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Relaxed State and Fault Estimation for Vehicle Lateral Dynamics Represented by T-S Fuzzy Systems

is paper deals with the problem of observer design of the vehicle model which is represented by Takagi-Sugeno (T-S) fuzzy systems with the presence of uncertainties. A relaxed observer design is presented to estimate the unmeasurable states and the faults of the vehicle lateral dynamics model, simultaneously. e vehicle model is transformed into a system with unknown inputs.

en, it is rebuilt by adding the default to the system state equation. Based on the Lyapunov function approach and the introduction of some slack variables, sufficient conditions of unknown input observer design are formulated as Linear Matrix Inequalities (LMIs). Finally, the simulation section clearly shows the importance and effectiveness of the proposed strategy.

Introduction

A large part of the scientific research programs in the transport field is focused on road safety, to respond to the problems related to the evolution of the transport means. Today's vehicles are becoming more intelligent, reliable, relaxed, and safe because they are equipped with various security systems, either passive as Bumper, whose classic function is to protect the bodywork. But, bumpers today play a bigger role. ey have become very safe and aim, above all, to protect pedestrians and cyclists in the event of an accident [START_REF] Gieck | e production HELP bumper: evolution, testing, and evaluation[END_REF][START_REF] Belingardi | Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam[END_REF]. Seat belts are among the indispensable passive safety devices.

ey protect vehicle occupants in a potentially dangerous collision. ey were proposed by the American car manufacturer Nash in 1949 as a new option and were developed in their modern form by the Swedish inventor Nils Bohlin for Volvo [START_REF] Andréasson | e Seat Belt: Swedish Research and Development for Global Automotive Safety[END_REF][START_REF] Håland | e evolution of the three point seat belt from yesterday to tomorrow[END_REF]. We also mention airbags; they are considered essential equipment and have proven several times that they can save lives. e first ones were tested by General Motors in 1973 on the Chevrolet model [START_REF] Clark | Car crash theory and tests of airbag bumper systems[END_REF][START_REF] Mastinu | Road and Off-Road Vehicle System Dynamics Handbook[END_REF] or active as the Antilock Braking System (ABS), which prevents the wheels from blocking and, thus, the vehicle skidding during braking; it was first marketed by Bosch in the 1970s [START_REF] Austin | Recent advances in antilock braking systems and traction control systems[END_REF][START_REF] Saito | Evaluation of frontal impact restraint system in integrated safety scenario using human body model with PID controlled active muscles[END_REF]. e Electronic Stability Program (ESP) was developed in the 1990s by Bosch exclusively for the Mercedes S-Class [START_REF] Ferguson | e effectiveness of electronic stability control in reducing real-world crashes: a literature review[END_REF][START_REF] Yim | Design of active suspension and electronic stability program for rollover prevention[END_REF], and this technology makes it possible to avoid a road trip in extreme situations via selective and individual braking of the wheels [11,[START_REF] Vahidi | Research advances in intelligent collision avoidance and adaptive cruise control[END_REF]. ese systems are generally controlled by both known and unknown inputs. eir functioning and efficiency require precise knowledge of the dynamic parameters of the vehicle. Sometimes, the measurements of these parameters do not give complete information about the system because some states are not directly measurable. In addition, for cost reasons, the number of sensors is limited and is sometimes unavailable.

e idea is to use a software sensor or an observer capable of reconstructing state information, unmeasurable parameters, and even unknown inputs of the system from the system model and measured parameters.

In this context, different estimation techniques have been applied to resolve observer design problems. Among these techniques, we can find Luenberger's classical observer [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF][START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF], which is based on the synthesis of a static gain, to ensure the convergence of the observer's states towards the real states of the system and to stabilize the estimation error. However, the presence of perturbations on the system leads to a bad reconstruction. Also, the Kalman filter (KF) [START_REF] Simon | Training fuzzy systems with the extended Kalman filter[END_REF][START_REF] Chui | Kalman Filtering[END_REF] is robust against measurement noise. Another example is the Sliding Mode Observer (SMO) [START_REF] Palm | Sliding mode observer for a Takagi Sugeno fuzzy system[END_REF][START_REF] Yin | Descriptor reducedorder sliding mode observers design for switched systems with sensor and actuator faults[END_REF], which is characterized by asymptotic decay of the state estimation error even in the presence of uncertainties in the system input and nonlinearities. e quoted observers can no longer be applied when the dynamics of the system are subject to the influence of unknown inputs. Generally, these unknown inputs come from sensor faults, modeling errors, disturbances, or noise [START_REF] Geng | e joint optimal filtering and fault detection for multi-rate sensor fusion under unknown inputs[END_REF]. To overcome these limits, the Unknown Input Observer (UIO) is widely studied in the literature [START_REF] Youssfi | Vehicle lateral dynamics estimation using unknown input observer[END_REF][START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems[END_REF][START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF], and it makes it possible to reconstruct system states even in the presence of unknown inputs and often intervenes in diagnosis, for fault detection, sensor monitoring, and estimation of disturbances affecting the system.

