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ABSTRACT In this article, a new category of soft-input soft-output (SISO) minimum-mean square error 
(MMSE) finite-impulse response (FIR) decision feedback equalizers (DFEs) with iteration-wise static 
filters (i.e. iteration variant) is investigated. It has been recently shown that SISO MMSE DFE with 
dynamic filters (i.e. time-varying) reaches very attractive operating points for high-data rate applications, 
when compared to alternative turbo-equalizers of the same category, thanks to sequential estimation of data 
symbols. However the dependence of filters on the feedback incurs high amount of latency and 
computational costs, hence SISO MMSE DFEs with static filters provide an attractive alternative for 
computational complexity-performance trade-off. However, the latter category of receivers faces a 
fundamental design issue on the estimation of the decision feedback reliability for filter computation. To 
address this issue, a novel approach to decision feedback reliability estimation through online prediction is 
proposed and applied for SISO FIR DFE with either a posteriori probability (APP) or expectation 
propagation (EP) based soft feedback. This novel method for filter computation is shown to improve 
detection performance compared to previously known alternative methods, and finite-length and asymptotic 
analysis show that DFE with static filters still remains well-suited for high-spectral efficiency applications.

INDEX TERMS Decision feedback equalizers, inter-symbol interference, expectation propagation, 
semi-analytical receiver abstraction, performance prediction, turbo equalization.

I. INTRODUCTION

Joint detection and decoding through iterative exchange of 
extrinsic information between a soft-input soft-output (SISO) 
detector and a SISO decoder can achieve near capacity per-
formance with a well-designed coding scheme. In particular, 
turbo equalization seeks to provide robust high-throughput 
links over strongly frequency-selective channels.
However, unlike SISO finite-impulse response (FIR) mini-

mum mean squared error (MMSE) linear equalizers (LE) [2], 
practical SISO MMSE FIR DFE structures have not been 
thoroughly investigated, and only gathered attention in recent 
years [1], [3], [4]. In this article, a novel filter computation 
approach for such structures is proposed, through a predic-
tive estimation of the decision feedback reliability. In the 
following, we mainly consider SISO MMSE FIR receiver 
structures. Although there exists other filter-based equaliza-
tion techniques in the literature, such as block filter-banks,

Kalman smoothers or frequency-domain equalizers (FDE)
[5], [6], due to the sliding-window processing, FIR structures
are better suited for handling symbol-wise serial decision
feedback. This capability will be shown to bring significant
performance gain when operating with high order modula-
tions or high code rates.

A widespread and widely accepted nomenclature for cat-
egorizing such equalizers has not been established in the
literature. In our view, the work in [7] provides an accurate
categorization based on the occurrence of SISO adaptive
filter updates with prior information. This nomenclature is
attractive as it is directly related to the assumptions used for
the derivation of the equalizer, and it also gives some insights
on both the decoding performance and the computational
complexity. Time varying (TV) FIR filters are updated at
each single symbol, by fully exploiting prior information, and
they are well-suited for doubly-selective channels. However,
they have high computational requirements and fast channel
estimation and tracking must also be implemented in the
receiver. Iteration varying (IV) FIR filters are static inside
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one data block and updated only at the beginning of each
turbo iteration, by using the knowledge of overall quality
of the feedback, thus reducing the involved computational
costs. They are hence excellent candidates for equalization
in time-varying channels whose variation is sufficiently slow
to be considered static inside one data block (block fading
channel model).

The nature of feedback ‘‘decisions’’ (or rather
‘‘estimates’’) also impacts the DFE error-rate performance.
Hard decisions can be taken, as in conventional DFE [8],
but this results in a significant amount of error propagation
and unpredictable behavior [9], unless complex heuristics are
used [10]. Alternatively, a widespread category of DFE with
soft feedback use a posteriori probability (APP) distributions,
due to its relative simplicity and fair performance [3], [4],
[11]. Finally, soft feedback based on expectation propagation
(EP) [12] improves the performance of TV DFE [1], in addi-
tion to being more predictable, due to relatively lowered
correlations with the equalized estimates [13].

The design of optimum IV DFE receivers is however
non-trivial. Indeed, static filters should depend on the deci-
sion feedback reliability, and the decision feedback naturally
depends on the filters. As a consequence, there does not
exist closed-form expression of the optimal filter due to this
non-linear ‘‘chicken-and-egg’’ inter-dependence.

