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Abstract 

The concept of quantitative performance has been used increasingly outside work 
management, its main field of origin, since the advent of the industrial era, pervading not just 
experimental psychology and many domains of science and engineering, but virtually all 
sectors of social life. Surprisingly, the key defining characteristic of performance measures 
seems to have systematically escaped notice: a performance is a numerical score subject to a 
deliberate extremization (i.e., minimization or maximization) effort exerted by a human agent 
against the resistance of a limit. Because of this characteristic performances must be 
recognized to constitute measures of a very special kind, where the numerical is marked 
axiologically. The paper contrasts the extremized scores of performance measurement with 
the optimized measures of feedback-controlled, regulated systems. In performance 
measurement the best numerical values are extrema, rather than optima, and the function that 
links the axiological value to the numerical value is strictly convex, rather than strictly 
concave.  

One-dimensional performance measurement is analyzed in the extremely simple case 
of spirometry testing, where forced vital capacity, a measure of respiratory performance, is 
shown to be determined by the interplay of two variables, neither of which can be directly 
measured: the maximization effort, which varies haphazardly from trial to trial, and the 
patient’s total lungs capacity, a personal upper bound, whose inductive estimation is the goal 
of spirometry testing. The paper shows that the magnitude of the estimation error decreases 
linearly with the magnitude of the patient’s effort, explaining why respirologists so strongly 
urge their patients to blow as hard as they can into the spirometer. 

The paper then turns to two-dimensional performance, analyzing distributional data 
from a psychology experiment on speeded aimed-movement. The variation of the 
speed/accuracy balance is shown to entail systematic changes in the markedly asymmetrical 
shapes of movement time and error distributions: The stronger the directional compression 
effect observable on one performance measure, the weaker this effect on the other.  

These observations are hard to reconcile with the traditional view that performance 
measures are random variables and raise doubts on the suitability of the classic descriptive 
tools of statistics, whether parametric or nonparametric, when it comes to the decidedly 
special case of performance data. One possible direction for a more appropriate statistical 
approach to performance data is tentatively outlined.  
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1. Quantitative Performance :  A Stowaway Concept  

This paper is about quantitative performances, whose measurement is widespread not just in 

experimental psychology and many other fields of academic research, but also in virtually all 

sectors of social life. Despite a high frequency of occurrence, in general the concept is used 

more or less thoughtlessly with its meaning taken for granted. We start with a definition 

making explicit one defining characteristic of performances that seems to have escaped so far 

the attention of both practitioners and theorists of performance measurement. While the word 

“performance” is polysemous, as can be checked in any general dictionary, here we focus on 

the quantitative sense of the word, namely, performance as a numerical score.  

Definition: A performance is a measure subject to a deliberate minimization or 

maximization effort exerted by a human agent against the resistance of a limit, a lower- or 

upper bound, respectively.  

Below we will recurrently use the neat example of track and fields athletics, where 

runners try their best to obtain as low time marks as possible while throwers and jumpers try 

their best to obtain as high length marks as possible. These marks, like the vast majority of 

performance scores, are numerical in essence, constituting genuine measures in the strict 

sense of classic measurement theory (Hölder, 1901; Michel, 2005). 

The demand that performers do their best to either minimize or maximize a certain 

numerical score is the hallmark of performance-testing situations. However, it should be 

noted from the outset that extreme deviations from medians are less likely in performance 

testing than anywhere else. The reason is because the performer’s effort is typically exerted 

against the resistance of a limit working as a global attractor and a local repeller, so that a 

performance score is quite unlikely to fall a long way away from that limit (Gori, Rioul, & 

Guiard, 2018; Gori & Rioul, 2019; Guiard, Olafsdottir, & Perrault, 2011; Guiard & Rioul, 

2015). For example, Usain Bolt’s record-breaking time mark of 9.58 s on the 100 meters is 

indeed an extremum (i.e., an empirically observed minimum), yet statistically speaking it is 

certainly not an extreme value. The numerical values expected in performance testing must 

tend to cluster against the personal limits of performers and so the best performances (sample 

minima in minimization tasks, sample maxima in maximization tasks) must be expected to 

fall rather close to the medians.1 Thus extreme value theory (e.g., Gumbel, 1935), all about 

                                                             
1 Unfortunately it is typically impossible to estimate median performance in the remarkably abundant though 
wildly trimmed data sets from athletics, which only include what they call “best“ marks. For example in the list 
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extreme deviations from medians, is essentially irrelevant to the problem of extremized 

performance. 

The role of the effort in performance testing can be understood using the analogy of 

Newton’s third law, which says that every force in mechanics encounters a reaction force of 

equal magnitude and of opposite direction. Absent the resistance opposing the minimizing or 

maximizing of a measure, attributable to the existence of a lower or upper bound located 

somewhere on the measurement continuum, it would make no sense to ask people to try their 

best to extremize the measure.  

The fact that performance testing demands an extremization effort on the part of the 

performer seems so obvious that more often than not it goes without saying. In athletics there 

is no need to recall jumpers or throwers that the greater the distance they will cover, the 

better. Nor is it useful to recall business people that the higher the profit they will make, the 

better. There are some counterexamples, however. One is spirometry testing, to which we will 

return shortly, which measures respiratory performances in the form of maximized air 

volumes or flows: testees are always explained that they must blow into the spirometer as 

hard as they possibly can. Likewise, it is common practice in psychology laboratories to 

instruct participants quite explicitly to perform the proposed experimental task as fast and as 

accurately as they can, that is, to minimize both a time measure and an error measure. Thus 

sometimes the consensus on both the requirement of an effort and its direction is explicitly 

recalled to the performer. More often than not, however, it remains entirely tacit and this is 

because in performance testing it is generally perfectly obvious to everyone whether the key 

measure should be minimized or maximized.  

The equivalence class covered by the above definition has an impressively large 

extension, cutting across most fields of science and engineering and most sectors of social 

life. For example, beside the time duration of an athletic run (to be minimized) or the length 

of an athletic jump (to be maximized), the equivalence class also includes response latencies 

and task-completion times which experimental psychologists ask their participants to 

minimize, the volume of air blown into a spirometer which respirologists ask their patients to 

maximize, the time spent at making an item in a factory chain which work managers ask 

workers to minimize, the amount of money earned with a market share which share owners 

                                                             
available on http://www.alltime-athletics.com/men.htm, a website that tabulates the 3,374 “bests” achieved 
since 2007 by no fewer than 360 sprinters, no time mark on the 100 meters exceeds the arbitrary value of 10.09 s 
(August 17, 2020).  

http://www.alltime-athletics.com/men.htm


6 
 

try to maximize, the temperature of super-conductivity and super-fluidity which solid-state 

physicists try to maximize, the number of Nobel prizes won by a university which managers 

of academic institutions want to maximize, etc. This long and rather motley list ignores 

innumerable social, engineering, and scientific fields where performance measurement is no 

less overwhelmingly present, such as games of all sorts, chemistry, pharmacology, 

administrative science, mathematics, algorithmics, or computer science.  

Surprisingly, despite its impressive frequency of use, the specific quantitative sense of 

the word performance to which attention is called here is manifestly overlooked by general 

dictionaries. More surprisingly yet, scientists who use the concept seem to be unaware of the 

fact that performances involve a maximization or minimization effort against a limit.2 Thus 

the concept looks somewhat like an intellectual stowaway. It sounds familiar, but because it 

lurks in the background it is not clearly understood and apparently its most salient 

characteristic escapes the scrutiny of the analytical mind.   

The concept of performance is of considerable import for experimental psychology. 

Since 1975 the American Psychological Association has been dedicating one section of its 

Journal of Experimental Psychology to the theme of Human Perception and Performance. 

One possible understanding of the term performance in this section title is that it refers to the 

motor side of human behavior—such as movement, language expression, action in general—

thus pointing to a domain of inquiry complementary to that of perception and cognition. But 

this cannot be the whole story, as experimental psychologists measure human performances in 

every conceivable sort of tasks including ones designed to cast light on the mechanisms of not 

just action, but also perception, cognition, and memory. For example, reviewing one full issue 

of JEP: HPP (N° 41(5)), this writer found that 23 of the 25 articles that compose the issue 

(i.e., 92%) report to have considered at least one measure of extremized performance (see 

Annex 1). 

                                                             
2 A Google Scholar search with the expression “concept of performance” was conducted to get a sense of the 
areas of Academia where the concept has been subject to reflective thought. The first 100 results were 
considered and classified. Seventeen references to arts studies (drama, music, verbal arts) and three references to 
linguistics had to be put aside, the term performance being taken in these fields in different senses (public 
entertainment and overt manifestation of linguistic competence, respectively). The remaining 80 studies were 
found to consider the sense of interest here. While only one minor item was found in the psychology field, the 
vast majority (66 of 80 = 83%) turned out to belong to the field of management (e.g., work management, 
business management, financial management, school management, administrative science). A cursory 
exploration of the listed publications suggested that they do refer to performances qua measures but apparently 
with no awareness of the fact that the measures in question are subject to extremization efforts (date of search: 
April 8, 2020; settings: any time, sort by relevance, all languages, patents not included, citations not included).  
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2. Genuine Measures 

Measurement is consubstantial with performance testing. Imagine that for some reason 

measurement were suddenly prohibited in track and field athletics. Everything that happens in 

stadiums would become pointless, and so would all institutions such as the International 

Association of Athletics Federations, whose role is to organize the competition and to 

officially record quantitative performances. But athletics is no exception: in their vast 

majority, performances are, strictly speaking, measures. To make this point clear, a quick 

reference to measurement theory is in order.  

According to classic measurement theory along the lines of Hölder (1901; see Michell 

& Ernst, 1996), measurement is just an instance of rational inquiry, one specifically aimed at 

discovering magnitudes on definite attributes of things (Michell, 2014). Specifically, 

measurement consists in procedures aimed to discover the quantitative relation linking a 

magnitude on a dimension of interest to a conventionally fixed unit of magnitude on that same 

dimension, and the quantitative relation to be discovered is no other than a real number 

(Michell, 2005).  

Unlike S.S. Stevens’s popular operationist theory, which holds that measurement is a 

(possibly arbitrary) operation just consisting in the “assignment of numerals to things or 

events according to rules” (Stevens, 1946 p. 667), and unlike Russell’s representationist 

theory (see Michell, 1997, 2005), which postulates that numbers and attributes of things exist 

in separate spheres of reality, hence forcing measurement to be defined as a mapping of the 

former to the latter, the classic theory holds that numbers are objective relational 

characteristics of the real world that measurers have to find out (Michell, 2005). This 

philosophically realist perspective on measurement, to which this writer subscribes whole 

heartedly, has brought to the forefront the empirical question whether of not attributes of 

things intrinsically possess quantitative structure, that is, whether or not measurement is at all 

possible. In this philosophical research stream, accordingly, considerable efforts have been 

made to try to spell out the necessary and sufficient conditions for measurement (Hölder, 

1901; Krantz, Luce, Suppes, & Tversky, 1971; Michell, 2014).  

Below we will not have to bother about the so-called performance measures whose 

measurability has been controversial, such as those which form the matter of psychophysics 

since Fechner (1860) and, more generally, of psychometrics, a recurrent target of Michell’s 

(2008) critical perspicacity. In fact only a negligible minority of the scores considered in the 
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sphere of performance measurement, whether scientific or else, actually raise a measurability 

concern. Not only is it the case that performance measurement nearly always rests on well-

defined, if not strictly standardized procedures, it nearly always addresses simple physical 

dimensions such as time durations, lengths, volumes, temperature, or discrete counts.  

 

3. Axiologically Colored Measures 

Measurement leaves no room for judgments of value such are good and bad, better and worse, 

best and worst. It only considers magnitudes, and so the comparison between two measures 

involves nothing beyond the symbols “=” or “<”, even though these symbols are often 

translated into ordinary language using various metaphors such as the altitude of numbers (a 

numerical value is often said to be said “higher” or ”lower”) or their size (a numerical value 

can be said to be “larger” or “smaller”). A number being just a magnitude, with no axiological 

connotation, it would make no sense, except for a numerologist, to ask whether 4 is preferable 

over 3. The statement that 4 > 3 leaves no room for any of the questions that constitute the 

subject matter of axiology, the philosophical field that inquires into the ‘goodness’ of things 

from a diversity of viewpoint such as ethics, esthetics, hedonics, and utility (e.g., Hart, 1971). 

Having acknowledged that the vast majority of performances are measures in strict 

parlance, we must now emphasize that performances are very special measures, in that they 

all have a manifest axiological coloration. In experimental psychology, for example, it is 

common to say that a performance score has “improved”, say with practice, or that it has 

“impaired” in such and such condition. Likewise the minimum value of a sample of response-

time measures is commonly called the “best” value. The same is true, in spirometry testing, of 

the maximum of a sample of measures of forced vital capacity recorded in a session: the 

maximum is often called the “best” value. These expressions have an unmistakable 

axiological coloration, which we must try to understand.  

At first sight the irruption of axiology in the domain of measurement, which needs to 

get rid of value judgments, is a puzzling characteristic of the subclass of measures we call 

performances. But on second thoughts there is no paradox. It is the direction in which the 

measure is expected to be extremized by the performer that adds an axiological connotation to 

the symbols “>” and “<”. If the measure is supposed to be minimized by performers (as, e.g., 

a run time, a response time, or an error rate), then the lower the numerical value, the better 

axiologically speaking; if, alternatively, the measure is supposed to be maximized by 
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performers (as, e.g., the number of correctly recalled items in a memory experiment, or the 

volume of expired air blown into the spirometer), then the higher the numerical value, the 

better. 