For this purpose, our main objective in this manuscript is to accurately estimate the lateral dynamics of the vehicle with the presence of uncertainties and sensor/actuator faults by a relaxed unknown inputs observer.

e best-known model used to describe the lateral movements of the vehicle is the bicycle model, developed in [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF], which will be represented by the Takagi-Sugeno (T-S) multiple-model approach, widely used in the literature to solve nonlinearity problems in nonlinear systems [START_REF] Wang | An approach to fuzzy control of nonlinear systems: stability and design issues[END_REF][START_REF] Liu | New approaches to H ∞ controller designs based on fuzzy observers for T-S fuzzy systems Via LMI[END_REF][START_REF] Park | LMI-based design of stabilizing fuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model[END_REF], which consists in developing the global model by interpolation of local linear models. is technique accurately describes the behavior of nonlinear systems, including the vehicle's lateral dynamics system [START_REF] Youssfi | T-S fuzzy observers design and actuator fault tolerant control applied to vehicle lateral dynamics[END_REF][START_REF] Youssfi | static output-feedback H_infty control for T-S fuzzy vehicle lateral dynamics[END_REF]. e stability of the estimation error toward zero is mainly studied by using the Lyapunov quadratic function, and sufficient asymptotic stability conditions are given in the form of linear matrix inequalities (LMIs), which can be solved very effectively using optimization techniques of LMI [START_REF] Gahinet | e LMI control toolbox[END_REF].

e structure of the document is organized as follows: Section 2 deals with the model of vehicle lateral dynamics, as well as its T-S fuzzy representation. Section 3 describes the problem. Section 4 presents the estimation error stability analysis and the design of a relaxed unknown inputs observer. Section 5 is devoted to simulations and results analysis. Section 6 is devoted to discussion. Finally, the conclusion is given in the Section 7.

Notations.

e following notations are considered: R n means the n-dimensional Euclidean space, and I is the identity matrix with appropriate dimension. e notations A < 0 and A ≤ 0 indicate that the matrix A is negatively defined and negatively semidefined, respectively. e inverse of matrix A is expressed by A -1 , and its transpose is indicated by A T . * means symmetrical terms in a symmetrical matrix. A † denotes a generalized inverse of A.

Vehicle Modelling

Nonlinear Vehicle Model.

e complete vehicle dynamics model is studied in [START_REF] Schramm | Model of a typical complex complete vehicle[END_REF], which is very difficult to use in control and monitoring applications because it is a very complex system and has many freedom degrees. For this reason, a simplified model that is easy to use to the synthesis of observers and controls is indispensable.

e vehicle motions are defined by a set of translations and rotational movements illustrated to the top left of Figure 1 [START_REF] Youssfi | static output-feedback H_infty control for T-S fuzzy vehicle lateral dynamics[END_REF]. e model used in this paper describes the vehicle lateral dynamics (see Figure 1), which is obtained by considering the bicycle model; the lateral velocity v y and the yaw rate _ ψ of the vehicle are taken to be differential variables.

e lateral dynamics of the vehicle is presented as in [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF] by the following differential equations:

_ v y � 1 m v 2F yf + 2F yr 􏼐 􏼑 -v x _ ψ, € ψ � 1 I z 2a f F yf + 2a r F yr + M z 􏼐 􏼑, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1) 
where v x and v y are longitudinal and lateral velocities, respectively. _ ψ is the yaw rate, m v is the vehicle mass, M z is the external yaw moment, and I z is inertia moments around vertical axis. F yf and F yr are lateral tire forces at the front and the rear wheels, respectively. For further explanation of the variables appearing in the vehicle lateral dynamics model, refer to Table 1 and Figure 1.