IV DFE proposals in the literature use a variety of
sub-optimal heuristics for filter computation [3], [4], [11].
For DFE with hard decisions, the conventional approach is
to assume a perfect feedback, causing error propagation and
performance degradation in real operation [9]. Using soft
APP decisions while still assuming perfect feedback par-
tially mitigates error propagation, as soft symbols’ magni-
tudes scale down with unreliability [14]. The first reference
to incorporate APP soft feedback reliability in filter com-
putations is the receiver proposed in [11] for the special
case of binary-phase-shift-keying (BPSK) modulation. The
direct dependencies between soft symbols and log-likehood
ratios (LLRs) for the BPSK constellation enable the use of
a tractable density evolution on the APP LLR distribution,
given a prior LLR distribution from the decoder. This prop-
erty is used by the BPSK receiver of [11] to estimate the
decision feedback reliability. However, this scheme cannot be
directly generalized to high-order constellations; hence [3]
proposed a receiver that implements a LE at the first turbo
iteration, and then it uses previous turbo iteration’s demapper
APP LLRs to estimate soft-symbol statistics for IV DFE.
Note that this approach is only possible with Gray mapped
constellations. More recently, [4] proposed pre-equalization
with LE over a few symbols, and then to use APP distribution
of these symbols to estimate APP soft-feedback statistics
for IV DFE.

Considering the previous developments, our contributions
can be summarized as follows:
• An IVDFEwith soft APP feedback based on online pre-
diction is formulated. The technique in [11] is extended
with models from the field of semi-analytic performance

prediction [15]–[17], used both for physical layer
abstraction or link layer adaptation.

• A low complexity IV DFE with soft EP-based feedback
is proposed, as an IV extension of [1], by removing the
bias from predicted APP estimates’ reliability.

• A novel approach for estimating soft decision feed-
back reliability is proposed, based on online binary and
symbol-wise semi-analytic performance prediction.

• The accuracy and the convergence of these prediction
schemes are evaluated and the performance of IV equal-
izers are compared. To our knowledge, the accuracy of
different IV DFE heuristics is not compared elsewhere,
despite their direct impact on DFE error propagation.

The remainder of this paper is organized as follows.
Section II presents the systemmodel and the general structure
of proposed IV DFE receivers. The involved semi-analytic
prediction scheme is developed and analyzed in Section III.
Finally, before concluding, the proposed equalizers with
online prediction are numerically analyzed in Section IV,
in the finite-length and the asymptotic regimes.
Notations: Bold lowercase letters are used for vectors:

let u be a N × 1 vector, then un, n = 1, . . . ,N are its
entries, unless specified otherwise. Capital bold letters denote
matrices: for aN×M matrixA, [A]n,: and [A]:,m respectively
denote its nth row and mth column, and an,m = [A]n,m is
the entry (n,m). IN is the N × N identity matrix, 0N ,M
and 1N ,M are respectively all zeros and all ones N × M
matrices. en is the N ×1 indicator whose only non-zero entry
is en = 1. Operator Diag(u) denotes the diagonal matrix
whose diagonal is defined by u.R,C, and Fk are respectively
real, complex and k th order Galois fields.

Let x and y be two random variables, µx = E[x]
is the expected value, σ 2

x = Var[x] is the variance and
σx,y = Cov[x, y] is the covariance. The probability of the
discrete random variable x taking the value α is P[x = α].
For random vectors x and y, we define µµµx = E[x]
and covariance matrices 6x,y = Cov[x, y] and 6x =

Cov[x, x]. CN (µx , σ 2
x ) denotes the circularly-symmetric

complex Gaussian distribution of mean µx and variance σ 2
x .

FinallyN (x;µx , σ 2
x ) and CN (x;µx , σ 2

x ) respectively denote
the expressions of the probability density functions of the real
and the circular-symmetric complex Gaussian distributions.

II. SYSTEM MODEL
A. SINGLE CARRIER BICM TRANSMISSION
Single carrier transmission using a bit-interleaved coded
modulation (BICM) scheme is considered.

