[ 0

Tn;kðxÞ sinðn2pyÞ;

k�i and T�i depend on the nature of the boundary

condition (Dirichlet or Neumann).

4.1.1 Dirichlet boundary condition

For the lateral Dirichlet boundary condition in Eq. (2),

the temperature solution are given in [2] for the

cylindrical case

Tðr; zÞ ¼ gðzÞ þ
X

i2ZH

aiciðzÞTiðrÞ ekiz;

with, denoting k the conductivity in the boundary

annular:

ai ¼
2pR

k2
i

k
dTi

dr
ðRÞ:

This adapts to the parallel planar configuration with

ai ¼
k

k2
i

� dTi

dr
ðRÞ þ dTi

dr
ð�RÞ

�

In both cylindrical and planar cases, the functions

ciðzÞekiz are given by the convolution between dg= dz

and the exponentially decaying modes

c�iðzÞ ¼
Z þ1

z

g0ðnÞe�k�indn

cþiðzÞ ¼ �
Z z

�1
g0ðnÞe�kþin dn;

ð19Þ

for the upstream modes and downstream modes

respectively.

4.1.2 Neumann boundary condition and non-

balanced case

Consider now a Neumann boundary conditions (2) in

the case where Q :¼
R
X vdx 6¼ 0, i.e. the total convec-

tive flux is not zero. Then from [2] the solution reads

Tðr; zÞ ¼ P

Q
GðzÞ þ

X

i2ZH

aiciðzÞTiðrÞ ekiz; ð20Þ

with GðzÞ ¼
R z

�1 gðnÞdn the primitive of the heat

source g(z) and P the perimeter of the external

cylinder. Note that the temperature indeed is defined

up to an additive constant that has been fixed by setting

T�1 ¼ 0 here.

For the cylindrical configuration, we choose a

Poiseuille velocity profile vðrÞ ¼ Peð1� ðr=r0Þ2Þ,

is no more singular in Cartesian coordinates. Hence, 
the technical issues associated with the proof of 
analyticity in the variable k for the functions Tk, 
dTk= dr and DnTk are no longer present in this case. 
Furthermore, each step of the proofs provided in Sects. 
3.1 and 3.2 directly apply to the planar case, so that 
Theorem 1 also holds.

4 Examples of applications

In this section we develop various examples of 
solutions so as to illustrate the versatility and useful-

ness of the previously presented theoretical results. In 
Sect. 4.1 we first give explicit general solutions 
adapted for two families of geometries, i.e planar or 
cylindrical, for general boundary conditions. We 
pursue towards illustrating interesting and relevant 
solutions considering two idealized but non trivial 
configurations in the subsequent sections. In Sect. 4.2 
we showcase how a localized heat source can lead to a 
‘hot spot’ of temperature in its neighborhood, and 
illustrate how our mesh-less analytic method can 
effectively capture the temperature peak. A second 
example is provided in Sect. 4.3 where we examine a 
double-pass configuration in the planar framework for 
which, again, a localized heat source is imposed 
nearby the origin.

4.1 Explicit families of solutions

As in Eq. (2), we will consider symmetric boundary 
conditions (only depending on z). Thus we will 
consider the spectrum K0 in definitions (8)–(9) for 

n=0. In the Dirichlet case K0 ¼ k 2 C; T0;kðRÞ ¼ 0
� �  

and in the Neumann case K0 ¼ 
�
k 2 C; dT0;k=

drðRÞ ¼  0g. The spectrum is computed with the 
closure functions as in Eq. (11). It decomposes as in
Eq. (3): K0 ¼ fkþi; k�i; i 2 NHg with kþi\0 the 
upstream modes and k�i [ 0 the downstream modes. 
We will simply denote T�i ¼ Tk�i;0. Remember that



where Pe is the Péclet number that quantifies the ratio

between convection and diffusion (here based on the

maximal velocity in the tube). We have P=Q ¼
4R=ðPer2

0Þ and

ai ¼
2pR
ki

TiðRÞ: ð21Þ

Whereas, for parallel planar configurations:

ai ¼
1

ki

�
TiðRÞ þ Tið�RÞ

�
: ð22Þ

In both cases, the functions ciðzÞekiz are given by the

convolution between the imposed flux at the boundary

and the exponentially decaying modes

c�iðzÞ ¼
Z þ1

z

gðnÞe�k�in; cþiðzÞ ¼ �
Z z

�1
gðnÞe�kþin dn;

ð23Þ

for the upstream modes and downstream modes

respectively.