Although axiology, a domain of philosophical inquiry, is very much concerned with 

subjective value judgments (Hart, 1971), it is important to note that the sort of axiology that 

colors performances involves no subjectivity whatsoever. The common observation of an 

“improved” or “impaired” measure of performance reflects nothing but the implicit 

recognition that, the measure being pressurize by an effort whose direction is known, the 

observed difference is in the desirable direction or in the opposite direction. The statement 

that the shorter an RT measure, the better involves no subjective judgment—it is true by 

definition.  

 

4. Deliberately Biased Measures 

Performance measures must be recognized to differ in another fundamental respect from the 

sort of measures that have constituted the main focus of measurement theory. Measurement 

theory typically considers the case of a single agent, namely the measurer in the face of 

nature, and in the measurement process nature is assumed to remain passive. In contrast, the 

measurement of a performance always involves two agents in tight connivance with each 

other, namely, the measurer in charge of the measurement procedure and the performer in 

charge of the minimization or maximization pressure. 

To illustrate the contrast between an ordinary measure and a performance measure let 

us return to the case of athletics and compare two measures both taken on August 16, 2009 

during the World Athletics Championships in Berlin, during which sprinter Usain Bolt 

famously broke the world record on the 100 meters. One measure was the time mark of Bolt, 

9.58 second, the best ever recorded. But during the course of the all-important run wind speed 

was also discreetly measured,3 yielding an average speed of +0.9 m/s. Anemometry is an 

instance of measurement of the ordinary kind, where care is taken by the measurer to avoid 

influencing the measured magnitude. There is every reason to believe that wind speed would 

have been the same absent the measurement device, but this is not the case of Bolt, who for 

sure would have not run absent the timing device. In connivance with the measurers, Bolt’s 

                                                             
3 +2m/s is the official upper limit above which the performer will be considered to have benefited from 
significant wind assistance, precluding the registration of any record.  
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task was to struggle against the timing device to obtain as short a time mark as possible. What 

we face here—and in performance testing in general—is a striking departure from the 

principle that measurement aims to discover magnitudes without interfering with them. 

While athletic is all about the measurement of genuinely quantitative attributes of 

precisely defined human actions, the intriguing fact is that the agents subject to the 

measurement are officially supposed to try their best to bias the measure in the direction of 

lower or higher numerical values. The tested object being a human provided with such a 

considerable degree of control over the numerical result, how can a non-arbitrary measure 

obtain?  

One central thesis of this paper is that performance measures are determined by the 

interplay of two background quantities, neither of which can be measured. The performance 

obviously depends on the magnitude of the performer’s effort, which we must suppose to vary 

erratically from trial to trial; but that effort is not exerted in the void—it encounters the 

resistance of a lower or upper bound, characteristic of the performer, a personal constant 

subject to considerable between-individual variability.5 Thus any attempt to understand a 

performance must take into account three variables, not just (i) the performance measure 

proper, but also (ii) the intensity of his/her minimization or maximization effort; and (iii) the 

performer’s capacity of performance, his/her current limit. 

To progress in the understanding of the relation borne by these three variables, in 

Section 6 below we will turn to spirometry, a remarkably simple and enlightening instance of 

performance measurement.  

 

5. Extremization vs. Optimization 

The axiological value of things—i.e., their degree of ‘goodness’, to use the terminology of 

philosophers specializing in axiology, or valuation theory (e.g., Hart, 1971)—is definitely not 

measurable. Notice, however, that we are now considering the axiological value of numerical 

values. Perhaps the language of mathematical functions may help us describe the relation 

borne by the axiological and the numerical aspects of performance measures.  

                                                             
5 It is only at a relatively short time scale (e.g., during a testing session) that the capacity of a performer can be 
considered a constant. In the long run performance capacities improve with development, are affected by 
practice, doping, and health factors, and decline with aging.  
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Assuming that the axiological is dependent on the numerical, and letting f(x) denote 

the axiological value of a numerical value x, we can write 

(ଶݔ,ଵݔ)∀ ∈ ℝ × ℝ such that ݔଶ ≥  ,ଵݔ

either  ݂(ݔଵ) ≥  minimization contexts   (1)   (ଶݔ)݂

or ݂(ݔଵ) ≤  maximization contexts  (2)   .(ଶݔ)݂

In words, the function is decreasing in minimization contexts, where the lower the 

number, the better the performance; and it is increasing in maximization contexts, where the 

higher the number, the better the performance. Formulas 1 and 2 may be viewed as just 

formal definitions of what we call performance measures.  

One immediate consequence of these inequalities is that there always exists on the x 

axis one extreme valueknown as the ‘best’ value, sometimes as the ‘record’whose 

axiological value is unrivalled. For example respirologists, following the recommendations of 

the international standard of spirometry, discard all their measures of respiratory performance 

but the best, the session’s maximum (see Section 6). Likewise, the current value of the world 

record on the 100 meters enjoys a very special degree of popularity: All fans of athletics have 

memorized the record value (9.58 s) along with the name of the record holder (Bolt), but one 

can safely conjecture that few of them would be able, on request, to cite the second best time 

mark of all times (9.69 s, obtained in 2009 by US sprinter Tyson Gay), not to mention the 

third best, fourth best, etc., time marks.  

In fact we may take one more step and say that the function that relates the valuation 

and the numerical value of performances is convex.  

(ଶݔ,ଵݔ)∀ ∈ ℝ × ℝ such that ݔଶ ≥ ݀∀ ଵ andݔ > 0, we have 

either ݂(ݔଶ + ݀)− (ଶݔ)݂ ≤ ଵݔ)݂ + ݀) −  minimization contexts     (3)    ,(ଵݔ)݂

or ݂(ݔଶ + ݀)− (ଶݔ)݂ ≥ ଵݔ)݂ + ݀) −  maximization contexts    (4)    .(ଵݔ)݂

Returning to the example of athletics running, there is little doubt that the axiological 

value of the conventionally fixed time unit, namely the 100th of a second on the 100 meters, 

decreases monotonically upward on the time continuum. When someone is timed in 9.57 s, 

thus improving the current world’s record by just one unit, that will be a major international 

event with presumably considerable press coverage. But suppose now that tomorrow a US 

sprinter obtains a 9.68 s mark, thus improving by the same 0.01 s over the second best time 
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mark of all times, Tyson Gay’s record of 9.69 s, that will be a far less considerable event, 

even though that means braking the national US record. If Jimmy Vicaud, currently the holder 

of the French record (9.86 s), which ranks 109th in the list of all times performances, runs the 

100 meters in 9.85, the event will enjoy still less coverage.  

To help appreciate that the convexity of the relation linking the axiological to the 

numerical is a hallmark characteristic of performance measures, it is useful to consider 

another quite different family of measures, those subject to more or less automatic feedback 

correction in the service of some homeostasis process, for example the internal temperature of 

the human body, maintained roughly constant by a complex physiological machinery. In this 

case we observe the existence on the numerical continuum of an optimal region, a numerical 

interval most favorable to the organism’s health, located around 37°C.  

Notice in passing that the statement of optimality implies recourse to axiology: from a 

certain viewpoint (with regard to health in the chosen example) the numerical values falling in 

the optimal region are indeed best. And here again, just as is the case with performance 

measures, axiology has nothing to do with subjectivity: It is an objective fact that the larger 

the departure from the optimum, the more dangerous for the organism. But now comes the 

important difference: In this other family of measures the dependency of the axiological upon 

the numerical is concave. Continuing to conceptualize the axiological dimension of the 

measure as a function of its numerical value, we may write 

(ଶݔ,ଵݔ)∀ ∈ ℝ × ℝ such that ݔଶ ≥ ݀∀ ଵ andݔ > 0,  

ଶݔ)݂| + ݀)|− |(ଶݔ)݂| ≥ ଵݔ)݂| + ݀)|−  Regulation contexts  .|(ଵݔ)݂|

 (5) 

In words, the health impact of a given temperature variation increases monotonically 

in both directions away from the optimum. A given variation, of little consequence near the 

optimum, becomes more and more critical as the absolute value of the deviation increases.  
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Figure 1. Schematic shape of the axiological/numerical dependency in feedback-controlled 

measures (left) vs. performance measures (right).  

 

Formulas 1-5 are represented graphically in Figure 1.7 The figure helps understand in 

what essential way the extremized measures of performance testing contrast with the 

optimized measures of feedback-controlled systems. In both cases, regulation vs. 

extremization of a quantity, some processes concur to maximize the dependent variable y = 

f(x). There are two essential differences, however. In performance testing the axiological best 

is obtained at an extreme numerical value, either a minimum or a maximum, and the function 

is strictly convex, whereas in a feedback-controlled system the axiological best is reached at 

an optimal numerical value, and the function is strictly concave. 

Formulas 1-5 are not equations, they just express inequalities. Only an order relation is 

assumed, once in Formulas 1-2 and twice in Formula 3-5. These propositions state that an 

order can be identified amongst differences expressed non-quantitatively, without taking it for 

granted that the y variable, the axiological value of quantity x, has the quantitative structure 

needed to make it measurable (Michel, 2014). But one can contemplate one promising 

alternative approach (to be explored below, see Section 9 and especially Figure 10). On can 

                                                             
7 It is just for simplicity that the inverted U is drawn symmetrical, of course there is no reason to expect this 
relation to exhibit bilateral symmetry.  
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estimate the axiological value of a quantity by its impact on another quantity, provided that 

the latter can be plausibly considered an estimate of axiology.  

The analysis presented in this section implies a three-class taxonomy of measures of 

possible interest to measurement theory. One class is that of inert measures, the main focus of 

classic measurement theorists, which offer no room for any objective axiological 

considerationeven though one is always free to express subjective preferences. Unlike 

Class 1, Classes 2 and 3 both have something to do with axiology. In Class 2, we find 

regulated, or feedback-controlled measures, characterized by the existence of a concave 

axiological/numerical relation. And in Class 3 we find extremized measures, or performances, 

characterized by a convex axiological/numerical relation.  

To illustrate, we can see for example that the temperature of local atmospheric air falls 

in Class 1 (inert measures), whereas the internal temperature of the human body falls in Class 

2 (regulated measures) and the temperature of a superconductive or superfluid piece of 

material in Class 3 (extremized measures).  

 

6. The Interplay of Effort and Capacity: Lessons from Spirometry Testing 

Although not traditionally viewed as an instance of performance testing, spirometry meets our 

definition of performance testing with no reservation: what is being measured by the 

spirometer is a basic physical quantity, a volume (or a flow) of expired air, and that quantity is 

subject to a deliberate extremization (here maximization) effort on a part of a human agent. 

The test has been used for more than a century by medical practitioners to estimate the 

respiratory capacity of their patients, under the guidance of old international standards (Miller 

et al., 2005).  

There is no question that the spirometry test addresses a quantitative, measurable 

attribute. Having the dimension of length to the cube, the volume of a gas is an attribute that 

obviously satisfies Hölder’s (1901) axioms. Importantly for our present purposes, the test is 

one-dimensional, just as the time-minimization or distance-maximization tests of athletics, 

meaning that the test output is a single number. It should be borne in mind that many 

performance tests consider two dimensions simultaneously, raising the problem of the sharing 

and dilution of the effort between two measures that often trade with each other. Psychology 

(e.g., Norman & Bobrow, 1975) as well as work management studies (e.g., Hollagel, 2009) 
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have long been aware of the trade-off that links speed and accuracy in all sorts of performance 

tasks. The spirometry test is much simpler, confronting the patients with a single task, just 

maximizing a volume of air.  

Incidentally, an intriguing volumetric metaphor is detectable in the word ‘capacity’ 

often used in performance measurement contexts. The word conjures up the idea of a 

container of some typically fluid resource, the performer’s capacity being conceptualize pretty 

much like the inner volume of a container. In spirometry testing it happens to be the case that 

the capacity of performance literally denotes a volumespecifically the volume of air that 

could be contained in the lungs. In the context of spirometry it is particularly easy to view the 

capacity as an upper limit located somewhere on the measurement continuum, and to see that 

that limit works as a global attractor towards which the performer’s effort biases all measures 

and at the same time as a local repeller, since the closer to the capacity limit, the harder the 

resistance. 

Standard spirometry considers a whole variety of volumes and flows.8 For the present 

purposes, however, it will suffice to consider two volumes: forced vital capacity (FVC),9 “the 

volume of air delivered during an expiration made as forcefully and completely as possible 

starting from full inspiration” (Miller et al., 2005, p. 320), and total lungs capacity (TLC), the 

total volume of air that the patient’s lungs would physically contain if it were completely 

filled.  

Forced vital capacity (FVC) is the measure of the patient’s respiratory performance, a 

quantity that varies more or less erratically from maneuver to maneuver. FVC is what the 

spirometer measures. Total lungs capacity (TLC), in contrast, is an unknown. It is a patient-

specific anthropometric parameter that we must suppose constant at the time scale of the 

spirometry session. Obviously TLC represents the upper bound of the patient’s respiratory 

performance, characterizing his/her pulmonary capacity—put differently, his/her capacity of 

performance—in the test. To estimate that constant inductively from a (typically small) 

sample of FVC measures is precisely the goal of a spirometry test.  