Let b ∈ FKb2 be a Kb-bit information packet. b is encoded
and then interleaved into a codeword d ∈ FKd2 . A memoryless
modulator ϕ then maps d to the symbol block x ∈ XK , where
X is theM th order complex constellation, with zero mean and
average power σ 2

x = 1, and with Q = log2 M . The Q-word
associated to xk is denoted dk = [d]Q(k−1)+1:Qk , and both
dk,q and ϕ−1q (xk ) denote the value of the qth bit labelling
the xk , i.e. dQ(k−1)+q, with q = 1, . . . ,Q.



FIGURE 1. Iterative detection and decoding of BICM signals.

We consider an equivalent baseband frequency selective
channel with the impulse response h = [hL−1, hL−2 . . . h0],
of delay spread L. Thus the received samples are

yk =
L−1∑
l=0

hlxk−l + wk , (1)

for k = 1, . . . ,K , where the noise wk is modelled as an
additive white Gaussian noise (AWGN), with CN (0, σ 2

w), i.e.
a zero mean Gaussian process with variance σ 2

w.
The receiver is assumed to be ideally synchronized in

time and frequency, and perfect channel state information is
available. We consider an iterative BICM receiver where a
SISO channel decoder and a SISO symbol receiver exchange
extrinsic information for iterative detection and decoding,
as shown in Fig. 1. A priori, extrinsic and a posteriori log
likelihood ratios (LLRs) of coded bits d are respectively
denoted Lp(·), Le(·) and L(·), with respect to the SISO
receiver. The considered SISO symbol detector consists of a
SISO channel equalizer and a symbol-wise SISO demapper
module, as shown in Fig. 1. The latter consits in a soft-output
maximum a posteriori (MAP) demapper, and a soft-mapping
unit, an APP distribution estimator, and the eventual use of
the so-called ‘‘Gaussian division’’ operation for computing
extrinsic symbol feedback (see discussion below and [1]).

The SISO equalizer computes an estimate xek of xk , affected
by a residual noise of variance vex,k , whereas the SISO demap-
per uses these estimates to compute Le(d), and to deliver soft
feedback xdk to the equalizer for additional interference can-
cellation, such that vdx,k is the variance of residual interference
and noise of the feedback (this will be discussed in more
detail afterwards).

In short, soft mapper uses LLRs from the decoder to esti-
mate a prior distribution on xk = α, ∀α ∈ X

Pk (α) ∝
∏Q

q=1 e
−ϕ−1q (α)Lp(dk,q). (2)

Soft demapper estimates a posteriori symbol distribution

Dk (α) ∝ exp

(
−
|α − xek |

2

vex,k

)
Pk (α), ∀α ∈ X , (3)

which allows computing extrinsic LLRs towards the decoder

Le(dk,j) = ln

∑
α∈X 0

j
Dk (α)∑

α∈X 1
j
Dk (α)

− Lp(dk,j), (4)

with X b
j = {α ∈ X : ϕ−1j (x) = b} where b ∈ F2.

B. ON SISO FIR DFE STRUCTURES AND PROBLEM
STATEMENT
FIR structures are modelled with windowed processes;
applying a sliding window [−Np,Nd ] on yk , we define
yk = [yk−Np , . . . , yk+Nd ]

T . Np and Nd are respectively the
number of pre-cursor and post-cursor samples, and we denote
N , Np + Nd + 1, and N ′p , Np + L − 1. Then, using the
same window on wk , and [−N ′p,Nd ] on xk , we have

yk = Hxk + wk , (5)

with H being the N × N + L − 1 Toeplitz matrix generated
by the static channel h with the first row being

[
h, 01,N−1

]
.

Exact TVDFE receivers carry out interference cancellation
with anti-causal estimates x̄ak , [x̄ak , . . . , x̄

a
k+Nd ] and causal

estimates x̄ck , [x̄ck−N ′p , . . . , x̄
c
k−1], with related variances

v̄dfex,k , [v̄cx,k−N ′p , . . . , v̄
c
x,k−1, v̄

a
x,k , . . . , v̄

a
x,k+Nd ]. Causal esti-

mates are directly dependent on the values of (xek , v
e
x,k ) from

previous turbo iterations, and they depend on mapping con-
straints. The equalized estimates are [1]

xek = x̄ak + fk
Hyk

− gck
H x̄ck − gak

H x̄ak

vex,k = 1/ξk − v̄ax,k ,

{
fk , 6k

−1h0/ξk ,
ξk , hH0 6

−1
k h0,

(6)