4.1.3 Neumann boundary condition and balanced

case

Consider now a Neumann boundary conditions (2) in

the case where the total convective flux cancels out:

Q :¼
R
X vdx ¼ 0. This is the case of a balanced

exchanger. In this case, the solution displays a distinct

form (see [2]) involving the (adiabatic) kernel T0

solution of

div ðkrT0Þ ¼ v ; rT0 � njR ¼ 0: ð24Þ

In the Sect. 4.3 we will consider an example of such a

configuration for which we will give an explicit

solution of the kernel T0. In general form, the complete

solution associated with balanced case Q ¼ 0, reads

Tðr; zÞ ¼ aGðzÞ þ GðzÞðaT0 þ bÞ þ
X

i2ZH

aiciðzÞTiðrÞ ekiz;

ð25Þ

with GðzÞ ¼
R z

�1 GðnÞdn, the second primitive of the

heat source g(z), ai and ciðzÞ again given by (20) and

(23) and where a and b are two constants character-

izing the heat exchange with values detailed below.

Note that for this configuration the temperature field is

defined up to C1ðzþ T0Þ þ C2, see details in [2].

In cylindrical configuration the parameters a and

b are given by

a ¼ R
R R

0
ðvT0 � kÞr dr

; b ¼ a2

R

Z R

0

ð2k � vT0ÞT0r dr þ a T0ðRÞ

ð26Þ

whereas for parallel planar configuration the param-

eters a and b read

a ¼ 2
R R

0
ðvT0 � kÞ dr

;

b ¼ a2

2

Z R

�R
ð2k � vT0ÞT0 dr þ aðT0ð�RÞ þ T0ðRÞÞ=2:

ð27Þ

4.2 Locally heated pipe and non-balanced case

Q 6¼ 0

We illustrate the use of explicit computation of the

eigenmode decomposition, through the recursive

relations (12) and (13), in a simple and classical

configuration: sometimes referred to as ‘generalized

Graetz’ configuration. Two concentric cylinders are

thus considered. A central one, for which r 2 ½0; r0�
and whereby the fluid convects the temperature, and

an external one, r 2 ½r0;R� where temperature con-

duction occurs. The dimensionless axi-symmetric

longitudinal velocity v(r) inside the inner cylinder is

chosen such as vðrÞ ¼ Peð1� ðr=r0Þ2Þ, where Pe is

the Péclet number which quantifies the ratio between

convection and diffusion. The domain dimensions are

r0 ¼ 1 and R ¼ 2. The conductivity is set to k ¼ 1.

The solution is defined up to an additive constant that

is fixed by setting T�1 ¼ 0. A Neumann boundary

condition krT ¼ gðzÞ is set. The applied boundary

condition is chosen so as to present a localized (and

regular) heat flux nearby the origin, with z0 ¼ 1=2

here:

gðzÞ ¼ 1� cosð2pðz� z0ÞÞÞ
for z 2 ½z0 � 1=2; z0 þ 1=2�;

ð28Þ

and gðzÞ ¼ 0 otherwise. With these conditions, a

simple balance on the domain allows to compute Tþ1:

Tþ1 ¼
2pR

Rþ1
�1 gðzÞ dz

2p
R r0

0
vðrÞr dr

¼ 4R

Pe r0

Z 1

0

gðzÞ dz;

so that Tþ1 ¼ 8=Pe here. Using Neumann boundary

condition (28) and Eq. (20) one is able to provide a

mesh-less explicit analytic solution for the



temperature, illustrated in Fig. 3 for various values of

Pe varying between 100 to 0.1 so as to show-case the

drastic effect of convection on the temperature

profiles. Figure 3a exemplifies that, when convection

dominates in the center line r ¼ 0, the effect of the

heat source nearby the origin is weak. The local

temperature is almost zero at r ¼ 0 for z 2 ½�1; 0�,
since the prescribed temperature at z! �1 is zero.