                                                             
8 Besides FVC, a volume of dimension [L3], spirometry considers various flow measures [L3T-1] such as forced 
vital capacity in 1 second (FVC1) or peak expiratory flow (PEF). 
9 The traditional terminology of spirometry is slightly misleading. The expression “total lungs capacity” is quite 
appropriate to designate what must be called a capacity in both the metaphorical sense of a capability and the 
literal sense of an inner volume susceptible to be filled with a liquid or a gas. In contrast, the term “capacity” is 
rather unfortunate in the expression “forced vital capacity” (or, synonymously, “forced capacity”) because the 
latter quantity is a capacity in neither sense—actually it is a performance measure to be read on the spirometer 
and it varies haphazardly from maneuver to maneuver, depending on the magnitude of the testee’s effort.  
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Let us start by noting that the measured performance FVC depends on the capacity of 

performance TLC: 

         (1) 

with f denoting some increasing function: the higher the patient’s pulmonary capacity 

TLC, the higher the FVC performance to be expected from this patient in a maneuver. 

Being constant during a testing session, TLC cannot be the source of the haphazard 

variability that affects FVC performance across maneuvers. The source is the variable extent 

to which the patients fill and empty their lungs. Let E, for effort, denote the depth of this more 

or less random filling/emptying process. We may write 

          (2) 

where E specifies the proportion of TLC that enters the device during the maneuver. 

That proportion varies from 0% to 100%: 

    

In the absence of any effort (E = 0) we have FVC = 0. With a total engagement of the 

patient (E = 1) we would obtain FVC = TLC and it would be correct to say that the spirometer 

measures TLC. Unfortunately, however, the patient’s engagement is never total. An important 

relation linking FVC and TLC is the double inequality 

          (3) 

meaning that the performance measure FVC can only underestimate the patient’s 

capacity of performance TLC. Letting ε denote the error made by the practitioner who takes 

FVC as an estimate of TLC, we necessarily have  

        (4) 

The reason why the possibility of an overestimation must be excluded is simply 

because―cheating left apart10―the spirometer cannot receive a volume of air larger than that 

containable in the patient’s lungs; one cannot give more than one has. But one can give much 

                                                             
10 Some cases of extra breath have been reported (e.g., in the large scale spirometry survey of NHANES III, see 
https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx) but their incidence is negligible. Moreover, an extra-
breath incident is easy to detect for physicians as well as computer algorithms. 

https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx)


17 
 

less than one has, meaning that occasionally the underestimation error can be very large 

indeed.  

Upon each maneuver the patient must combine two consecutive efforts, an initial 

inspiration effort Ein immediately followed by an expiration effort Eex 

         (5) 

where all three quantities are percentages. Simply because the two components of the 

effort combine multiplicatively, alarmingly low values of E can obtain, leading by Equation 2 

to the possibility of very serious underestimations of TLC. For example, with Ein = 80% and 

Eex = 70% we obtain a rather low E = 56%, as indeed 70% of 80% of something is 56% of it. 

No surprise then that practitioners, who understandably want to make as small 

underestimation errors as they can in the determination of their patients’ TLC, so insistently 

urge them to try as hard as they can to maximize both Ein and Eex. 

Not only can we say that the underestimation error ε about the value of TLC in 

spirometry testing is entirely determined by the magnitude of the patient’s effort E, we can 

specify that dependence quantitatively. Taken together, Equations 2 and 4 tell us that the error 

ε made in estimating TLC from FVC is an affine function of E 

         (6) 

whose slope and intercept are both given by the constant TLC. The error ranges from ε 

= ‒TLC for E = 0 to ε = 0 for E = 1 (Figure 2).  

 

Figure 2. How the magnitude of the patient’s effort E determines the error ε 

committed by the practitioner in estimating the patient’s respiratory capacity TLC from the 

measured performance FVC. 

We easily understand why spirometry patients should blow as hard as they possibly 

can into the spirometer on every single maneuver of the session: the deeper the respiratory 
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effort E in the maneuver, the smaller the underestimation error ε made in that maneuver in 

estimating TLC. 

But the figure also provides a justification of the rather special way spirometry 

practitioners routinely handle their samples of FVC measures. International standards of 

spirometry (see Miller et al., 2005) have always asked practitioners to note down just the 

session’s highest value of FVC and to flatly discard all others. This recommendation is easy to 

understand as the empirical maximum of a distribution of maximized performance measures 

must be expected to converge fairly quickly to its upper bound, and the convergence rate 

should increase with the strength of the biasing effort .  

Notice, however, that such a recommendation is rather hard to reconcile with the 

standard principles of statistics. In the face of a measure that varies haphazardly from one 

observation to the next, standard statistics says that the measurer should take the whole 

sample into account and try, at the very least, to calculate a representative central-trend 

statistic (the mean, the median, or simply the mode of the sample). But notice that an 

extremum is, by definition, the least representative of all the measures of performance 

collected in a session. Thus the maximum value of FVC seems, at first sight, strikingly 

inadequate as a statistical location summary. The explanation is straightforward: the session’s 

maximum of FVC―the best measure, to use an axiologically-colored term―is the most valid 

estimate of TLC, that which minimizes the practitioners’ error in estimating the pulmonary 

capacity of their patients.  

By the same token we also understand why it is standard practice in spirometry to 

dispense with any dispersion statistic.11 Although a standard deviation (or an interquartile 

interval, or a min-max interval) computed on the collected sample of FVC measures might be 

useful to characterize the variability of the patient’s effort during the session, for the 

practitioner such a characterization would pointless. Contrary to a widespread belief, the goal 

of the test is not to record such performance quantities such as FVC, but rather to estimate the 

TLC parameter, the upper bound of respiratory performance, inductively from a sample of 

respiratory performance measures. 

                                                             
11 Some statisticians of spirometry recommend the computation of the difference between the best and the 
second-best measure of respiratory performance, and they interpret this statistic as an index of the ‘repeatability’ 
of the result (e.g., Enright, Beck, & Sherrill, 2004). This option will be critically discussed in Section 8 below.  
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If one overlooks that the gathered measures are, by construction, biased by a strong 

maximization effort, the goal of spirometry testing becomes unintelligible. In this regard a 

serious misunderstanding is manifest in this quote from recognized experts of medical 

statistics:  

“Let us suppose that the child has a “true” average value over all possible 

measurements, which is what we really want to know when we make a measurement. Repeated 

measurements on the same subject will vary around the true value because of measurement error. 

The standard deviation of repeated measurements on the same subject will enable us to measure 

the size of the measurement error” (Bland & Altman, 1996, p. 1654, emphasis added).  

Apparently the authors have thoughtlessly tacked the standard statistical view onto the 

case of spirometry. Indeed there is a measurement-error problem in spirometry as everywhere 

else, but that sort of error can only account for a negligible proportion of the observed 

variability, in comparison with the proportion attributable to the variability of the testee’s 

effort. 

This being acknowledged, Equation 6 looks pretty much like a truism in the specific 

context of spirometry. It is more or less obvious that FVC measure is critically dependent on 

the patient’s respiratory effort, that the respiratory effort can be defined as the ratio FVC/TLC 

(Equation 2), and that the goal of spirometry measurement is to estimate upper bounds, rather 

than averages. However, one justification for the above propositions is that they may possibly 

teach us a lesson of potential relevance to the study of human performance. Spirometry 

testing, in other words, may be considered an enlightening paradigm for the study of human 

performance in general.  

The test constitutes a remarkably simple instance of a performance test. It is strictly 

one-dimensional, meaning that the performer’s effort need not be shared and diluted. Second, 

the notion of capacity can be taken in the literal sense of an inner volume, making it 

particularly easy to see that the performance measure P is necessarily less than the capacity c, 

since the equality P = c requires an impossible E = 100%, and that the effort can be 

conceptualized simply as the proportion of the capacity that is actually converted into the 

performance.  

The example of spirometry helps to see that performance testing always involves a 

crucial trio of variables, the performance, the capacity and the effort. Only the performance is 

measurable, the capacity and the effort being unknowns of the situation. This is not to say that 

no information is available to the practitioners concerning the lungs capacity of their patients, 
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because a bodily morphology conveys a great deal of information. For example the 

respirologist may sensibly expect a capacity on the order of 6 liters in this tall and healthy 

young adult, and much less, perhaps 3 liters, in this short and skinny person—but no direct 

measurement of the capacity of performance is possible. This personal parameter must be 

estimated from a sample of performance measures. Likewise, much information is available 

to the observer of a maneuver on the magnitude of the effort made in that maneuver—some 

maneuvers will be discarded by the practitioner based on the judgment that the effort was 

evidently submaximal—but the test does not measure the effort either. 

 

7. Are Performance Measures Really Random Variables?   

We have just seen that the unpredictability of performance in spirometry is primarily due to 

the haphazard variation, from trial to trial, of the strength of the testee’s effort. The same 

process is presumably at work in all sorts of performance measurement situations. The 

question discussed in this section is whether or not a performance measure can be reasonably 

conceptualized as a random variable, as almost unanimously assumed.  

In empirical applications of probability theory random vs. deterministic variables are 

distinguished in an all-or-none fashion. Thus many authors who take probability theory 

seriously use an uppercase vs. lowercase symbol notation to conspicuously distinguish 

random variables from fixed quantities (e.g., Rioul, 2008, to cite a mathematician). So used to 

do mathematical psychologist Luce, who dedicated a whole introductory chapter of his 

treatise on Response Times (Luce, 1987) to a detailed primer on what probability theorists 

call a random variable, response times obviously constituting in Luce’s view a representative 

instance. 

It does not seem too risky to say that experimental psychology, a field that has 

developed, since the second half of the nineteenth century, a high degree of expertise in the 

study of human performance (e.g., Fechner, 1860; Donders, 1868; Ebbinghaus, 1880; 

Woodworth, 1899), has constantly conceptualized performance measures as random 

variables. Nevertheless, taking into consideration the strong and systematic efforts that bias 

this kind of measures in the upward or downward direction, there is reason to feel 

uncomfortable with the idea that performances are random.  
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Figure 3. The entropy of the Bernoulli experiment vs. p (redrawn after Shannon, 1948, Figure 7, 

p. 11). 

 

Figure 3 shows how in the coin toss, the classic illustration of the so-called Bernoulli 

experiment, a bias on the probabilities of the heads (p) and tails (q = 1   ̶ p) affects the 

uncertainty of the experiment, which we measure here using Shannon’s (1948) discrete 

entropy 

  

With a fair coin one faces total binary randomness with p = q = ½ and entropy at its 

maximum value H = log2 (2) = 1 bit. If we eliminate randomness altogether by means of some 

contrivance (e.g., an appropriate layout of magnets) ensuring that p = 1 and q = 0 or vice 

versa, the coin toss turns into a purely deterministic, zero-entropy experiment. Between these 

two extreme cases we have the case where p ≠ q, but with neither equal to zero. What if the 

coin is very strongly biased with, say, p = .95 and q = .05, meaning a very low level of 

uncertainty (H = 0.25 bit)? The system is still considered random. It is only at the limit where 

the entropy is exactly zero, with either p = 0 or p = 1, that it is considered deterministic.  

Let us suppose we toss the coin n times and calculate the entropy of the sequence of 

heads and tails. Let B = 2p  ̶ 1 denote the bias: we have p = 0 for B =   ̶1 (perfectly successful 

minimization effort), p = ½ for B = 0 (no effort whatsoever), and p = 1 for B = +1 (perfectly 

successful maximization effort). From the probability mass function of the binomial law we 

can compute the entropy of the Bernoulli process, a sequence of n independent Bernoulli 

experiments. Figure 4 shows the effect exerted on the entropy of the process by a gradual 

variation of the bias from B =  ̶ 1 to B = +1, for n = 1, 10, and 100 tosses. Interestingly, the 
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shape of the function converges, as n is increased, on the shape of an inverted U. With n = 

100, the function exhibits a large plateau surrounded by two abrupt cliffs.  

 

 

Figure 4. Effect of a probability bias on the entropy of a sequence of n coin tosses. 

 

 

Figure 5. Effect of a probability bias on the degree of randomness, computed as relative entropy, 

of the Bernoulli process. 

 

In Figure 5, the dependent variable is relative entropy, computed as Shannon’s discrete 

entropy scaled to its maximum reached at p = ½ or B = 0, taken to measure the degree of 

randomness of the system. The curves show that with B close to  ̶ 1 or +1, the system loses 

most of its randomness, and the greater n, the more true that observation. Common sense says 

that near the left and right edges of the plot the Bernoulli process looks much more like a 
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deterministic than a random process, but obviously some unequivocal criterion is needed. One 

such criterion is available in the shape of the probability mass function that can be calculated 

from the binomial law. Figure 6 show how a bias varied over its complete range from B =   ̶1 

up to B = +1 affects the first three central moments of the binomial distribution. 

While the unbiased binomial distribution is a discrete approximation of the normal 

law, as often illustrated with the Galton’s Quincunx, a moderate probability bias results in a 

shift of the distribution away from the central bin, with little change in the shape of the 

distribution. Even with a pretty pronounced bias like B =   ̶.9 or p = .05 (Figure 7A), the 

distribution is still bell shaped, retaining its characteristic three parts separated by two 

inflection points, namely, a central concave body surrounded by two convex tails.  