with 6k , σ 2
wIN + HDiag(v̄dfek )HH , gck , [HH fk ]1:N ′p ,

gak , [HH fk ]N ′p+1:N ′p+Nd and h0 , [H]:,N ′p+1. In this paper,
for numerical results the values of window parameters are
taken as N = 3L + 2 and Nd = 2L.
IV DFE is obtained when v̄dfek is independent of k , with

v̄dfek = v̄dfe, all filters being invariant, f, gc and ga, as in [4]:

xek = x̄ak + fHyk
− gcH x̄ck − gaH x̄ak

vex = 1/ξ − v̄ax ,

{
f , 6−1h0/ξ,
ξ , hH0 6

−1h0.
(7)

The variances of soft interference cancellation estimates are

v̄dfex = [v̄cx1N ′p,1, v̄
a
x1Nd+1,1], (8)

where v̄ax and v̄cx are respectively the overall reliability of
anti-causal and causal estimates. For interference cancella-
tion, the set of anti-causal estimates are available before
equalization, and an accurate estimate of their reliability is
given by the least-squares estimation; v̄ax = K−1

∑K−1
k=0 v̄

a
x,k .

In most SISO DFE structures, the anti-causal estimates are
the prior estimates given by the decoder1: xpk , EPk [xk ],
vpx,k , VarPk [xk ].

As stated in the introduction, the core of the problem lies
in the computation of v̄cx . A simple, but inaccurate solution to
this is the ‘‘perfect decision assumption’’: x̄ck are all assumed

1However, note that in the self-iterated SISO DFE of [1], the anti-causal
estimates are the causal estimates of previous iterations.



FIGURE 2. Soft-input soft-output IV DFE APP structure.

to be equal to xk , yielding v̄cx = 0. This approach is suffi-
cient at high SNR operating points, but as shown in [1], [9],
it degrades performance in moderately or severely selective
channels.

Hence, with these notations, this paper’s main objective
is to evaluate novel prediction methods to compute x̄ck for
optimizing the inter-symbol interference (ISI) mitigation per-
formance of IV DFE. In the following, the cases of IV DFE
based on APP-based soft feedback (see Fig. 2), and EP-based
soft feedback (see Fig. 3) will be discussed.

C. APP SOFT FEEDBACK COMPUTATION
A common approach to compute soft feedback for DFE is
to use APP estimates, as in IV structures of [3], [4], [11].
Derivation of a DFE APP for TV FIR is available in [1].

These soft estimates are given by themean and the variance
of the posterior symbol distribution Dk , given in Eq. (3).
We denote

µdk , EDk [xk ] =
∑
α∈X αDk (α),

γ dx,k , VarDk [xk ] =
∑
α∈X |α|

2Dk (α)− |µdk |
2. (9)

For the IV DFE APP filter computation, an invariant vari-
ance γ dx is needed, as with the causal reliability v̄cx . Unlike
the anti-causal reliability, γ dx cannot be estimated using the
causal estimates (x̄ck , v̄

c
x,k ) = (µdk , γ

d
x,k ), as causal estimates

are only available once the filter is computed, and the equal-
ization is being carried out. Thus, a predictive estimation
is required. This receiver corresponds to the Fig. 2, with
v̄cx = γ

d
x .

D. PREDICTIVE EP-BASED SOFT FEEDBACK
COMPUTATION
In [1], an expectation propagation (EP) based soft feedback
is used within a TV DFE which proved to bring several
performance improvements. Unlike APP estimates, EP-based
estimates carry only the extrinsic information brought by the
demapper, and prevents DFE from relying on its own bias,
and improves the asymptotic predictability of the receiver.
For TV DFE, these estimates are obtained by the division of
twoGaussian PDFs, which yields another Gaussian PDFwith
mean and variance given by

xdk =
µdk v

e
x − x

e
kγ

d
x,k

vex − γ
d
x,k

, and, vdx,k =
vexγ

d
x,k

vex − γ
d
x,k

. (10)

For the sake of simplicity, this operation is referred to as
‘‘Gaussian division’’.