T-S Fuzzy Representation for Vehicle Lateral Dynamics.

A T-S fuzzy model is a set of linear time-invariant (LTI) systems, blended with nonlinear membership functions. Different ways to perform a T-S model from nonlinear models exist. An interesting approach is the well-known nonlinear sector transformation [START_REF] Taniguchi | Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[END_REF]. In fact, this technique allows obtaining an exact T-S representation without information loss on a compact set of the state space. By using identification and linearization of the cornering forces on the vehicle which can be approximated as in [START_REF] Youssfi | Vehicle lateral dynamics estimation using unknown input observer[END_REF][START_REF] Youssfi | T-S fuzzy observers design and actuator fault tolerant control applied to vehicle lateral dynamics[END_REF], they are given by the following expressions:

F yf (t) � 􏽘 2 i�1 ρ i (ξ(t))C fi α f (t), F yr (t) � 􏽘 2 i�1 ρ i (ξ(t))C ri α r (t), ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (2) 
where C fi and C ri are the front and rear tire cornering stiffness which depend of road adhesion and vehicle mass m v and α f and α r are slip angles of front and rear tires, respectively. ey are given in [START_REF] Ohtake | Observer design for two-wheeled vehicle: a Takagi-Sugeno approach with unmeasurable premise variables[END_REF] as follows:

α f (t) � δ f (t) -β(t) - a f _ ψ(t) v x , α r (t) � -β(t) - a r _ ψ(t) v x , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (3) 
where

β(t) � (v y (t)/v x (t))
is the sideslip angle. Membership functions ρ i (ξ(t)) are given as follows:

ρ i (ξ(t)) � ω i (ξ(t)) 􏽐 2 i�1 ω i (ξ(t)) , i � 1, 2, (4) 
with

ω i (ξ(t)) � 1 1 + ξ(t) -c i /a i 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼐 􏼑 2b i , ξ(t) � a f (t) 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 , ( 5 
)
and they satisfy the following properties:

􏽘 2 i�1 ρ i (ξ(t)) � 1, 0 ≤ ρ i (ξ(t)) ≤ 1 , i � 1, 2. ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (6) 
Membership function parameters (a i , b i , and c i ) and stiffness coefficient values (C fi and C ri ) are obtained using a Levenberg-Marquardt algorithm-based identification method combined with the least square method [START_REF] Youssfi | T-S fuzzy observers to design actuator fault-tolerant control for automotive vehicle lateral dynamics[END_REF]. e T-S fuzzy model of vehicle lateral dynamics is obtained by replacing the lateral forces in the nonlinear model (1) by their fuzzy expressions [START_REF] Belingardi | Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam[END_REF]. en, lateral motion can be expressed by

_ x(t) � 􏽘 2 i�1 ρ i (ξ(t)) A i x(t) + B fi δ f (t) + BM z 􏽮 􏽯, y(t) � Cx(t), ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (7) 
where x(t) is the system state vector, y(t) is the system output vector, and δ f (t) is the steering angle given by the driver. A i , B fi , B, and C are constant matrices with compatible dimensions.

A i � -2 C fi + C ri m v v x -v x -2 a f C fi -a r C ri m v v x -2 a f C fi -a r C ri I z v x -2 a 2 f C fi + a 2 r C ri I z v x ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , B fi � 2 C fi m v v x 2 a f C fi I z ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , B � 0 1 I z ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , C � 1 0 0 1 􏼢 􏼣. (8) 

Problem Description

Vehicle lateral dynamics may show an unexpected dangerous behavior in the presence of unusual external conditions such as lateral wind force and the variation of the 

F yf V x V y α r M z CG Y α f α f δ f V x X β
_ x(t) � 􏽘 2 i�1 ρ i (ξ(t)) A i x(t) + ΔA i (t)x(t) + B fi δ f (t) + ΔB fi (t)δ f (t) + BM z (t) + D i f(t) 􏽮 􏽯, y(t) � Cx(t) + Ff(t), ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (9) 
where f(t) is faults affected to both the actuator and sensor. D i and F are constant matrices with compatible dimensions. ΔA i (t) and ΔB fi (t) are matrices functions which represent time-varying parameter uncertainties affecting the state and the input, respectively, and are structured as follows:

ΔA i (t) � MΔ 􏽥 A i (t), ΔB fi (t) � MΔ 􏽥 B fi (t), ( 10 
)
where M is a full column rank matrix. Due to uncertainties [START_REF] Yim | Design of active suspension and electronic stability program for rollover prevention[END_REF], the T-S model ( 9) can be rewritten as

_ x(t) � 􏽘 2 i�1 ρ i (ξ(t)) A i x(t) + B fi δ f (t) + BM z (t) + D i f(t) + M Δ 􏽥 A i (t)x(t) + Δ 􏽥 B fi (t)δ f (t) 􏼐 􏼑 􏽮 􏽯, y(t) � Cx(t) + Ff(t). ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (11)
Let us put the following equalities:

h i � Δ 􏽥 A i (t)x(t) k i � Δ 􏽥 B fi (t)δ f (t) ⎫ ⎬ ⎭ ⟶ v i (t) � k i (t) + h i (t), (12) 
and then, by replacing v i (t) in (11), the system becomes as follows:

_ x(t) � 􏽘 2 i�1 ρ i (ξ(t)) A i x(t) + B fi δ f (t) + BM z (t) + Mv i (t) + D i f(t) 􏽮 􏽯, y(t) � Cx(t) + Ff(t). ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (13) 
e augmented system formed from system (13) and fault f(t) can be expressed as

_ x(t) _ f(t) ⎡ ⎣ ⎤ ⎦ 􏽼√√ √􏽻􏽺√√ √􏽽 _ z(t) � 􏽘 2 i�1 ρ i (ξ(t)) A i D i 0 0 􏼢 􏼣 􏽼√√√ √􏽻􏽺√√√ √􏽽 � A i x(t) f(t) 􏼢 􏼣 􏽼√√√􏽻􏽺√√√􏽽 z(t) + B fi B 0 0 􏼢 􏼣 􏽼√√√􏽻􏽺√√√􏽽 � B i δ f (t) M z (t) 􏼢 􏼣 􏽼√√√ √􏽻􏽺√√√ √􏽽 u(t) + M 0 0 I 􏼢 􏼣 􏽼√√√􏽻􏽺√√√􏽽 M v i (t) _ f(t) 􏼢 􏼣 􏽼√√√􏽻􏽺√√√􏽽 ω i (t) ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ , y(t) � C F 􏼂 􏼃 􏽼√√􏽻􏽺√√􏽽 C x(t) f(t) 􏼢 􏼣 􏽼√√√􏽻􏽺√√√􏽽 z(t) . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (14) 
en, we obtain

_ z(t) � 􏽘 2 i�1 ρ i (ξ(t)) � A i z(t) + � B i u(t) + Mω i (t) 􏽮 􏽯, y(t) � Cz(t). ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ (15) 
Before moving on to designing the observer for the system (15), to estimate unmeasurable states and faults in the next section, the following assumptions and lemmas are needed.

Assumption 1 (see [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF]).

e matrices C and M are full row and full column rank, respectively, to ensure the existence of the general solution (43).

Assumption 2 (see [START_REF] Zhao | Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: an input-output approach[END_REF])

_ ρ q (ξ(t)) 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 􏼌 ≤ λ q , λ q ≥ 0. ⎧ ⎨ ⎩ (16) 
Lemma 1 (see [START_REF] Bede | Fuzzy sets[END_REF]). Let A, Υ, P, and Θ be matrices with proper sizes. e following two inequalities are equivalent:

Θ + A T + PA < 0, A T Υ T + ΥA + Θ P -Υ + A T Υ T * -Υ -Υ T ⎡ ⎣ ⎤ ⎦ < 0. ( 17 
)
Lemma 2 (see [START_REF] Baerentzen | Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods[END_REF]). Considering the matrix WεR n×m , with n ≥ m, and matrix Y εR n×k , the matrix X with the form

X � Y W + + U I -WW + 􏼁, ( 18 
)
is a solution of XW � Y when the condition Y W + W � Y holds.
UεR k×m is an arbitrary matrix, and W + is the Moore-Penrose pseudoinverse of W which is denoted as

W + � W T W 􏼐 􏼑 -1 W T . ( 19 
)
As mentioned in the introduction, the next section will focus on actuator/sensor faults and state estimation. e block diagram shown in Figure 2 introduces the concept of the unknown input observer, where u(t) is the input, f(t) is the fault signal, 􏽢 x(t) and 􏽢 f(t) are the state and the fault estimation, respectively, and y(t) is the system output.