 

 

Figure 6. Effect of the probability bias on the arithmetic mean  = np, the standard deviation  = 

[np(1-p)]1/2 and the skew  = (1 ̶  2p)/ of the Bernoulli process with n = 100.  

 

However, the bias also affects the spread and the skew of the distribution, and these 

effects are highly nonlinear (see Figure 6), so that some pretty abrupt changes take place in 

the shape of the distribution as B approaches  ̶ 1 or +1. For example with B =   ̶0.95 (Figure 

7B), the lower tail has disappeared, with the histogram showing just one inflection point 

separating a concave body from an upper convex tail. And with B =  ̶ 0.99 (Figure 7C), no 

more inflection point is observable, the distribution having turned entirely convex.  
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Figure 7. The crushing of probability against the lower edge of a binomial frequency mass 

function as a downward bias gradually approaches   ̶ 1 in a Bernoulli process with n = 100.  

 

The changes shown in Figure 7 provide us with an objective criterion to distinguish 

two non-overlapping intervals along the continuous dimension of randomness (Table 1). 

While the system is absolutely random at the limit where B = 0 and absolutely deterministic at 

the other limits where B = ±1, in between it makes sense to call it quasi-random if the 

distribution still exhibits its two original inflection points, and alternatively quasi-

deterministic if it has lost at least one of its original inflection points.  

 

A 

B 

C 
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This unconventional treatment of the binomial law, concerned with the range of 

variation of B from the limit of total randomness to the limit of total determinism, brings to 

the forefront what we may call distributional edge effects, illustrated in Figure 7. A 

mathematically-inclined mind might object that continuous distributions have no edges and 

that the gradual compression effect of Figure 7 are just artifacts of our discrete treatment of 

distributions. Indeed, there is some degree of arbitrariness in the choice of bin size in the 

making of a histogram. It is true that at the limit, with n tending to +, meaning infinitely 

many and infinitely small bins, the distribution of an infinite population of measures will 

remain bell-shaped, no matter how strong the bias. Perhaps discrete modeling misses some 

important properties of the real world, but empirical distributions are always discrete, 

involving a finite number of bins. And discrete modeling has the merit of delivering an 

objective criterion allowing a four-level ordinal description of the degree of randomness that 

seems more realistic than the usual dichotomous description.  

Below we will take the risk of treating the above-described theoretical edge effects 

seriously. We will see that they actually help understand the way in which variations in the 

intensity of the effort modulate the shape of discrete distributions of empirical performance 

measures (Section 7). To anticipate, the data will show that performance measures are more 

faithfully understood as quasi-deterministic in nature, than random. But before that, we must 

briefly consider the problem raised by two-dimensional performance, which complicates the 

matter. 

 

8. Effort and Capacity in Two-Dimensional Speed/Accuracy Performance 

In performance testing the performance is very commonly measured simultaneously in two 

dimensions between which the performers must share their efforttypically speed and 

Bias Probability
Number of 

inflection points
Random B  = 0 p  = q  = 1/2 2

Quasi-random 0  < |B | < 1 0 < p  < ½   or   ½  < p  < 1 2
Quasi-deterministic 0  < |B | < 1 1 < p  < ½   or   ½  < p  < 1 1 or 0

Deterministic B  = ±1   p  = 0   or   p  = 1 0

Table 1. Degree of Randomness of the Bernoulli Process
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accuracy. For example many psychology experiments ask the participants to minimize their 

response time (RT), the latency of their response to some stimulus, while making as few errors 

as possible. Such experiments, like many situations of real life, confront the participants with 

the necessity of a speed/accuracy compromise. This section will put forward a tentative 

explanation of why a distribution of time performance is likely to look quasi-random, rather 

than quasi-deterministic. Two necessary conditions must be satisfied for the appearance of a 

quasi-deterministic distribution: (i) The performance measure must be lower-bounded, which 

happens to be the case with a movement time (MT) but not with an RT, and (ii) the time-

minimization effort must be strong enough, and hence the concurrent error minimization 

effort weak enough.  

Beside response time, by far the most common speed measure in psychology (see 

Luce, 1987; see also Annex 1), an alternative measure is task-completion time (TCT). The 

measurement of TCT appears in particular in studies of speeded aimed movement 

(Woodworth, 1899; Fitts, 1954), where the action required of the participants is typically an 

elementary movement of the hand. Provided with a pointing device, the participants are to 

repeatedly reach a target as fast and as accurately as they can. Here the two dependent 

variables are movement time (MT)—the time elapsed from the start to the cessation of 

motion—and some measure of endpoint error. Both constitute numerical performance scores 

that the participants are asked to try their best to minimize. 

In the analysis to follow we will consider the time and the error measures in parallel. 

More often than not experimental participants are urged to perform in every single 

experimental condition with low enough error rates that they can be considered negligible. 

Such a tactic aims to simplify the analysis of the data by forcing inherently two-dimensional 

tasks into a one-dimensional mold. Prominent advocates of this classic approach are S. 

Sternberg (1966) in the RT field and Fitts (1954) in the aimed-movement field. Unfortunately, 

however, the tactic involves quite some wishful thinking. It is easy to check in virtually every 

data set (e.g., in Fitts’s, 1954, own data) that in actual practice it is almost impossible to 

obtain a constantly negligible error measure: irrespective of instructions, the error measure is 

almost always found to correlate negatively with the time measure. Moreover, due to the 

highly nonlinear shape of the time vs. error trade-off, the closer to zero the average level of 

error, the larger the perturbation caused on the time measure, be it RT or MT, by an arbitrarily 

small variation of the error, as eloquently explained by Pachella (1973), Wickelgren (1977), 

and Luce (1986). 
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Rather than an undesirable technical complication, the speed/accuracy trade-off is a 

phenomenon we want to confront here. Specifically, we want to understand the interplay of 

the performance capacity and the extremization effort as determinants of the measured 

performance, and we will see that the two-dimensional context is in fact favorable to this 

inquiry. 

The speeded aimed-movement paradigm introduced by Fitts (1954) is similar to the 

more widespread RT paradigm in the sense that it involves both a time measure and an 

accuracy or error measure, but in one regard it is much more suitable to our purpose. The 

precious advantage of the MT measure over the RT measure is that it is constrained by a 

strictly positive lower bound. Obviously, there is no such constraint in a latency measure, 

which may take arbitrarily low values and even occasionally turn negative (‘absolute’ 

anticipation) if the level of event or time uncertainty is low enough. MT measures the duration 

of an episode of overt motion. Unlike an RT, an MT cannot be indefinitely reduced, however 

strong the performer’s minimization effort, simply because for a given value of prescribed 

movement amplitude the shorter the MT, the higher the demand in energy expenditure, and 

muscular power is limited. 

A comparison with athletic runs may again help. Perhaps Usain Bolt, whose personal 

record is 9.58 s, could have covered the 100 m in 9.50 s, but almost surely not in 9 s. Bolt’s 

performances have been constrained by a personal limit, a lower bound located in some 

region of the time-mark continuum. Let T0 denote this theoretical lower bound, an unknown, 

and Tmin Bolt’s record, a measured value. We can safely say that Tmin ≥ T0 > 0. Similarly we 

have seen that in spirometry the performance measure FVC is bounded on the upper side by 

the testee’s upper bound TLC, so that FVCmax ≤ TLC. The same is true in speeded aiming, 

where participants instructed to minimize MT as much as they can are constrained by their 

personal power limit, so that we necessarily have MTmin ≥ MT0 > 0.  

Turning to the other dimension of aimed-movement performance, the basic measure of 

aiming accuracy is the distance from the endpoint of the movement to the target point—or to 

target center if the target is visualized as a tolerance interval. As visible in the example of 

Figure 8B, a typical distribution of endpoint error is bell shaped, with little or no skew, and 
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with its mean close to zero—reflecting a negligible amount of systematic error, with 

undershoots about equally frequent as overshoots.12 

 

Figure 8. Distribution of endpoint error taken as an unsigned (A) vs. signed (B) length measure in 

a representative participant of Ferrand (1997) (see explanations in next section). 

 

It is important, however, to realize that the undershoot vs. overshoot distinction is 

irrelevant to the evaluation of performance accuracy in speeded aiming: what the participants 

are supposed to minimize in this sort of task is always an unsigned length, the distance 

separating the movement endpoint from the target. Thus the relevant data is an inherently 

asymmetric distribution, as in the example shown in Figure 8A. One might be tempted to 

view that distribution as a half-Gaussian obtainable by folding the Gaussian of Figure 8B over 

its mean, but this view would be mistaken. In no way is the considerable degree of asymmetry 

visible in Figure 8A an artifact of a Gaussian folding. The accuracy measure under 

consideration is a performance, meaning by definition a measure that is being pressurized by 

an extremization (here minimization) effort, and so asymmetry is a property that we in 

principle must have in our distribution. It is by construction, and not as the result of a 

transformation of the performance-irrelevant distribution of Figure 8B, that the distribution of 

Figure 8A exhibits no bilateral symmetry.  

                                                             
12 A systematic undershoot whose size increased monotonically with target width in a Fitts task was reported by 
Slifkin (2017), but this result is an artefact of atypical instructions. Slifkin asked his participants to hit the targets 
without asking them to aim at their centers—put differently, he allowed what we may call marginal aiming. 
Unsurprisingly then, his participants’ movements tended to stop closer to the inner than outer edge of the target. 
For the Fitts paradigm to work properly—i.e., to allow experimenters to control, via the manipulation of D and 
W, mean movement amplitude and endpoint spread, respectively—the participants should be instructed to 
continue to aim at target centers even in the face of very large targets. Although neither Fitts (1954) nor 
subsequent users of his paradigm have apparently realized this, it is useful to note that with marginal aiming 
allowed much confusion is likely to arise in the effects of the two independent variables D and W.  

B A 
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In fact Figure 8B, which represents in the usual way a distribution of errors in aimed 

movement tasks (e.g., Wobbrock, Cutrell, Harada, & MacKenzie, 2008), provides just another 

eloquent verification of the classic law of errors of Quételet and Galton, which has open the 

way to the central limit theorem of de Moivre, Laplace, and Gauss. The law of errors says that 

the larger the deviation, whether downward or upward, from the ‘true’ expected value, the 

lower the frequency of occurrence. But here we are concerned with a performance measure 

and the sign of the error is irrelevant. The quantity subject to the minimization effort is the 

absolute magnitude of the error. Thus Figure 8B is 50% redundant and it is Figure 8A that 

captures the empirical information needed to characterize the accuracy component of the 

movement performance. 

That there can be no left-right symmetry in the distribution of Figure 8A does not 

mean that that distribution must be ‘skewed’, skewness denoting a deviation from bilateral 

symmetry. Given that by definition a performance measure is biased by a deliberate effort, 

why should one take as one’s implicit reference the symmetrical limit—i.e., the case of total 

randomness with no biasing effort whatsoever (B = 0, hence p = q = ½ in the binomial 

model)? It seems more reasonable to take as one’s reference the opposite limit, that of total 

determinism (B = ±1 and p = 0 or 1). Taking that approach, we will not say that the 

distribution of Figure 8A is strongly skewed; rather we will say it is very different from the 

deterministic limit, exhibiting a relatively long tail on the right-hand side and a very 

conspicuous inflection point.  

In the context of Figure 8A the idea of symmetry is just incongruous. We know for 

sure that a deliberate effort—opposed by the resistance of a lower limit located at zero, an 

impassable limit since a distance cannot be negative—has pushed the error data downward. 

Thus, if a convex tail is possible on the upper side of the distribution, which offers free space 

for a gradual decline of frequencies, on the lower side of the distribution one must expect a 

more or less abrupt front, with the data more or less clustered against the lower bound 

(Guiard, Olafsdottir, & Perrault, 2011; Guiard & Rioul, 2015). The point being made here is 

that when it comes to the measurement of a performance, by definition pressurized by a 

strong effort bias, distributions are better understood as organized along a front-tail rather 

than left-right axis. The merit of such an understanding is to dispense with any implicit 

reference to the hypothesis of symmetry, of no relevance in the present context. 
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9. Distributional Analysis of Some Data from a Speeded Aimed Movement Experiment 

This section examines the shape of some empirical distributions of performance. Data from an 

old experiment on speeded aimed movement (Ferrand, 1997) is reanalyzed from the new 

perspective just outlined. Our main goal is to identify the necessary and sufficient conditions 

for a performance distribution to take the markedly asymmetrical shape shown in Figure 7C 

and by the same token to understand why performance distributions so often look random. 

Our strategy will be to visualize in parallel how the shapes of the distributions of MT and 

error are affected by the variation of the speed/accuracy balance.  