For IV DFE EP structure, this feedback is not adapted,
as the invariant filter is unable to adapt its coefficients to
handle the strong variations of vdx,k , which depends on the
instantaneous APP variance γ dx,k . Hence we propose to use a
feedback based on overall APP reliability, with

xdk =
µdk v

e
x − x

e
kγ

d
x

vex − γ dx
, and, vdx,k =

vexγ
d
x

vex − γ dx
, (11)

where a predicted invariant APP variance γ dx is used to
generate the feedback. Moreover EP-based estimates have
an invariant variance, i.e. vdx , vdx,k ,∀k , as the causal reli-
ability is directly related to the predicted APP variance. The
receiver based on this structure is illustrated in the Fig. 3, with
v̄cx = vdx .

III. SEMI-ANALYTIC ABSTRACTION OF SISO FIR DFE
In this section, a prediction model for the turbo DFE structure
of Equation (7) is exposed, without loss of generality, for
the case where anti-causal estimates are given by decoder’s
extrinsic LLRs, i.e. v̄ax = vpx . Such models are usually used
for handling physical layer link quality prediction that is
necessary to enable link adaptation with low computational
complexity. The originality is that, in our context, it will be
exploited for online estimation of the reliability of causal
estimates for SISO DFE filter computation.

FIGURE 3. Soft-input soft-output IV DFE EP structure.



FIGURE 4. Block diagrams for bit-wise (left) and symbol-wise (right)
causal reliability prediction schemes.

A. GENERAL STRUCTURE AND ANALYTICAL
EQUALIZER MODEL
SISO DFE is modelled with two independent components;
an analytical model for the equalizer, and a numerical model
for the soft demapper. Unlike asymptotic transfer models
(K → +∞) used in extrinsic information transfer (EXIT)
analysis [18], finite-length transfer models are used for char-
acterizing the demapper, as prior works on performance pre-
diction noted their positive impact on accuracy [15], [16].

Following Eq. (7), the IV DFE-IC output reliability vex is
modelled by a function φREC as

vex = φREC(σ
2
w,h, v

p
x , v̄

c
x)

,

(
hH0

[
σ 2
wIN+HDiag(v̄dfex )HH

]−1
h0

)−1
− vpx , (12)

where v̄dfex is given by Eq. (8), with v̄ax = vpx . This function is
strictly increasing with v̄cx ∈ [0, σ 2

x ].
As an analytical model is unavailable for characterizing the

demapper, it is modelled with a look-up table (LUT) φDEM,
given by

v̄cx = φDEM(vex , ·), (13)

where v̄cx is the expected value of causal estimates’ variance,
taken over realizations of the channel noise, the equalizer
outputs and the prior LLRs. The second argument ‘·’ in
Equation (13) models prior information, and the exact nature
of the argument depends on the selected prediction approach.
Improvements proposed in the upcoming subsection concern
this module.

Since equalizer and demapper iteratively exchange relia-
bilities, the two functions representing their model must be
composed to yield a recursive equation on v̄cx . Hence by using
n = 0, . . . ,Npred for indexing recursions, we have

v̄cx[n+ 1] = φDEM(φREC(σ 2
w,h, v

p
x , v̄

c
x[n]), ·) , fpred(v̄cx[n]).

(14)

If fpred admits a unique fixed-point on v̄cx , then the desired
predicted reliability estimate is this fixed-point. Moreover,
the optimality of IV DFE-IC strongly depends on v̄cx and
hence on the accuracy of 8DEM.

Fig. 4 illustrates reliability prediction structures with the
two semi-analytical models that will be introduced below.

B. NUMERICAL DEMAPPING MODELS FOR APP/EP
Modelling the demapper with prior information is challeng-
ing due to its highly non-linear behavior, and due to strong

simplifying assumptions. The main focus of the study is the
model of the posterior symbol distribution’s variance γ dx .
This quantity is used for both DFE with APP feedback (see
Subsection II-C) and DFE with EP feedback (see analytical
link with vdx in (11)).

1) MUTUAL INFORMATION BASED PREDICTION (BIT-WISE)
In the BPSK receiver of [11], a prediction scheme is
considered, assuming input/output LLRs of the demapper to
be consistent Gaussian, i.e. L(·)(dk,q) ∼ N (d̄k,qµ(·), 2µ(·)),
where d̄k,q = 1−2dk,q, and where (·) is p, e or void, depend-
ing on concerned LLRs. Using a semi-analytical density evo-
lution, parameter µe of extrinsic LLRs is predicted using µp.
The parameter µ(·) is bijectively linked to the average mutual
information (MI) between LLRs and the associated coded
bits, usable for binary prediction as in [15]. Hence using
such formalism, the approach of [11] can be extended to any
constellation and mapping.