Stability Analysis and Design of a Relaxed Unknown Input Observer

Presently, there are several practical thoughtfulness in the field of vehicle production that inhibit using sensors, in particular, lateral velocity and yaw rate sensors, such as high cost, degradation, or loss of signal during certain weather or other conditions. To overcome this problem, we can use the observer theory. In this section, we aim to design an unknown input observer to estimate simultaneously the vehicle state and the sensor/actuator faults, despite the presence of uncertainties affecting both the state and the input matrices.

Let us consider the following observer which has the structure same as that of the previous T-S fuzzy system:

_ p(t) � 􏽘 2 i�1 ρ i (ξ(t)) N i p(t) + G i u(t) + L i y(t) 􏼈 􏼉, 􏽢 z(t) � p(t) -Hy(t). ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (20) 
N i , G i , L i , and H are the observer's parameters to be determined. p(t) and 􏽢 z(t) are the observer states and augmented system estimation, respectively.

e error between the faulty system [START_REF] Simon | Training fuzzy systems with the extended Kalman filter[END_REF] and the observer ( 20) is given by

e(t) � 􏽢 z(t) -z(t) � p(t) -(I + HC)z(t) � p(t) -Tz(t). ( 21 
)
e dynamic of the estimation error ( 21) is written by the following equation:

_ e(t) � _ p(t) -T _ z(t) � 􏽘 2 i�1 ρ i (ξ(t)) N i p(t) + G i u(t) + L i y(t) -T � A i z(t) -T � B i u(t) -TMω i (t) 􏽮 􏽯 � 􏽘 2 i�1 ρ i (ξ(t)) N i T + L i C -T � A i 􏼐 􏼑z(t) + G i -T � B i 􏼐 􏼑u(t) -TMω i (t) + N i e(t) 􏽮 􏽯. (22) 
If the conditions (23a)-(23c) are satisfied,

N i T + L i C -T � A i � 0, (23a) 
G i -T � B i � 0, (23b) 
TM � 0. ( 23c 
)
en, ( 22) is rewritten as follows:

_ e(t) � 􏽘 2 i�1 ρ i (ξ(t))N i e(t). ( 24 
)
eorem 1 presents the condition that system (24) is asymptotically stable. Theorem 1. For given positive scalars λ k and matrices N i , G i , L i , and H, the error system ( 24) is asymptotically stable if there exist positive symmetric matrices P i (i � 1, 2) such that ( 25)-( 27) hold.

􏽘 2 k�1 λ k P k + N T i P i + P i N i < Γ ii , ( 25 
) 􏽘 2 k�1 λ k P k + N T i P j + P j N i + N T j P i + P i N j ≤ Γ ij + Γ T ij , ( 26 
)
Γ 11 Γ 12 * Γ 22 ⎡ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎦ < 0, i, j � 1, 2i < j. ( 27 
)
Proof. Let us consider the following Lyapunov function candidate:

V(t) � 􏽘 2 i�1 ρ i (ξ(t))e T (t)P i e(t), ( 28 
)
where P i � P T i > 0. Taking the time derivative of V(t), we obtain

_ V(t) � 􏽘 2 i�1 _ ρ i (ξ(t))e T (t)P i e(t) + 􏽘 2 i�1 ρ i (ξ(t)) _
e T (t)P i e(t) + e T (t)P i _ e(t) 􏽮 􏽯.

(

) 29 
Substituting ( 24) into ( 28), we get

_ V(t) � 􏽘 2 i�1 􏽘 2 j�1 ρ i (ξ(t))ρ j (ξ(t)) 􏽘 2 k�1 _ ρ k (ξ(t))e T (t)P k e(t) + e T (t) N T i P j + P j N i 􏼐 􏼑e(t) ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ . ( 30 
)
By using the condition of Assumption 2, we obtain

_ V(t) ≤ 􏽘 2 i�1 􏽘 2 j�1 ρ i (ξ(t))ρ j (ξ(t))e T (t) 􏽘 2 k�1 λ k P k + N T i P j + P j N i ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ e(t). ( 31 
)
By using Lemma 1 of [START_REF] Bede | Fuzzy sets[END_REF] for [START_REF] Taniguchi | Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[END_REF], we have