 

9.1. Experimental Task and Paradigm 

The data come from an experiment using the classic time-minimization paradigm of Fitts 

(1954; Fitts & Peterson, 1964). The target, which the participants are to reach as fast as they 

can using a screen cursor, is visualized as an interval of width W whose center is located at 

distance D from the start point of the movement. While the critical performance measure is 

movement time (MT), to be minimized, task instructions typically urge the participants to 

invariably make a very small (i.e., negligible) proportion of target misses, even with very 

small and very far targets.13 The paradigm assumes that if that condition is satisfied, meaning 

that movement accuracy is under control via the manipulation of D and W, then one will be in 

a position, at the stage of data processing, to entirely focus on MT while flatly ignoring error 

data.14  

The belief, widespread among users of the Fitts paradigm, that the difficulty of an 

aimed-movement task is captured by the so-called index of difficulty, which Fitts (1954) 

proposed to compute as ID = log2 (2D/W), has the serious drawback of overlooking half of the 

story. On the accuracy front it is true that the higher the ID, the more ‘difficult’ the task, but 

notice that on the speed front the opposite is true: namely, the lower the ID, the more difficult 

the task. Experienced Fitts’ law experimenters know that participants are often reluctant to 

                                                             
13 Today it is widely admitted that 4% errors is an ideal error rate in the Fitts paradigm, in keeping with the 
explicit recommendations of an ISO standard (Soukoreff & MacKenzie, 2004). However, as recently 
emphasized by Gori, Rioul, and Guiard  (2018), the rationale for this norm is lacking.  
14 The time-minimization paradigm of Fitts (1954) led him to the discovery of the empirical regularity known 
today as Fitts’ law, which says that MT varies as a linear function of an index of difficulty (ID) that combines D 
and W, namely, MT = k1 + k2 log2 (D/W +1), where k1 and k2 are empirically adjustable coefficients. The 
paradigm assumes, in fact optimistically (Guiard & Olafsdottir, 2011), that the accuracy dimension of the 
movement is under full experimental control via the manipulation of the ID.  
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perform the extremely rapid movements required of them in the conditions with so high a 

tolerance that the risk of a target miss is virtually zero. Such conditions actually demand a 

high amount of physical effort on the part of the performer, thus shifting the effort demand 

from the accuracy front to the speed front (Guiard & Ferrand, 1998). Because whenever 

difficulty decreases on one front, it increases on the other there is no reason to depart from the 

view that overall task difficulty—i.e., the magnitude of the total effort to be invested in the 

task—is constant across the variations of the ID. To manipulate the ID in the Fitts paradigm is 

in fact to manipulate the balance between two mutually incompatible minimization efforts.  

Ferrand (1997),15 whose data we will revisit in this section, used a simplified variant 

of the Fitts paradigm, where the experimenter manipulates W but not D, kept constant. This 

variant was recommended by this writer to preclude the spurious correlation of the ID with 

movement scale that corrupts the usual variant of the paradigm (Guiard, 2009; see also Gori, 

Rioul, Guiard, & Beaudouin-Lafon, 2018), and thus to avoid a factor confound that has 

introduced noise in many Fitts’ law experiments, including Fitts’s own (Guiard, 2019). The 

manipulation of the tolerance of a target whose center remains at the same location is 

essentially equivalent to instructions to adopt different speed/accuracy compromises: the 

difference is simply that task instructions are given visually in the former case and verbally in 

the latter.  

Ferrand (1997) used the reciprocal protocol (Fitts, 1954), in which the participants are 

to alternatively reach two targets of width W separated by a distance D. Beside some minor 

drawbacks (see Guiard, 1997), the reciprocal protocol has the advantage of delivering many 

measures per experiment. Unlike respirologists, who can record only three to five measures of 

respiratory performance from their patient (Miller et al., 2005), students of aimed movement 

who use the reciprocal protocol can gather in a single session hundreds of measures from each 

participant. Collected from six participants who completed each about 10,000 movements in 

four sessions, the Ferrand data seems quite suitable to a study of distribution shape.  

Ferrand used the traditional set of task instructions, asking his participants to perform 

the reciprocal movement as fast as possible under the constraint of a constantly small 

                                                             
15 Warm thanks are due to Thierry Ferrand for a considerable amount of help to unearth and reprocess anew the 
data he collected himself a quarter of century ago, during his PhD completed under the supervision of this author 
(Ferrand, 1997. Coopération Bimanuelle Intra- et Inter-Individuelle dans une Tâche de Pointage, unpublished 
doctoral dissertation, Université de la Méditerranée). Procedural details about this experiment can be found in a 
subsequent treatment of the same data published by Mottet, Guiard, Ferrand, and Bootsma (2001).  
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proportion of target misses. He manipulated W (4, 8, 16, 32, 64, and 128 LEDs)17 at a constant 

level of D (256 LEDs).  

 

9.2.  Apparatus, Procedure, and Data Processing  

The experimental apparatus consisted of a visual display and a pair of manipulandums.18 The 

display showed two contiguous vertical columns of 512 light-emitting diodes (LEDs). The left 

column of displayed four luminous dots forming the two targets of the reciprocal protocol, 

which could be moved up and down as a whole using the left manipulandum. The right 

column displayed a single luminous dot representing the pointer, whose position was 

controlled by the right manipulandum. The manipulandums were two identical carriages that 

could be moved back and forth along a linear course of 308 mm. For the pointer to cover the 

constant distance between the two target centers the movement had to cover an amplitude of 

154 mm.  

This apparatus allowed Ferrand (1997) to investigate a number of task variants with 

the aimed movement performed either with one hand or with two hands.19 Here we will 

indiscriminately pool together the various conditions of hand assignment, whose effects were 

very small and statistically independent of the effect of W. We will consider just one 

independent variable, W, interpreted as a manipulation of the balance between the speed and 

the accuracy efforts, and two dependent measures, MT and |E|.  

Reciprocal pointing in this setting taking the form of a one-dimensional oscillation, 

MT was measured as the horizontal peak-to-peak distance in the time profile of pointer 

displacement, using a sampling frequency of 50 Hz (20 ms period) and |E| was measured as 

the distance separating the pointer from target center at the reversal point of the oscillation.20  

The oscillatory form taken by the target-acquisition movement in the reciprocal 

protocol precludes the possibility of independence between successive measures, thus 

                                                             
17 The light-emitting diode (LED) serves here as the unit of measurement for pointing error. The LED measured 
2.34 mm and was seen from a distance of 2 m, thus corresponding to a visual angle of 0.07° and a displacement 
of 0.6 mm.  
18 For a detailed description, see Guiard (1993). 
19 The bimanual condition involved either the left and right hands of an individual participant or the two right 
hands of two different participants. For simplicity the present reanalysis ignores the performance of dyads, 
focusing on the data of individual performers, but it is interesting to note that essentially the same patterns of 
results obtained with dyads as with individuals (see Mottet, Guiard, Ferrand, & Bootsma, 2001).  
20 Instructions made it clear to participants that the extrema of pointer excursion in either direction would be 
treated as the endpoints of their movements.  
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violating one important criterion of the random variable according to probability theory21 

(e.g., Rioul, 2008). Luce (1986) has remarked that in response-time studies the existence of 

sequential effects, found to be strong and systematic in every single study that has 

investigated them (see, e.g., Kornblum, 1969), is very problematic for the applicability of the 

random model to such measures. In fact the case is still worse for time and error measures in 

the reciprocal Fitts protocol, which elicits a rhythmic sort of behavior. Neither the period nor 

the amplitude error of a sustained oscillation, best tackled with the concepts of nonlinear 

dynamic systems theory (Kelso, 1995; Kugler & Turvey, 2015), is likely to behave like a 

random variable. However, the assertion that each of these two quantities is subject to a 

deliberate minimization effort is immune to the objection.  

 

9.3.  Results 

This section presents an attempt to jointly understand the changes that take place, in parallel, 

in the shapes of empirical distribution of MT and of |E| in response to the manipulation of the 

balance of the performers’ effort in the face of two incompatible minimization demands. 

Bearing in mind that the lower bound of MT is a personal constant whose value differs from 

participant to participant, we will refrain from pooling the data from different participants and 

will exclusively consider within-individual distributions. We will resort sparingly to any 

statistical compression of empirical information, deliberately dispensing with the summaries 

of classic parametric statistic, if only because most of the distributions exhibit no symmetry. 

Below the data is visualized in three steps. We start with a raw representation of two-

dimensional performance, with all levels of tolerance pooled together (Figure 9). Then we 

visualize the two one-dimensional distributions side by side, with target tolerance shown as an 

independent variable (Figure 11). And finally we use box plots to obtain prudent non-

parametric descriptive summaries of the results (Figures 12-13).  

Figure 9 shows for each of the six participants of Ferrand’s experiment a raw scatter 

plot of |E| vs. MT. Note that this plot involves no statistical compression of empirical 

information whatsoever, each data point representing the duration and the error of one 

individual movement (i.e., one half-cycle of pointer oscillation). All the data is represented, 

with all six levels of W pooled together.  

                                                             
21 The so-called iid condition, meaning independent and identically distributed.  
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Figure 9. Raw two-dimensional distribution of performance. All conditions of target tolerance are pooled. 

Each data point corresponds to one individual movement, n denoting the total number of movements performed by 

the participant in the experiments, all visualized here.  

This elementary plot visualizes quite clearly the way in which the encounters of 

capacity and effort taking place simultaneously on the two fronts influenced each other. The 

global shape of the two-dimensional distribution is remarkably invariant across individuals. 

Consider first how the vertical distribution of data points changes from left to right: the longer 

the measure of MT, the more marked the clustering of the measures of |E| against their lower 

bound—zero by construction. Then consider how the horizontal distribution changes from 

bottom to top: the larger the |E|, the more marked the clustering of the MTs against their lower 

bound—whose values are unknown personal parameters but which we must suppose to rest 

either at the observed minima (which range from 60 ms24 to 140 ms in the sample of 

participants) or just below, as we learned for spirometry analysis (Section 4).  

Thus, the more pronounced the downward clustering of the performance measures on 

one axis, the less pronounced on the other axis. In other words, the stronger the minimization 

effort in one dimension, the weaker the minimization effort in the other dimension. 

                                                             
24 A 60-ms half-period of pointer oscillation corresponds to an instant frequency of over 8 Hz. That 
minimumthe experiment’s best or ‘record’ performance scorewas reached only three times by P3 in the 
condition of highest tolerance, but the data show that in that condition all participants except P2 and P5 were 
able to sustain a frequency of pointer oscillation of about 6 HZ (80 ms half-period) over episodes of a few 
seconds. 
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An interesting minor finding, with again high consistency across participants, is that 

the strength with which the data points gradually cluster against their lower bound is much 

less pronounced in the leftward than downward direction. In a speeded aimed-movement task 

it seems more costly for performers to reduce MT than |E| down to their respective lower 

bounds. Task conditions with lower indices of difficulty are decidedly not ‘easier’.  

A much more important point is made in Figure 10, which shows, in one arbitrarily 

chosen participant, how MT is affected by the variation of endpoint error expressed, for the 

sake of the argument, as a signed measure (i.e., not a performance measure, as emphatically 

explained in Section 8). Since MT can serve as a quantitative estimate of the time cost of error 

minimization, let us use it as an objective criterion for estimating quantitatively the 

axiological value of the error measure (see Section 5).  

 

 

 

Figure 10. Raw two-dimensional distribution of performance in participant P1, with now MT plotted on the 

vertical axis and the error expressed as a signed measure.  

 

The figure shows rather eloquently that the closer the measure to zero the higher the 

time cost. This empirical fact allows us to say that the closer the measure to zero, the higher 
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its axiological value—after all, were it not the case that the numerical value of zero is the best 

axiologically, we would wonder why this abscissa, where the temporal cost is so high, enjoys 

such a frequency of occurrence in the distribution.  

Notice that the time cost increases at an accelerated rate as the signed error approaches 

zero, whether from above or from below. The axiological/numerical relation for the signed 

error of Figure 10 is indeed double convex, combining the two convex relations of Figure 1. 

One could possibly say that an aimed-movement task requires a double error extremization, in 

the sense that performers have to maximize the abscissas of their undershoots (up to zero) and 

at the same time to minimize the abscissas of their overshoots (down to zero). Obviously, it is 

much simpler to say that they have to zero out the absolute value of their terminal errors, and 

this is a potent argument for switching once and for all to an absolute-value representation of 

performance accuracy. 

Figure 11 offers another visualization of the same data, showing distributions of MT 

and |E| side to side for one arbitrarily chosen participant. In this figure some compression of 

the empirical information has taken place, that required to make histograms, where slightly 

different measures are pooled in the same bins.  

Now the six conditions of tolerance are separated, with W increasing geometrically 

from top (4 LEDs) to bottom (128 LEDs). What changes from top to bottom in the figure is 

not task difficulty—to reiterate, task difficulty must be considered invariant in the Fitts 

paradigm—but the balance of the performer’s effort, forced to shift gradually from one 

extreme, pure accuracy effort, to the other extreme, pure speed effort. Having discarded the 

traditional misunderstanding about task difficulty, we are in a better position to see that the 

performance is two-dimensional in intermediate conditions of tolerance and essentially one-

dimensional in the two extreme conditions.  
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 Figure 11. Parallel effects on the shapes of distributions of MT and |E| of the variation of the 

speed/accuracy balance entailed by the manipulation of target tolerance at a constant level of movement 

amplitude. The result, shown in one arbitrarily chosen participant, is essentially the same in others.  
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In both columns of the figure the shape of the distributions change so dramatically 

across the conditions that it would make no sense to ask about the ‘true’ shapes of these 

distributions. What we need to understand is how the two distributions shapes change 

dynamically under the systematic variation of the speed/accuracy balance, recalling that each 

of these distributions is pressurized by a minimization effort directed against a lower bound 

and that the strength of the effort can increase on one front only at the expense of a decline of 

the effort on the other front. 