More specifically, the demapper behaviour is numeri-
cally integrated for each γ dx,k , k = 1, . . . ,K , under the
assumption that prior LLRs are consistent Gaussian with the
parameter µp, and the assumption that the residual ISI
and noise affecting the equalized symbols xek are Gaussian-
distributed, i.e. xek ∼ CN (xk , vex). Hence with these condi-
tions, a LUT on µp and vex is built with

v̄cx = φDEM(vex , µp) ,
1
K

K∑
k=1

ELp,xe [v̄
c
x,k ], (15)

where v̄cx is the variance of residual error on APP/EP soft
symbols and the priors’ parameter µp is measured with a
maximum-likelihood (ML) estimator (see Fig. 4, left)

µp ≈

√√√√√1+
K∑
k=1

Q∑
q=1

|Lp(dk,q)|2 − 1. (16)

In the case of APP feedback, i.e. for v̄cx,k = γ
d
x,k , the expec-

tation in Equation (15) becomes

ELp,xe [γ
d
x,k ]

=
1
M

∑
xk∈X

Var
[
D(xk , xek ,Lp,k )

]
× CN (xek ; xk , v

e
x)
∏Q

q=1N (Lp,k,q; ϕ̄−1q (xk )µp, 2µp) (17)

where the APP probability mass function of a dummy symbol
x ∈ X is given by

D(x, xe,Lp),
1
Z
exp

−|x − xe|2
ve

−

Q∑
q=1

ϕ−1q (xe)Lp,q

, (18)

with Z being the normalization constant such that∑
x∈X D(x, xe,Lp) = 1. Moreover, considering the EP

feedback’s analytical expression in Equation (11), we have

ELp,xe [γ
d
x,k ]=

( 1
K

K∑
k=1

ELp,xe [γ
d
x,k ]

)−1
−

1
vex

−1. (19)



The binary prediction scheme above appeared to yield too
optimistic estimates in [11], and instead Lopes et al. resorted
to obtainµe andµp through BPSK channel estimators, which
circumvents consistent Gaussian LLR approximation.

More specifically, this problem ensues from well known
issues with regards to performance prediction of turbo iter-
ative systems, for which the consistent Gaussian approx-
imation of LLRs was shown to be only accurate at the
zeroth turbo-iteration, and in the asymptotic limit. Other-
wise inaccurate estimates propagate across turbo iterations
due to the internal non-linear dynamics of channel decod-
ing [19]. To overcome this prediction bias, prediction based
on a two-parameter LLRs’ model has been shown to be
much more accurate [20]. Such models consider L(·)(dk,q) ∼
N (d̄k,qµ(·), η(·)µ(·)), where η(·) is no longer 2. The ML esti-
mator used for measuring µp in the binary prediction is very
sensitive to ηp, which is the reason why the binary prediction
is not robust enough in practice.

2) PRIOR VARIANCE BASED PREDICTION (SYMBOL-WISE)
For our context, two-parameter models are too complex as
they require expensive online parameter estimators to get
both µp and ηp. Hence, a single-parameter demapper model
with reasonable estimation complexity has been preferred.
We searched for the parameter which is the least sensitive to
the variations of prior LLRs’ variance-to-mean ratio ηp.

Following a thorough and almost exhaustive study of the
different alternative parameters for tracking evolution of v̄cx ,
anti-causal variance vpx has been found to be sensitive to the
changes on ηp, very similarly to v̄cx , with the advantage of vpx
being directly computable online using a simple least-squares
estimation. Hence, we propose the following LUT

v̄cx = φDEM(vex , v
p
x),

 v̄cx , K−1
∑K

k=1
ELp,xe [v̄

c
x,k ],

vpx , K−1
∑K

k=1
ELp [v

p
x,k ],

(20)

where both input vpx and output v̄cx are numerically integrated
using prior LLRs generated for a fixed value of ηp. However,
as ηp cannot be accurately measured online, the conventional
consistent approximation [15] is kept (ηp = 2). In the follow-
ing, we will assess its impact on the prediction accuracy.