_ V(t) ≤ e T (t) 􏽘 2 i�1 ρ 2 i (ξ(t)) 􏽘 2 k�1 λ k P k + N T i P i + P i N i ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ + 􏽘 2 i�1 􏽘 2 i<j ρ i (ξ(t))ρ j (ξ(t)) 2 􏽘 2 k�1 λ k P k + N T i P j + P j N i + N T j P i + P i N j ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ e(t). ( 32 
)
If conditions in ( 25)-( 27) are satisfied, it means that _ V(t) < 0, and this completes the proof.

□ Remark 1.

e present result provides an improved extension of the work presented in [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF]. Our work presents less conservative results, thanks to relaxation matrices involved via Lemma 1 of [START_REF] Bede | Fuzzy sets[END_REF]. Furthermore, if we put Γ ii � 0, we get the conditions in [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF]. us, the proposed eorem 1 is a general case of the results given by [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF].

eorem 2 provides the conditions for the asymptotic stability of the estimation error in [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF]. Theorem 2. For given positive scalars λ k , the states and faults of system [START_REF] Simon | Training fuzzy systems with the extended Kalman filter[END_REF] are estimated asymptotically with observer [START_REF] Youssfi | Vehicle lateral dynamics estimation using unknown input observer[END_REF] Unknown input observer Vehicle lateral dynamics if there exist the matrices N i , G i , L i , H, R, Y, and Q i and positive symmetric matrix P i such that ( 33)-( 35) hold.

M z (t), δ f (t) x  (t), f  (t) f (t) f (t) u (t) y (t)
Ξ ii P i -R + Λ i * -R -R T 􏼢 􏼣 < 0, i � 1, 2, (33) 
Ξ ij + Ξ ji P i -R + Λ i + Λ j P i -R + Λ j -R 1 + Λ j * -R -R T -R -R 2 * * -R -R T -R 1 -R T * * * -R 2 -R T 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ≤ 0, i, j � 1, 2; i < j, (34) 
Γ 11 Γ 12 * Γ 22 􏼢 􏼣 < 0, (35) 
with

Ξ ij � 􏽘 2 k�1 λ k P k + R 􏽥 A i + 􏽥 A T j R T -C T Q T i -Q j C + Y 􏽥 C i + 􏽥 C T j Y T -Γ ij , (36a) 
Λ i � 􏽥 A T i R T -C T Q T i + 􏽥 C T i Y T , (36b) 
􏽥 A i � (I + WC) � A i , (36c) 
􏽥 C i � U t C � A i , ( 36d 
) W � -M(CM) + , (C � M) + � (CM) T (CM) 􏼐 􏼑 -1 (CM) T , U t � I -(CM)(CM) + . ( 37 
)
e observer gains are obtained as follows:

Y � R -1 Y, ( 38 
)
Q i � R -1 Q i , (39) 
H � W + YU t , (40) 
T � I + HC, ( 41 
)
N i � T � A i -Q i C, ( 42 
)
G i � T � B i , ( 43 
)
L i � Q i (I + CH) -T � A i H. ( 44 
)
Proof. If conditions [START_REF] Liu | New approaches to H ∞ controller designs based on fuzzy observers for T-S fuzzy systems Via LMI[END_REF] in eorem 1 hold, by applying Lemma 1, we directly obtain the conditions [START_REF] Youssfi | T-S fuzzy observers to design actuator fault-tolerant control for automotive vehicle lateral dynamics[END_REF]. e conditions (34) are obtained by using Lemma 1 twice. In the first step, we define variables indicated in Lemma 1 as

Θ � 2 􏽘 2 k�1 λ k P k + N T i P j + P j N i -Γ ij -Γ T ij . ( 45 
)
If the conditions in [START_REF] Park | LMI-based design of stabilizing fuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model[END_REF] hold, that means it is equivalent to the following conditions:

N T j R T + RN j + Θ P i -R + N T j R T * -R -R T ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ < 0. (46) 
In the second step, condition (46) can be written as (47). By applying Lemma 1, we directly obtain the conditions in (48).