Let us start with the extreme condition with W = 4 LEDs (top), where the performer’s 

effort was almost totally dedicated to the quest for accuracy. The shape of the histogram of 

endpoint error |E| (top right panel) is reminiscent of the strongly biased binomial distribution 

of Figure 7C, with an abrupt, non-convex front on the lower-values side and a dramatically 

compressed convex tail on the higher-values side. The distribution exhibits no inflection 

point. Using the criterion of Table 1, the observed shape is characteristic of a quasi-

deterministic variable. How about MT (top left panel) in this maximum-accuracy condition? 

Not only it is, unsurprisingly, rather long (over 1 s) on average, it is distributed as a quasi-

random variable, exhibiting the shape of a nearly symmetrical bell with its three part 

separated by two inflection points. Thus we can see that when the task demands that the 

performer’s effort be entirely focused on accuracy, the error is very small and distributed as a 

quasi-deterministic variable, while the time measure is very long and, for lack of a substantial 

minimization effort, distributed pretty much like a random variable.  

In the other extreme condition with W = 128 LEDs (bottom), the picture is essentially 

the same, mutatis mutandis. Now it is the distribution of MT (bottom left panel) that is 

reminiscent of Figure 7C, showing a considerable amount of downward compression. In 

contrast the error distribution (bottom right panel) shows little compression with a distinct 

inflection point between a convex tail, located on the higher-values side, and a concave body. 

Now it is MT that has turned quasi-deterministic under the pressure of the speed effort while 

the error, neglected by the participant, has turned random.  

To see that the bottom condition required an essentially one-dimensional, pure speed 

effort one must realize how high the tolerance for movement error was with W = 128 LEDs: 

for a target miss to be recorded in that condition the endpoint error had to exceed ±64 LEDs—

i.e., one fourth of the required movement amplitude, 512 LEDs. In the particular participant of 

Figure 11 the spread of endpoint error resulted in 3% target misses, but that error rate was 1% 

or 2% in four of the other five participants—definitely less than the level of error explicitly 
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recommended by instructions (5%). Thus in the bottom condition the risk of a target miss was 

no longer a concern for the participants. Their main concern in that condition was to move as 

fast as possible, and accordingly to make as many target misses as possible, and that meant 

struggling with their personal speed limits.  

We now turn to intermediate levels of tolerance with W = 8, 16, 32, and 64 LEDs. 

Here the task was genuinely two-dimensional, requiring of the participants various mixtures 

of speed and accuracy efforts. On the speed front, as target tolerance is raised from top to 

bottom in the figure one can see a gradual downward shift of the bulk of the distribution of 

MT, along with a gradual reduction of its spread, down to a final clustering of the data points 

against the lower bound. The picture is quite similar on the accuracy front. As the tolerance is 

reduced, the error data cluster more and more against the zero-error limit. One difference is 

that the measures of |E| tend to accumulate against the physical limit of zero LED, a lower 

bound obviously common to all participants, whereas the measures of MT tend to accumulate 

near their personal lower bounds (in the vicinity of 80 ms in this particular participant). 

In Figure 12 the layout is the same but the distributional information has been 

massively compressed into the five statistics of the box plot, an ordinal technique that delivers 

a faithful description of deformable distributions under the minimalist assumption that they 

remain unimodal—which never ceases to be the case in this data set. The translation and 

compression/expansion effects of the previous figure are still quite apparent in this highly 

compressed statistically representation. Needless to say, the usual parametric approach, which 

presupposes symmetrical distributions, would have delivered a severely distorted view of the 

data. 

Consider errors on the left-hand side. While the sample minimum Q0, whose values 

never depart from the horizontal axis, is unaffected by W, the three central quartiles of the 

error |E|, Q1, Q2, and Q3, scale proportionally with target tolerance, with increasing slopes. 

However, for the last quartile (i.e., sample maximum), the function turns affine, the non-zero 

intercept reflecting the fact that even with all their effort dedicated to the quest for accuracy 

the participants were unable to totally annihilate the trailing edge of their distribution of 

errors.  
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Figure 12. A boxplot description, for each participant, of the effects of the variation of the 

speed/accuracy balance on the shapes of the distributions of |E| (left) and MT (right). Notice that in the 

plots of MT the horizontal scale is logarithmic. To avoid visual clutter the box and whiskers proper are not 

drawn, but the five quartile statistics (minimum or Q0, first quartile Q1, second quartile Q2 or median, 

third quartile Q3, maximum or Q4) are shown for each level of W.  
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The right-hand side panels show that for all participants all the quartiles of MT vary as 

decreasing affine functions of the logarithm of W, in keeping with Fitts’ law (Fitts & Peterson, 

1964; Gori et al, 2019; MacKenzie, 1991).26 Just as with errors, the slope increases with 

quartile rank, but the slopes of the minimum and maximum diverge from those of the central 

quartiles Q1, Q2, and Q3. The slope is minimal for the distribution minima Q0 and maximal for 

the distribution maxima Q4 the slope is especially steep, reflecting the gradual compression of 

the trailing upper tail. 

Recourse to these statistical summaries opens the way to a quantitative description of 

the morphological changes. Figure 13 quantifies one remarkably consistent aspect of the 

pattern of Figure 12—the especially steep slope of the linear function linking the maxima of 

|E| to W. With the shift of the speed/accuracy balance so as to produce shorter MTs, the 

distribution of |E| from Q0 up to Q3 expands upwards in an uniform way, an effect reminiscent 

of that observable on a linear spring subject to a gradually relaxed compression, where the 

measured displacement is proportional to the distance from the edge of the spring. The non-

trivial finding is that sample maxima obey a different law, the distributions having their tails 

more affected by the manipulation of W than their bulks. 

Incidentally, one may guess from the patterns of Figure 12 that they all verify Weber’s 

law, an old rule of thumb of psychology which says that in general, particularly in time 

measurement contexts, the standard deviation of a distribution tends to vary proportionally 

with its means (Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Schmidt, Zelaznik, 

Hawkins, Frank, & Quinn, 1979). This empirical regularity in fact holds in each panel of the 

figure, with particularly high qualities of linear fit in the distributions of |E|. It is worth 

emphasizing here that while the explanation of Weber’s law has remained elusive (e.g., 

Dehaene, 2003), that regularity is very easy to interpret in light of a distributional 

compression phenomenon. If a distribution of minimized performance measures crushes 

against its lower bound, it comes as no surprise that the first and second moments of the 

distribution will tend to correlate positively. The immediate prediction follows that in 

maximization contexts Weber’s law should show up in reversed form, with the correlation 

between the standard deviation and the mean turning negative. Preliminary data collected by 

this author appear to support this prediction.27  

                                                             
26 Plotting on the horizontal axis the ID = log2 (D/W +1) in the place of log2 W would essentially result in a 
horizontal translation of all data points. 
27 Guiard, Y. (in preparation). Inverted Weber law in respiratory performance distributions. 
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Figure 13. A quantitative description, in all six participants, of the way the distribution of error 

contracts and expands in response to the manipulation of target tolerance, with divergent distribution 

tails.  

 

9.4. Discussion 

Is there something of general interest for the understanding of performances to be learned 

from these results, obtained by reanalyzing the data of an old experiment on aimed-

movement? It is noteworthy that several other data sets, including that collected in a markedly 

different paradigm by Guiard et al. (2011), have been submitted by this author to the same 
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descriptive analysis, producing essentially the same results. Apparently, the regularities 

visualized in Figures 9-12 hold for speeded aimed movement in general.  

The results, obtained in the difficult and important case of two-dimensional 

performance testing, help understand how a minimization effort opposed by the resistance of 

a lower bound strains the movement-time and error measures. The experiment offered no 

direct measure of the magnitude of the effort, but the direction in which that magnitude varied 

was experimentally controlled on each dimension of the task, making it possible to confirm 

the close mutual dependency of the two parallel compression phenomena. The results confirm 

that the balance of the minimization effort, which is manipulated systematically in the Fitts 

paradigm, determines the balance of downward distributional compression. As the effort is 

made to increase on one front, more data compression is observable on that front, and less on 

the other.  

 

10. General Discussion 

This study aims to clarify an old and obviously important concept of psychology, the 

quantitative concept of performance, to which surprisingly little attention has been paid. In the 

context of laboratory research the meaning of the highly frequent word “performance” is in 

general taken for granted. If there indeed exists a wide and stable consensus on the meaning 

of that word, we have realized that this consensus suffers a blind spot. Even though 

psychologists never omit to ask their participants to do their best to extremize their 

performance measures, at the stage of data processing it looks like they systematically forget 

that they recorded these measures under highly special, heavily pressurized conditions. 

The simple definition formulated at the start of this paper brings to light what might be 

considered on second thoughts a truism, namely that performances measures are deliberately 

and strongly strained by an extremization effort. Much of the paper was aimed at 

understanding in what precise sense the measures of human performance are made special by 

this characteristic. We have seen that the effort-strained, extremized measures we obtain in 

performance testing situations confront us with an axiological issue. We found that measures 

can be classified in terms of the curvature of the function linking the axiological to the 

numerical. While many measures are axiologically undefined, the function is strictly concave 

for regulated measures and strictly convex for performance measures. 
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An attempt was then presented to elaborate a provisional understanding of the 

mechanism by which the effort strains the performance. The simple one-dimensional instance 

of spirometry helped us to see that the performer’s effort is best conceptualized as a force 

exerted against a resistance, and that the resistance results from the existence of a capacity 

limitin the case of spirometry an obvious mechanical upper bound. It was proposed that any 

measure of performance is determined by the interplay of two variables neither of which can 

be directly measured: the effort, which we must suppose to vary haphazardly from trial to 

trial, and the performer’s capacity, a personal parameter best thought of as a constant, at least 

at the time scale of a performance-testing session.   

On this specific issue the paper has just outlined a gross approach. The capacity limit 

was conceptualized tentatively as an impassable bound on the measurement continuum, 

relying on the metaphor of a hard wall, but more realistic models seem desirable. One 

promising perspective seems to be offered by the stress-strain relationship of mechanical 

engineering.  

We then turned to the case of two-dimensional performance, frequently encountered in 

the psychology laboratory. We focused on data from an experiment on speeded aimed 

movement where the participants had to minimize two measures known to trade with each 

other, MT and |E|. A distributional analysis revealed that the sharing of effort between the two 

incompatible demands of speed and accuracy was faithfully reflected in the shapes of the 

distributions. The more effort dedicated to one dimension of the task, the more downward 

compression observed in the corresponding measure, and the less in the other. Only in 

conditions where the minimization effort was rather weak, because it had to be pretty strong 

on the concurrent task dimension, did the distributions of performance measures resemble 

Gaussians.  

Apparently four necessary conditions must be satisfied in practice for the 

distributional compression effect to show up in a performance measurement situation.  

1. The measure considered must be subject to an extremization pressure. In 

studies of aimed movement, for example, no compression effect will be 

observed if the accuracy of the movements is estimated by the signed value of 

the endpoint error E. The quantity that is actually minimized in aimed-

movement experiments is |E|, not E. As we have seen, |E| qualifies and behaves 

as a performance measure whereas E is a classic random variable. 
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2. The extremization pressure must be sufficient. This condition is typically not 

met in psychological studies of response time, most of which which impose on 

participants an unconditionally high level of accuracy, hence precluding from 

the outset the possibility of a strong time-minimization effort. As a matter of 

fact, most studies of RT record their time measures in conditions that resemble 

the minimum-tolerance condition of the Ferrand (1997) experiment shown in 

the upper panel of Figure 11. In that condition the distributions of MT indeed 

look quasi-random for lack of a sufficiently strong minimization effort.  

3. The measurement continuum considered must have a lower or upper bound to 

resist the extremization effort. As noted, latency measures provide an obvious 

counter-example. An RT measure is just not bounded. The only constraint 

preventing an RT from approaching or even crossing the 0-ms value is the 

concurrent accuracy requirement: the faster the guess, the higher the 

probability of an erroneous response. The quantity that is bounded in the 

response time paradigm, because of the shortage of the effort resource 

(Norman & Bobrow, 1975; Guiard & Rioul, 2015), is the combined 

speed/accuracy performance. To obtain a directional compression effect in this 

paradigm and more generally in two-dimensional paradigms, one would need 

to consider some combined index of performance.28  

4. The location of the capacity limit must not be blurred by data pooling or 

averaging across participants. Since the location of the performance limit on 

the measurement continuum is a personal parameter whose between-individual 

distribution is likely to be Gaussian, between-individual data pooling will tend 

to produce quasi-random distributions. It is to avoid this caveat that only 

within-participant distributions were considered in Section 9.  

The above list of necessary conditions may help explain the curious blind spot of 

psychology and other fields about the truism of performance extremization. However obvious 

                                                             
28 For example Shannon’s (1948) information theoretic framework makes it possible to compute such a 
combined index of performance in the classic RT paradigm. If we take transmitted, or mutual information, 
expressed in bits, to measure the accuracy of responses, and average response time, expressed in s, to measure 
transmission speed, then the ratio of these two quantities, expressed in bits/s, has the desired characteristic. This 
kind of measure is necessarily upper bounded (for a presentation of similar ideas, see Attneave, 1959, or Miller, 
1955). Unfortunately the cost of such a computation is very high, as each data point of the distribution must have 
been estimated from a sample of pairs of measures. 
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this characteristic, we have seen that its main empirical effect, namely the clustering of 

measures near the performer’s limit, are not that easy to observe. 