Nevertheless, a slight tilt of the center line temperature

profile is noticeable as z[ 0 so that it barely reaches

the non-zero asymptotic downstream constant tem-

perature Tþ1 at z ¼ 10. On the contrary to the center

line profile, the wall profile at r ¼ R displays a strong

deflection with a maximum located at the heat source

maximum z ¼ 1=2, and both upstream and

downstream decay from this maximum. The typical

downstream decay length is related to the convection

ability to transport the heat flux downstream. Hence

the larger the Péclet, the longer the downstream decay

length. The upstream decay length, on the contrary

both depends on the solid conduction and the wall

radius. In the case of small solid walls thickness, some

asymptotic behavior have been documented [19]. The

other radially intermediate temperature profiles shown

in Fig. 3a display a medium behavior between the

center line and the wall profile. The closer to the outer

cylinder wall, the closer the temperature peak to the

wall profile. Figure 3b–d display the effect of decreas-

ing the convection on the temperature profile.

From one hand, these profiles display smoother and

smaller peaks at the heat source as convective effects

are weakened. On the other hand, the profiles are

increasingly non-symmetric at smaller Péclet num-

bers, with an increasing downstream temperature

Tþ1 ¼ 8=Pe.

4.3 Parallel configuration and balanced case

Q ¼ 0

Here we consider a parallel planar geometry in a

double-pass configuration for which the upper fluid is

re-injected into the lower one at one end as in [12]. An

exchanger with total thickness 2R is considered. A

fluid is flowing for jxj � x0 surrounded by solid walls

for x0� jxj �R. We consider the zero total flux for

which the upper fluid is convected along þ z direction

for x 2 ½0; x0�, and on the opposite one for

x 2 ½� x0; 0�. Within ½� x0; x0�, the velocity profile

reads

vðxÞ ¼ 6 rðxÞ Pe
jxj
x0

1� jxj
x0

� �
; ð29Þ

rðxÞ being the sign of x, with Péclet number Pe ¼
�vx0=D (built from the average velocity �v ¼

R x0

0
v dx=x0,

x0 the fluid channel half-gap and the diffusivity D). At

x ¼ �R, adiabatic conditions are prescribed, (i.e

rT � njR ¼ 0) for jzj[ 1=2 whereas the flux (28)

(with zo ¼ 0 here) is imposed for z 2 ½�1=2; 1=2�. In

this case the adiabatic kernel T0 solution of (24) is

given by: for jxj � x0

Temperature profiles inside a cylinder
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Fig. 3 Temperature profiles at various radial distances from

center r ¼ 0 to solid edge r ¼ R and for various Péclet numbers.

An identical scaling in z has been set to focus on the heated

region (dashed vertical lines). Away from the heated region, the

temperature exponentially goes to T�1 ¼ 0 when z! �1 and

to Tþ1 as z! þ1



T0ðxÞ ¼ �rðxÞPe
x

2x2
0

x3 � 2x2x0 þ 2x3
0

� �
� rðxÞPe

x2
0

2
;

ð30Þ

whereas for jxj � x0

T0ðxÞ ¼ �rðxÞPex2
0=2: ð31Þ

The two constants a and b defined in (27) read

a ¼ � 35

13Pe2x3
0 þ 35R

; b ¼ 0: ð32Þ

Figure 4 illustrates the temperature profiles along the

longitudinal direction z at various transverse heights x,

either in the center of the channel (x ¼ 0), at the

interface between the liquid and the solid (x ¼ x0) or at

the solid exterior edge (x ¼ R). One can observe that

the ‘‘hot-spot’’ temperature located very close at z ¼ 0

at the surface x ¼ R, is weakly affected by the increase

of the Péclet number except for small Péclet (where

one has to translate back the reference temperature

chosen at�1, so as to obtain true physical ‘‘hot-spot’’

temperature). Nevertheless, further-down inside the

solid the temperature rise is weakened by increasing

fluid convection, as expected. Also, convection drops

down the outlet temperature, as expected from heat-

flux balance argument.