2 􏽘 2 k�1 λ k P k + N T i R T + RN i -Γ ij -Γ T ij P i -R + N T i R T * -R -R T ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 􏽼√√√√√√√√√√√√√√√√√√√√√√√ √􏽻􏽺√√√√√√√√√√√√√√√√√√√√√√√ √􏽽 θ + N T j 0 0 0 ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ 􏽼√√√􏽻􏽺√√√􏽽 A T P i 0 0 0 ⎡ ⎣ ⎤ ⎦ 􏽼√√ √􏽻􏽺√√ √􏽽 P + P i 0 0 0 􏼢 􏼣 N j 0 0 0 􏼢 􏼣 < 0, (47) 
Θ + A T 􏽥 R T + 􏽥 RA P -􏽥 R + A T 􏽥 R T * -􏽥 R -􏽥 R T ⎡ ⎣ ⎤ ⎦ < 0, (48) 
with 􏽥 R � R R 1 R R 2 􏼢 􏼣.
From (23a)-(23c), we have

(I + HC)M � 0 ⇔H(CM) � -M. ( 49 
)
e general solution of (49) according to Assumption 1 and Lemma 2 is [START_REF] Zhu | A model predictive speed tracking control approach for autonomous ground vehicles[END_REF], where Y is an arbitrary matrix with appropriate dimension. We put Q i � L i + N i H, and we replace it in (23a)-(23c); we get

N i � T � A i -Q i C. ( 50 
)
en, we can write

L i � Q i (I + CH) -T � A i H. ( 51 
)
By combining ( 41) and (50), we find

N i � (I + HC) � A i -Q i C, � (I + WC) � A i + YU t C 􏼁 � A i -Q i C. ( 52 
)
Replacing N i by its expression (52) and taking into account the Y � RY and Q i � RQ i give the linear matrix inequalities [START_REF] Youssfi | T-S fuzzy observers to design actuator fault-tolerant control for automotive vehicle lateral dynamics[END_REF] and [START_REF] Zhao | Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: an input-output approach[END_REF]. is completes the proof.

□ Remark 2.
e given λ k is determined based on Assumption 2. e choice of λ k is made arbitrarily in such a way that the conditions of eorem 2 are feasible and taking into account the quality of simulation results. Remark 3. In comparison with some works in the literature [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF][START_REF] Gómez-Peñate | Sensor fault diagnosis based on a sliding mode and unknown input observer for takagi-sugeno systems with uncertain premise variables[END_REF][START_REF] Martínez-García | Estimation of actuator and system faults via an unknown input interval observer for takagi-Sugeno systems[END_REF], which just focus on sensor faults or actuator faults, we have concentrated, in this paper, on the problem of estimating actuator and sensor faults together.

Simulation Results

To demonstrate the efficiency of the proposed observer to estimate the vehicle states and faults, we have carried out some simulations using the vehicle model (1) and MATLAB software. We take the longitudinal velocity as it is constant, v x � 30 ms -1 , we have considered the steering angle shown in Figure 3, and the values of other parameters are listed in Table 1 [START_REF] Zhu | A model predictive speed tracking control approach for autonomous ground vehicles[END_REF]. It should be mentioned that the simulated results are obtained without control, which means the yaw moment is equal to zero (M z (t) � 0). Note that each (A i , C) is observable.

We have chosen to add a variant fault f(t) to both the input and output of the vehicle dynamics system, which takes the following form:

0.46t -2, 0 ≤ t ≤ 5, 1, 5 ≤ t ≤ 10, sin(3t), t ≥ 10. ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (53) 
e parameter matrices of the faulty uncertain system of the vehicle lateral dynamics [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF] are 

A 1 � -1.
C � 1 0 0 1 􏼢 􏼣, D 1 � D 2 � 1 1 􏼂 􏼃, M � 0.1 0 0 0.1 􏼢 􏼣, F � 1 1 􏼂 􏼃. (54) 
Selecting λ 1 � 0.764 and λ 2 � 0.542 and solving LMIs of eorem 2, by using Matlab LMI toolbox [START_REF] Gahinet | e LMI control toolbox[END_REF][START_REF] Chen | Linear Matrix Inequalities in System and Control eory[END_REF], the following observer gains are recovered: We can see, in both Figures 4 and5, a relaxed estimation of states despite the presence of uncertainties and faults. Noticing that eorem 2 presents the swiftness and the effectiveness compared to the theorem of [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF] during estimation of vehicle lateral dynamics system states, this is [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF] (a) clearly seen in the evolution of the estimation errors (the solid line quickly converges to zero relative to the dotted one).