Finally, we must ask about the suitability of the classic toolbox we have at our 

disposal for describing and summarizing samples of extremized measures. We have noted that 

practitioners of spirometry have been dispensing altogether, for more than a century, with any 

central-trend estimate of respiratory performance, contenting themselves with session 

maxima, and we have seen that this practice is perfectly reasonable. We have found 

essentially the same picture in athletics, where it would seem rather pointless to try to 

summarize Bolt’s performances, say over a season, with an arithmetic mean or a median. 

Analysis of one-dimensional performance has helped us see that what counts in empirical 

samples of extremized measures are not averages and distributions bulks, but rather best 

values and distribution fronts. By the same token, reasons for skepticism have arisen about the 

relevance of spread statistics such as the standard deviation or the inter-quartile interval 

centered about the mean and the median, respectively. 

One simple and intuitive solution to this statistical description problem might be 

considered. The idea is simply to assign the role of a location indicator to the sample’s best 

value, well in line with the tradition of spirometry, and the role of a spread indicator to the 

distance separating the median from the best value. In this sort of approach best values would 

serve to estimate capacities of performance while median deviations from bests would serve 

to estimate effort strengths.  

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

References 

Attneave, F. (1959). Applications of Information Theory to Psychology: A Summary of Basic 

Concepts, Methods, and Results. New York: Holt. 

 Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental 

number line. Trends in cognitive sciences, 7(4), 145-147. 

Donders, (1868). Die Schnelligkeit psychischer Prozesse. Archiv für Anatomie, Physiologie 

und Wissenschaftliche Medizin, Leipzig, Veit, 657–681. 

Ebbinghaus H (1880) Urmanuskript "Ueber das Gedächtniß". Passau: Passavia 

Universitätsverlag. 

Fechner, G.T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf and Hartel. 

Gori, J., Rioul, O., & Guiard, Y. (2018). Speed-accuracy tradeoff: A formal information-

theoretic transmission scheme (Fitts). ACM Transactions on Computer-Human 

Interaction, 25, 1-33. 

Gori, J., Rioul, O., Guiard, Y., & Beaudouin-Lafon, M. (2018). The perils of confounding 

factors: How Fitts' law experiments can lead to false conclusions. Proceedings of the 

2018 ACM CHI Conference on Human Factors in Computing Systems, 1-10. 

Gori, J., & Rioul, O. (2019, September). Regression to a linear lower bound with outliers: An 

exponentially modified Gaussian noise model. Proceedings of the 27th European Signal 

Processing Conference (EUSIPCO), 1-5. IEEE. 

Guiard, Y. (1997). Fitts' law in the discrete vs. cyclical paradigm. Human Movement Science, 

16, 97-131. 

Guiard, Y. (2009). The problem of consistency in the design of Fitts' law experiments: 

Consider either target distance and width or movement form and scale. Proceedings of 

the 2019 ACM CHI Conference on Human Factors in Computing Systems, 1809-1818. 

Guiard, Y., & Ferrand, T. (1998). Effets de gamme et optimum de difficulté spatiale dans une 

tâche de pointage de Fitts. Science et motricité, 34, 19-25. 

Guiard, Y., & Olafsdottir, H. B. (2011). On the measurement of movement difficulty in the 

standard approach to Fitts' law. PLoS one, 6(10), e24389. 



48 
 

Guiard, Y., Olafsdottir, H. B., & Perrault, S. T. (2011). Fitt's law as an explicit time/error 

trade-off. Proceedings of the 2011 ACM CHI Conference on Human Factors in 

Computing Systems, 1619-1628. 

Guiard, Y., & Rioul, O. (2015). A mathematical description of the speed/accuracy trade-off of 

aimed movement. Proceedings of the 2015 British HCI Conference, 91-100. 

Gumbel, E. J. (1935). Les valeurs extrêmes des distributions statistiques. Annales de l’Institut 

Henri Poincaré, 5, 115-158. 

Hart, S. L. (1971). Axiology : Theory of value. Philosophy and Phenomenological Research, 

32, 29-41.  

Hölder, O. (1901). Die Axiome der Quantitat und die Lehre vom Mass. Berichte iiber die 

Verhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 

Mathematisch-Physische Klasse, 53, 1-46. 

Hollnagel, E. (2009). The ETTO Principle: Efficiency-Thoroughness Trade-Off: Why Things 

that Go Right Sometimes Go Wrong. Ashgate Publishing. 

Kelso, J. S. (1995). Dynamic Patterns: The Self-Organization of Brain and Behavior. 

Cambridge (MA): MIT press. 

Kornblum, S. (1969). Sequential determinants of information processing in serial and discrete 

choice reaction time. Psychological Review, 76, 113. 

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of Measurement 

(Vol. 1). New York: Academic Press. 

Kugler, P. N., & Turvey, M. T. (2015). Information, Natural Law, and the Self-Assembly of 

Rhythmic Movement. Routledge. 

Luce, R. D. (1985). Response Times and their Role in Inferring Elementary Mental 

Organization. New York: Oxford University Press. 

Luce, R. D. (1986). Response time distributions in memory search: A caution. In: F. Klix and 

H. Hagendorf (Eds), Mechanisms and Performances, pp. 109-121. Amsterdam: North- 

Holland. 



49 
 

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Keith Smith, J. E. (1988). 

Optimality in human motor performance: ideal control of rapid aimed movements. 

Psychological review, 95, 340-370. 

Michell, J. (1997). Bertrand Russell’s 1897 critique of the traditional theory of measurement. 

Synthese, 110, 257–276. 

Michell, J. (2005). The logic of measurement: A realist overview. Measurement, 38, 285-294. 

Michell, J. (2008). Is psychometrics pathological science? Measurement, 6, 7-24. 

Michell, J. (2014). An Introduction to the Logic of Psychological Measurement. Psychology 

Press. 

Michell, J., & Ernst, C. (1996). The Axioms of Quantity and the Theory of Measurement: 

Translated from Part I of Otto Hölder's German Text “Die Axiome der Quantität und 

die Lehre vom Mass”. Journal of Mathematical Psychology, 40, 235-252. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychological review, 63, 81-97. 

Miller, M. R., Hankinson, J. A. T. S., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., ... & 

Jensen, R. (2005). Standardisation of spirometry. European Respiratory Journal, 26, 

319-338. 

Mottet, D., Guiard, Y., Ferrand, T., & Bootsma, R. J. (2001). Two-handed performance of a 

rhythmical Fitts task by individuals and dyads. Journal of Experimental Psychology: 

Human Perception and Performance, 27, 1275. 

Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. 

Cognitive Psychology, 7, 44-64. 

Pachella, R. G. (1973). The Interpretation of Reaction Time in Information Processing 

Research. Technical report No. TR-45. Michigan University Ann Arbor Human 

Performance Center. 

Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn Jr, J. T. (1979). Motor-

output variability: a theory for the accuracy of rapid motor acts. Psychological Review, 

86, 415. 



50 
 

Shannon, C.E. (1948). A mathematical theory of communication. Bell Systems Technical 

Journal, 27, 379–423, 623–656. 

Slifkin, A. B., & Eder, J. R. (2017). Degree of target utilization influences the location of 

movement endpoint distributions. Acta psychologica, 174, 89-100. 

Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. 

Acta psychologica, 30, 276-315. 

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680. 

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. 

Acta Psychologica, 41, 67-85. 

Wobbrock, J. O., Cutrell, E., Harada, S., & MacKenzie, I. S. (2008). An error model for 

pointing based on Fitts' law. Proceedings of the 2008 ACM CHI Conference on Human 

Factors in Computing Systems, 1613-1622. 

  



51 
 

Annex 1.  Use of the Performance Concept in Experimental Psychology: A Quantitative 

Content Analysis of One Issue of JEP: HPP 

 

This quantitative content analysis was undertaken in 2016 with the goal of inventorying the 

various senses in which the performance notion is used in experimental psychology. Of 

special interest was the incidence of the strict quantitative sense defined at the start of this 

paper, namely a measure subject to a deliberate extremization effort exerted by a human agent 

against the resistance of a limit. The word is polysemous, as can be checked in any dictionary, 

and we will see that if psychologists have recourse to its various senses, they do use the 

specific quantitative sense of interest here, which general dictionaries of English, notably the 

Collins29 and the Merriam-Webster30, fail to spell out. 

The 25 articles that compose the October 2015 issue of the Journal of Experimental 

Psychology : Human Perception and Performance 41(5) were chosen as the test sample. Each 

article was downloaded from a bibliographic data base and its body, including the title but not 

the list of references, was pasted in a word processor, where a search was made for 

occurrences of the seven-character string “PERFORM”. All the detected occurrences were 

subsequently pasted, together with their surrounding sentence context, in a spreadsheet to 

allow automated processing, using search and text functions. 

In English the root PERFORM appears with different endings, yielding two nouns, 

performance and performer31, and one verb appearing in four forms, perform, performs, 

performing, and performed. Table A shows the incidence of these six words in each article of 

the issue, leaving aside the verb outperform, found to occur only three times overall.  

Only one of the 25 articles was found to offer zero occurrence of the target root (Tan 

& Yeh, pp. 1325-1335). In total the root PERFORM wad detected 467 times in the 296 pages 

of the journal issue, meaning an average incidence of 1.6 occurrences per page, and thus 

confirming that the performance concept is indeed used routinely in experimental psychology. 

Table A also shows that 54% of all occurrences of the target string of characters corresponded 

to the noun performance, and 38% to some conjugated form of the (un-prefixed) verb 

                                                             
29 https://www.collinsdictionary.com/dictionary/english (August 7, 2020). 
30 https://www.merriam-webster.com/dictionary (August 7, 2020). 
31 In experimental psychology the popularity of the noun performer is low. 23 (92%) of the 25 articles of the 
sample issue dispense with it. 36 of the 37 occurrences found in the issue came from one and the same article 
(Ramenzoni et al., pp. 1209-1222).  

https://www.collinsdictionary.com/dictionary/english
https://www.merriam-webster.com/dictionary
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perform. The meaning of these two most frequent words (92% of all occurrences) is our focus 

below. 

______________________ 

Insert Table A about here 

_______________________ 

 

From a careful inspection of the contexts surrounding the verb PERFORM and the 

noun PERFORMANCE a clear-cut pattern arose concerning the semantics. It turned out that 

one may distinguish the quantitative sense of the verb or noun from other, non-quantitative 

senses using the criterion of word transitivity. The rule of thumb is that the concept of 

performance is taken in a non-quantitative sense when used transitively; it is when used 

intransitively that the concept takes, almost unmistakably, the strict quantitative sense that 

was defined at the start of this paper. 

Regardless of the mode (active vs. passive) and regardless of whether one faces its 

verb or noun version, it happens to be the case that the performance concept can be used 

either transitively or intransitively. The concept is used transitively when an agent is said to 

perform some specified taskor, which amounts to the same, when a specified task is said to 

be performed by some agent. For example, in an expression like “performing task X” (verbal 

phrase) and likewise in an expression like “the performance of task X” (noun phrase), it is 

easy to see that the task is the direct, accusative object of the action under consideration. 

However, the agent’s performance need not take any direct, accusative object. For example, in 

expressions like “participants performed better in condition A than condition B” (verbal 

phrase) or “performance improved from condition A to condition B” (noun phrase), the 

performing or performance action is clearly intransitive. 

The next two tables illustrate this rule of thumb by offering a few concrete quotes 

from the reviewed issue. The transitive case considered in Table B is quite straightforward: as 

explained by the Collins dictionary “to perform a task or action, especially a complicated 

one, is to do it” (sense #1 of the verb PERFORM). What we call the transitive use of the noun 

is defined by the Collins accordingly: “the performance of a task is the fact or action of doing 

it” (sense #6 of the noun PERFORMANCE). 
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Table C, however, reveals that the intransitive notion of performance, whether 

expressed verbally or nominally, can refer to two markedly different senses. Fortunately, 

however, these are fairly easy to tell apart based on context. One intransitive sense is the 

entertainment of an audience in such contexts as drama, music, and dance performancethe 

Collins, along with its peers, does not omit to mention this sense.32 The other intransitive 

sense is the strictly quantitative one that dictionaries fail to identify.  

___________________________ 

Insert Tables B and C about here 

____________________________ 

 

In Table D the classification is applied to each of the 25 articles of the reviewed issue. 

We can see that while the verb PERFORM is used in the transitive way almost invariably (in 

93% of occurrences), the opposite is true of the noun PERFORMANCE, used most of the 

time in the intransitive way (in 94% of occurrences). Thus there is little doubt that it is mostly 

the noun (231 intransitive uses in 20 articles), and only occasionally the verb (12 intransitive 

uses in four articles), that psychologists take in the quantitative sense.  

 

___________________________ 

Insert Table D about here 

____________________________ 

 

The considerable variability of frequencies across the lines of Table D raises the 

question of a possible link between the incidence of the transitive vs. intransitive use of the 

performance notion and the content of the reviewed studies, all based on experiments with 

human volunteers. Table E reproduces the statistics of Table D but this time side to side with 

a rough description of the contents of the studies, with special attention paid to dependent 

measures.  