5 Conclusion

This contribution has provided the mathematical

proof, as well as the effective algorithmic framework

for the computation of generalized Graetz mode

decomposition in cylindrical or parallel configura-

tions. We have shown that, in these special configu-

rations, the Graetz functions analyticity enables mesh-

less explicit computation of the steady-state temper-

ature even when boundary condition with source terms

are considered. The method has been illustrated in two

complementary cases (cylindrical/non balanced and

parallel/balanced) in order to showcase its various

aspects. Most of the presented computations have

required few minutes or less in a 8� 3:2 GHz Intel

processor running on a Linux station, with less than

5Go RAM.
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Appendix

Cylindrical heated pipe case Q 6¼ 0

The solution provided by (20) is

Tðr; zÞ ¼ 8

Pe
GðzÞ þ

X

i2ZH

aiciðzÞTiðrÞ ekiz; ð33Þ

Rewritting (28) as

gðzÞ ¼ HðzÞHð1� zÞ 1� cos 2p zþ 1

2

� �� �� �

with H(z) the Heaviside function, and using

(a)

(b)

(c)

(d)

Fig. 4 Temperature profile inside a parallel channel with

counter-current flow (29) along z. A heat source term (28) is

located within z 2 ½�1=2; 1=2� (dotted lines)



integration by parts leads to the primitive GðzÞ ¼
R z

�1 gðz0Þdz0 equals to

GðzÞ ¼ HðzÞHð1� zÞ z� 1

2p
sinð2p zþ 1

2

� �� �
:

The function ciðzÞ in (33) are given by (23), the

integration by part of which gives

cþiðzÞ ¼ gðzÞ e
�kiz

ki
þ Hð1� zÞ

k2
i þ 4p2

k
2p

sinð2pzÞ þ cosð2pzÞ
� �

:

The eigenfunctions Ti are provided by the k-analytical

decomposition (10) upon functions tpðrÞ such that

TiðrÞ ¼
XNp

p¼0

tpðrÞkpi ; ð34Þ

where each eigenvalue ki of the discrete spectrum sets

its eigenfunctions Ti from (34). Here, Neumann

adiabatic boundary condition at R ¼ 2, combined

with—truncated—decomposition (34) provide a—

hence finite—polynomial condition for ki whose zeros

are the approximated discrete spectrum. We hereby

provide the first three elements of both downstream

and upstream spectrum computed with finite trunca-

tion Np ¼ 20 in (34) and parameter Pe ¼ 1, with a

formal calculus Maple software: k1 ¼ 0:674240,

k2 ¼ 3:306258, k3 ¼ 4:936416, k�1 ¼ 0,

k�2 ¼ �1:027741, k�3 ¼ �2:35726. Function tpðrÞ,
p 2 f0; 5g are also hereby given by the following

piece-wise continuous analytic functions of r along the

fluid-solid domains r 2 ½0; 1� [ ½1; 2�

r 2 ½0; 1� t0 ¼ 1

r 2 ½1; 2� t0 ¼ 1

�

r 2 ½0; 1� t1 ¼ �
5

8
r4 þ 5=2 r2

r 2 ½1; 2� t1 ¼
15

8
þ 5

2
ln rð Þ

8
><

>:

r 2 ½0; 1� t2 ¼ �
1

4
r2 þ 25 r4

16
� 125 r6

144
þ 25 r8

256

r 2 ½1; 2� t2 ¼
1825

2304
� r2

4
þ 175 ln rð Þ

96

8
>><

>>:

r 2 ½0; 1� t3 ¼ �
5 r4

16
þ 25 r6

48
� 875 r8

2304
þ 445 r10

4608
� 125 r12

18432

r 2 ½1; 2� t3 ¼ �
4385

18432
þ 5 r2

32
þ 155 ln rð Þ

4608
� 5

8
r2 ln rð Þ

8
>><

>>:

r 2 ½0; 1� t4 ¼
r4

64
� 25 r6

192
þ 1325 r8

9216
� 839 r10

9216
þ 10975 r12

331776
� 3175 r14

602112
þ 625 r16

2359296

r 2 ½1; 2� t4 ¼ �
319528919

1040449536
þ 2375 r2

9216
� 847715 ln rð Þ

3096576
þ r4

64
� 175 r2 ln rð Þ

384

8
>><

>>:

r 2 ½0; 1� t5 ¼
5 r6

384
� 95 r8

3072
þ 575 r10

18432
� 3755 r12

221184
þ 51755 r14

8128512
� 779375 r16

520224768
þ 3201125 r18

18728091648
� 125 r20

18874368

r 2 ½1; 2� t5 ¼ �
2789680345

74912366592
þ 5005 r2

73728
� 9747175 ln rð Þ

231211008
� 15 r4

512
� 155 r2 ln rð Þ

18432
þ 5 r4 ln rð Þ

128

8
>><

>>:

ð35Þ



Finally, each parameter ai of (33) is given by (22)

using the closure function TiðR ¼ 2Þ and its corre-

sponding eigenvalue ki.