N 1 � -1.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ,
f (t) f  (t) by Theorem 2 f  (t) by
Figure 6 illustrates the fault added to the system and its estimates in Figure 6(a) and estimation errors in Figure 6(b), using different methods.

It is clear that the estimation by the observer's gains obtained by eorem 2 converges rapidly towards the fault, just after it has appeared, faster than the result obtained by eorem 2 of [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF], and this is clearly seen in the evolution of the estimation errors (the solid line quickly converges to zero relative to the dotted one).

Figure 7 shows the membership function derivative _ ρ 1 (ξ(t)) and _ ρ 2 (ξ(t)) as considered in Assumption 2.

Remark 4. From Figure 7, we can see clearly that the conditions proposed in Assumption 2 are satisfied and the derivative of membership functions did not overcome its upper bound λ 1 and λ 1 . is means that the proposed conditions respect its hypothesis.

Discussion

From these results, it can be deduced that the use of the proposed relaxed observer leads to much better results than those obtained by [START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF]. As mentioned in Remark 3, some works in the literature focus either on actuator or sensor faults and not both simultaneously. In this paper, both types of faults are investigated. However, the limitations of this study are reflected in the fact that an identical fault affects the actuator and the sensor at the same time, which is unusual in real systems, including the vehicle lateral dynamics system.

Conclusions

In this paper, we have proposed a relaxed unknown input observer to estimate actuator/sensors faults and states of an uncertain vehicle lateral dynamics system, which is represented by T-S fuzzy systems.

e impacts of the uncertainties are absolutely removed, and the designed observers are asymptotically estimating the unmeasurable states and disturbances simultaneously. In order to compare the results obtained with the other results, the coincidence of the estimation error to zero is studied with the Lyapunov approach and LMI constraints, which are provided to design the matrices of the different components of the unknown input observer.

e vehicle simulations show clearly the quality of faults and states estimation of the vehicle dynamics, and the proposed approach can be adapted to driving conditions. As the next perspective, we want to work on the design of an observer that can, besides estimating the states, estimate the sensor faults and actuator faults separately and in different forms.

Figure 1 :

 1 Figure 1: Vehicle lateral dynamics model.

Figure 2 :

 2 Figure 2: Observation scheme.

Figures 4

 4 Figures 4 and 5 represent, respectively, the lateral velocity v y and the yaw rate _ ψ with their estimates in Figures4(a) and 5(a) and estimation errors in Figures4(b) and 5(b), by simultaneously using the observers' gains recovered by eorem 2 and the theorem of[START_REF] Nejjari | Fault/state estimation observer synthesis for uncertain T-S fuzzy systems[END_REF].

Figure 3 :

 3 Figure 3: Profile of the steering angle given by driver δ f (t) [rad]. Parameters of membership functions and stiffness coefficients are given in Table 2[START_REF] Youssfi | static output-feedback H_infty control for T-S fuzzy vehicle lateral dynamics[END_REF].

Figure 4 :

 4 Figure 4: (a) Time evolution of lateral velocity and its estimates. (b) Error estimation of lateral velocity.

Figure 5 :

 5 Figure 5: (a) Time evolution of the yaw rate and its estimates. (b) Error estimation of the yaw rate.

Figure 6 :

 6 Figure 6: Continued.

Figure 6 :

 6 Figure 6: (a) Time evolution of fault and its estimates. (b) Error estimation of fault.

Figure 7 :

 7 Figure 7: Membership functions derivative.

Table 1 :

 1 Simulation vehicle parameters.

	Constant	Explanation	Value	Unit
	m	Vehicle mass	1653 + 2 × 90	Kg
	I			

z Yaw inertia moment at the center of gravity 2765 Kg • m 2 a f Distance from the center of gravity to the front axle 1.402 m a r Distance from the center of gravity to the rear axle 1.646 m

Table 2 :

 2 Nominal stiffness and membership function coefficients.

	Nominal stiffness coefficients	C f1	C f2	C r1	C r2	a 1 � 3.1893	b 1 � 0.5077	c 1 � 0.9496
	Values	60712	4812	60088	4555	a 2 � 0.5633	b 2 � 5.3907	c 2 � 0.8712

Table 2 [
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