 

                                                             
32 However, the list of examples offered by the Collins to illustrate the first sense of the noun PERFORMANCE 
mix up somewhat confusingly transitive cases like “a performance of Bizet's Carmen” with intransitive cases 
like “her performance as the betrayed Medea”.  
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___________________________ 

Insert Table E about here 

____________________________ 

 

Unsurprisingly, the vast majority of the articles (22 of 25) report genuine performance 

studies in which participants are instructed to extremize at least one quantitative score. Ten of 

these studies of human performance asked participants to maximize an accuracy score (e.g., a 

percentage of correctly recognized items) or to minimize an error score (e.g., a mean 

estimation error), with no time pressure. In the other 12 performance studies, a time score—

more often than not a latency—had to be minimized while an error rate had to be maintained 

as low as possible.  

The three exceptions are the studies of Romero et al. (pp. 1223-1235), Gagnon et al. 

(pp. 1385-1395) and Ma et al. (pp. 1409-1419). Romero et al. inquired into the structure of 

joint-angle variance in mutually aimed movements performed by dyads. Although the aiming 

task was to be carried out as fast and as accurately as possible, the time and error data were 

considered irrelevant and ignored in the results section. Gagnon et al. examined the influence 

of somebody else’s body size on self-affordance judgments concerning whether or not an 

aperture is passable. The dependent variable of the experiment was the threshold between no 

and yes responses, with no extremized quantity considered. Finally Ma et al. explored the 

ability of people to extract information from non-fixated target words in Chinese reading. If 

the authors mention that the comprehension accuracy rate vas very high overall, they report 

no extremized quantity, their main focus being the duration of eye fixations. 

 

___________________________ 

Insert Table F about here 

____________________________ 

 

In Table F the frequency data are grouped so as to contrast, with regard to the relative 

frequency of the transitive s. intransitive use of the performance concept, the studies based on 

the explicit measurement of extremized scores (22 articles totaling 261 pages) vs. those which 

dispense with that kind of measurement (three articles totaling 35 pages). For use of the verb, 
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the two families of studies do not differ: whether or not the study is based on performance 

measurement, the verb PERFORM is nearly always used transitively. In contrast, the two 

families of studies differ markedly in the way they employ the noun PERFORMANCE. 

Whereas in performance-based studies the noun is used almost always (in 97% of the cases) 

intransitively (as, e.g., in “performance improved”), the trend is opposite in the other family 

of studies, prone to use the noun transitively (62%) more often than intransitively (38%).33  

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
33 A supporter of null hypothesis statistical significance testing may like to learn that the probability of such a 
departure from chance assuming no statistical link between the two binary variables of the table is p < .0001 (1-
df Chi square test with or without the Yates correction for continuity). 
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Article First page First author  PERFORMance  PERFORMer Total  PERFORM_  PERFORMs  PERFORMing  PERFORMed Total All forms
#1 1179 Royer 9 0 9 0 0 0 2 2 11
#2 1184 Reynolds 11 0 11 0 0 0 0 0 11
#3 1190 Beck 0 0 0 0 0 1 0 1 1
#4 1197 Leiva 12 0 12 0 0 0 1 1 13
#5 1203 Ward 0 0 0 0 0 0 2 2 2
#6 1209 Ramenzoni 18 36 54 6 0 13 19 38 92
#7 1223 Romero 12 0 12 5 0 6 4 15 27
#8 1236 Brattan 15 0 15 10 0 6 12 28 43
#9 1247 Z_Sun 31 0 31 0 0 0 3 3 34

#10 1260 Maclean 5 0 5 2 0 0 2 4 9
#11 1271 De la Malla 12 0 12 0 3 1 3 7 19
#12 1281 Lupker 1 0 1 0 0 0 0 0 1
#13 1300 Mills 9 0 9 4 0 0 2 6 15
#14 1315 Schneider 6 0 6 0 0 0 3 3 9
#15 1325 Tan 0 0 0 0 0 0 0 0 0
#16 1336 Maes 38 0 38 11 0 0 16 27 65
#17 1353 Rajsic 8 1 9 0 0 0 1 1 10
#18 1365 Ma 10 0 10 0 0 0 2 2 12
#19 1376 Hung 8 0 8 0 0 0 1 1 9
#20 1385 Gagnon 1 0 1 3 0 5 6 14 15
#21 1396 Prinzmetal 16 0 16 1 0 0 0 1 17
#22 1409 Ma 0 0 0 0 0 0 4 4 4
#23 1420 Miller 7 0 7 5 0 0 6 11 18
#24 1442 Zupan 17 0 17 0 0 0 6 6 23
#25 1462 Marsh 6 0 6 1 0 0 0 1 7

Total 252 37 289 48 3 32 95 178 467
% of all forms 54.0% 7.9% 61.9% 10.3% 0.6% 6.9% 20.3% 38.1% 100.0%

Table A.  Incidence of Nouns and Verbs composed with Root PERFORM in Reviewed Issue

Verb formsNoun forms
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Article # First page First author Transitive 
action

Intransitive 
action

Total Transitive 
action

Intransitive 
action

Total Grand 
total

1 1179 Royer 2 0 2 0 9 9 11
2 1184 Reynolds 0 0 0 0 11 11 11
3 1190 Beck 1 0 1 0 0 0 1
4 1197 Leiva 1 0 1 0 12 12 13
5 1203 Ward 2 0 2 0 0 0 2
6 1209 Ramenzoni 30 8 38 1 15 16 54
7 1223 Romero 15 0 15 7 5 12 27
8 1236 Brattan 28 0 28 0 14 14 42
9 1247 Z_Sun 4 0 4 0 30 30 34
10 1260 Maclean 4 0 4 0 5 5 9
11 1271 De la Malla 7 0 7 0 12 12 19
12 1281 Lupker 0 0 0 0 1 1 1
13 1300 Mills 6 0 6 0 8 8 14
14 1315 Schneider 3 0 3 0 6 6 9
15 1325 Tan 0 0 0 0 0 0 0
16 1336 Maes 25 2 27 4 34 38 65
17 1353 Rajsic 0 1 1 0 8 8 9
18 1365 Ma 1 1 2 0 10 10 12
19 1376 Hung 1 0 1 0 8 8 9
20 1385 Gagnon 14 0 14 1 0 1 15
21 1396 Prinzmetal 1 0 1 1 14 15 16
22 1409 Ma 4 0 4 0 0 0 4
23 1420 Miller 11 0 11 0 6 6 17
24 1442 Zupan 6 0 6 0 17 17 23
25 1462 Marsh 1 0 1 0 6 6 7

Total 167 12 179 14 231 245 424
93% 7% 100% 6% 94% 100%

42% 58% 100%

Verb PERFORM Noun PERFORMANCE

Table D. Transitive vs. Intransitive Use of Verb PERFORM and Noun PERFORMANCE in Reviewed Issue
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Article 
#

First 
page

First 
author Paper title Main task Dependent Measure(s)

Transitive 
action

Intransitive 
action

Transitive 
action

Intransitive 
action Total

1 1179 Royer When Less Is More: Impact of Face Processing Ability 
on Recognition of Visually Degraded Faces

face recognition, match-to-sample 
(same/diff)

error rate 2 0 0 9 11

2 1184 Reynolds
Understanding the Relationship Between Implicit and 
Explicit Change Detection: Evidence From Scan Path 
Data

detection of change in peripheral 
visual field

RT, error rate, N fixations 0 0 0 11 11

3 1190 Beck Evidence for Negative Feature Guidance in Visual 
Search Is Explained by Spatial Recoding 

visual search RT, error rate 1 0 0 0 1

4 1197 Leiva Reorienting the Mind: The Impact of Novel Sounds on 
Go/No-Go Performance

go/no-go speeded reaction, press 
one of two keys

RT, error rate (% misses, 
% false alarms)

1 0 0 12 13

5 1203 Ward The Rubber Hand Illusion Depends on the Tactile 
Congruency of the Observed and Felt Touch estimate finger position subjective estimate of 

finger position 2 0 0 0 2

6 1209 Ramenzoni
Synchronous Imitation of Continuous Action 
Sequences: The Role of Spatial and Topological 
Mapping

get coupled with rhythmic model
tap ratio (ideal = 1), mean 
asynchrony, percent 
match

30 8 1 15 54

7 1223 Romero Can Discrete Joint Action Be Synergistic? Studying the 
Stabilization of Interpersonal Hand Coordination mutual pointing in dyads variance per degree of 

freedom 15 0 7 5 27

8 1236 Brattan
Spatiotemporal Judgments of Observed Actions: 
Contrasts Between First- and Third-Person Perspectives 
After Motor Priming

judge whether video sequence 
after interruption restarts early, 
fine, or late

% late judgments 28 0 0 14 42

9 1247 Sun How to Break the Configuration of Moving Objects? 
Geometric Invariance in Visual Working Memory

Detect change in motion of a 
configuration and memorize the 
motion

error rate 4 0 0 30 34

10 1260 Maclean Does Oculomotor Readiness Mediate Exogenous 
Capture of Visual Attention?

Is the target character present in 
periph visual field? press one of 
two keys

RT, error rate 4 0 0 5 9

11 1271 De la Malla Predictive Plus Online Visual Information Optimizes 
Temporal Precision in Interception

catch an approaching virtual tennis 
ball, using a data glove length of timing error 7 0 0 12 19

12 1281 Lupker
Is There Phonologically Based Priming in the Same-
Different Task? Evidence From Japanese-English 
Bilinguals

same/different speeded reaction, 
press one of two keys

RT, error rate 0 0 0 1 1

13 1300 Mills
Effects of Task and Task-Switching on Temporal 
Inhibition of Return, Facilitation of Return, and 
Saccadic Momentum During Scene Viewing

fixate the probe as quickly and 
accurately as possible whenever it 
occurs

Saccadic RT, magnitude 
of saccadic endpoint 
error

6 0 0 8 14

14 1315 Schneider Attentional Control of Response Selection in Task 
Switching

speeded binary categorization 
(e.g. living vs. non-living), press 
one of two keys

RT, error rate 3 0 0 6 9

15 1325 Tan Audiovisual Integration Facilitates Unconscious Visual 
Scene Processing

has the scene appeared above of 
below the cross? press one of two 
keys

RT, error rate 0 0 0 0 0

16 1336 Maes Auditory and Motor Contributions to the Timing of 
Melodies Under Cognitive Load

get coupled with the model rhythm 
and continue

length of intertap interval 25 2 4 34 65

17 1353 Rajsic Confirmation Bias in Visual Search which color did the stimulus 
appear in? press one of two keys

RT, error rate 0 1 0 8 9

18 1365 Ma A Deficit Perceiving Slow Motion After Brain Damage 
and a Parallel Deficit Induced by Crowding

main study (Exp3): indicate 
motion direction (left or right), 
press one of two keys

error rate 1 1 0 10 12

19 1376 Hung Syntactic Processing in the Absence of Awareness and 
Semantics

localization and memory task, 
press one of two keys

error rate 1 0 0 8 9

20 1385 Gagnon The Influence of Social Context and Body Size on 
Action Judgments for Self and Others

is the gap passable? verbal yes/no 
response % of yes responses 14 0 1 0 15

21 1396 Prinzmetal Spatial Attention and Environmental Information was the stimulus an "F" or a "T", 
press one of two keys

RT, error rate 1 0 1 14 16

22 1409 Ma
Readers Extract Character Frequency Information From 
Nonfixated-Target Word at Long Pretarget Fixations 
During Chinese Reading

read Chinese words gaze fixation duration 4 0 0 0 4

23 1420 Miller

A Comparison of the Psychological Refractory Period 
and Prioritized Processing Paradigms: Can the 
Response-Selection Bottleneck Model Explain Them 
Both?

binary choice reactions to letter 
identitity and stimulus color 

RT, error rate 11 0 0 6 17

24 1442 Zupan Inhibition in Time-Based Visual Selection: Strategic or 
by Default?

indicate the location (left/right) of 
the blue square, press one of two 
keys

RT, error rate 6 0 0 17 23

25 1462 Marsh
Dynamic Cognitive Control of Irrelevant Sound: 
Increased Task Engagement Attenuates Semantic 
Auditory Distraction

free order recall of visual material 
after 15 presentations

error rate 1 0 0 6 7

167 12 14 231 424

Verb PERFORM Noun PERFORMANCE

Total

Table E.  Transitivity Statistics and Content Analysis, with Special Focus on Dependent Measures
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Transitive 
action

Intransitive 
action

Total Transitive 
action

Intransitive 
action

Total Transitive 
action

Intransitive 
action

Grand 
total

N 134 12 146 6 226 232 140 238 378

% 92% 8% 100% 3% 97% 100% 37% 63% 100%

N 33 0 33 8 5 13 41 5 46
% 100% 0% 100% 62% 38% 100% 89% 11% 100%

N 167 12 179 14 231 245 181 243 424
% 93% 7% 100% 6% 94% 100% 43% 57% 100%

Extremized performance measurement:  
22 articles, 261 pages

No measurement of extremized 
performance: 3 articles, 35 pages

Total over 25 articles, 296 pages 

Table F.  Incidence of Transitive vs. Intransitive Use of Performance Notion in Studies Measuring vs. Not Measuring Extremized 
Performance 

Verb PERFORM Noun PERFORMANCE Sum