Parallel configuration and balanced case Q ¼ 0

The theoretical solution detailed in Sect. 4.1.3 is

hereby detailed. From (25) we recall the temperature

solution

Tðr; zÞ ¼ aGðzÞ þ gðzÞaT0 þ
X

i2ZH

aiciðzÞTiðrÞ ekiz;

ð36Þ

involving the constant a given in (32) and the function

g(z) given in (28). Rewritting (28) as

gðzÞ ¼ HðzÞHð1� zÞ 1� cos 2p zþ 1

2

� �� �� �
;

with H(z) the Heaviside function, and using integra-

tion by parts leads to a primitive GðzÞ ¼
R z

�1 gðz0Þdz0
equals to

GðzÞ ¼ HðzÞHð1� zÞ z� 1

2p
sin 2p zþ 1

2

� �� �� �
:

Again, the functions ciðzÞ are given by (23), the

integration by part of which gives

cþiðzÞ ¼ gðzÞ e
�kiz

ki
þ Hð1� zÞ

k2
i þ 4p2

k
2p

sin 2pzð Þ þ cosð2pzÞ
� �

The eigenfunctions Ti are provided by the k-analytical

decomposition (10) upon functions tpðrÞ such that

TiðrÞ ¼
XNp

p¼0

tpðrÞkpi ; ð37Þ

where each eigenvalue ki of the discrete spectrum sets

its eigenfunctions Ti from (37). Here again, Neumann

boundary condition at R ¼ �2, combined with—

truncated—decomposition (37) provide a polynomial

condition for ki the zeros of which are the approxi-

mated discrete spectrum. We hereby provide the five

first elements of this spectrum computed with finite

truncation Np ¼ 20 in (37) and parameter Pe ¼ 50,

computed with a formal calculus Maple software.

k1 ¼ �1:738793, k2 ¼ �1:738793, k3 ¼ �1:585275,

k4 ¼ �1:3093020, k5 ¼ �1:011529. Function tpðrÞ,
p 2 f0; 5g are also hereby given by the following

piece-wise continuous polynomial functions of r along

the various solid-fluid domains ½�2;�1� [ ½�1; 0�
[½0; 1� [ ½1; 2�. Starting with t0 ¼ 1 identically equal

to 1, we recursively compute the following (polyno-

mial) functions tpðrÞ

r 2 ½�2;�1� t1 ¼ 0

r 2 ½�1; 0� t1 ¼ 25 r � 1ð Þ 1þ rð Þ3

r 2 ½0; 1� t1 ¼ �25 r4 þ 50 r3 � 50 r � 25

r 2 ½1; 2� t1 ¼ �50

8
>>><

>>>:

ð38Þ

Parameter ai of (36) is given by (22) using closure

function TiðR ¼ 2Þ and its corresponding eigenvalue

ki.

r 2 ½�2;�1� t2 ¼ �
1

2
r þ 2ð Þ2

r 2 ½�1; 0� t2 ¼
1347

14
þ 2236 r

7
� r2

2
� 1250 r3 � 1875 r4 � 750 r5 þ 500 r6 þ 3750 r7

7
þ 1875 r8

14

r 2 ½0; 1� t2 ¼
1347

14
þ 2236 r

7
� r2

2
� 1250 r3 � 625 r4 þ 750 r5 þ 500 r6 � 3750 r7

7
þ 1875 r8

14

r 2 ½1; 2� t2 ¼ 1248� 13014 r

7
� r2

2

8
>>>>>>>>>><

>>>>>>>>>>:

ð39Þ
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and numerical analysis of counter-flow parallel convective

exchangers considering axial diffusion. Int J Heat Mass

Transf 107:154–167

6. Dorfman A, Renner Z (2009) Conjugate problems in con-

vective heat transfer. Math Probl Eng 2009:927350

7. Fedorov AG, Viskanta R (2000) Three-dimensional conju-

gate heat transfer in the microchannel heat sink for elec-

tronic packaging. Int J Heat Mass Transf 43(3):399–415

8. Fehrenbach J, De Gournay F, Pierre C, Plouraboué F (2012)
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