3) ROBUSTNESS OF DEMAPPER PREDICTION
The sensitivity of the considered prediction schemes to varia-
tions in ηp is evaluated. This aspect is important for character-
izing the robustness of iterative receiver prediction schemes,
as the hypothesis ηp = 2, used for LUT generation, is only
true at the initial turbo-iteration and then it varies [19].

An AWGN channel is simulated with blocks of 16-QAM

FIGURE 5. Mean-square error on the prediction quality of the binary
(blue, ×) and symbol-wise (red, +) schemes.

true causal covariance is measured, and plotted in Fig. 5.
The left side of the figure provides results for APP feed-
back, and the right side for EP-based feedback. The binary
approach is seen to be severely impacted by the changes in ηp,
whereas the symbol-wise approach, although not perfect,
remainsmore robust. Considerable differences are seen at low
to medium SNR for high prior information, which suggests
that symbol-wise schemes would have an advantage at the
decoding threshold in asymptotic behaviour, i.e. when a high
number of turbo-iterations are used. Oppositely, without any
turbo-iteration, both schemes would perform identically.

C. CONVERGENCE ANALYSIS
The convergence of the proposed iterative semi-analytical
prediction schemes could be assessed formally through
fixed-point analysis of Eq. (14). However, due to the
untractable non-linear expression of 8DEM, an analytic
approach is not possible, and we resort to numerical evalu-
ations. In the following, the convergence of the symbol-wise
prediction scheme is evaluated.

Numerical evaluations of the proposed fpred show that we
can reasonably conjecture that this function is continuous on
the interval [0,+∞[, with a Lipschitz constant strictly less
than one, for all σ 2

w ≥ 0 and 0 ≤ vpx ≤ σ 2
x . This ensures that

Eq. (14) reaches a unique fixed-point v̄cx ∈ [0,+∞[ for any
initial guess. This conjecture has been checked for various
channels h, and Fig. 6 plots fpred for the Proakis-C channel
(h = [1, 2, 3, 2, 1]/

√
19), using the symbol-wise demapper

model for the Gray-mapped 16-QAM constellation.
The convergence speed of the prediction scheme is also

evaluated numerically in order to determine optimal parame-
ters of the algorithm. Indeed, the fixed-point v̄cx = v̄cx[∞] is
reached more or less quickly depending on if the initial value
v̄cx[0] is close to v̄

c
x[∞].

symbols with K = 1024, to emulate the output xe of the 
equalizer, for ve varying from −15 to 15 dB, along with 
Gaussian-distributed prior LLRs generated with prior MI 
IA varying from 0 to 1 bit (and hence determining µp), 
with ηp varying from 1 to 3. The average mean squared 
error (MSE) between the predicted causal covariance and



FIGURE 6. Fixed-points of the symbol-wise fpred for SNR decreasing from
10 to 6 dB, for each value of prior reliability.

In particular, due to the near flat evolution of fpred for
v̄cx close to σ 2

x = 1, initializing with v̄cx[0] = 1 results
in fast convergence at low SNRs, and high anti-causal
covariance, but slow convergence otherwise. Oppositely with
v̄cx[0] = 0 faster convergence is achieved for high SNRs and

low anti-causal covariance. This behaviour is illustrated for
Proakis-C 16-QAM APP covariance in Figure 7.

We propose to use the heuristic v̄cx[0] = min(1, σw), when
vpx > 0.5, and otherwise using v̄cx[0] = 0 is preferable for
faster convergence. This serves as a convergence accelerating
heuristic, by making a compromise on prediction accuracy
trade-off between highly reliable feedback, and poor quality
feedback. The use of the standard deviation of the AWGN
noise σw appears experimentally to yield desirable initial
values, when the channel is normalized, as illustrated with
dashed curves in Figure 7.

IV. NUMERICAL RESULTS
A. UNCODED EQUALIZATION BEHAVIOUR
In this paragraph, the uncoded finite-length behaviour of the
proposed IV DFE with online prediction is evaluated. Exact
TV DFE counterparts are used as lower-bound references
on bit-error rate (BER), to assess the prediction accuracy.
Note IV FIR receivers might outperform TV FIRs in some
cases [21], as the latter are more sensitive to the convergence
errors committed by the SISO decoder.

Block transmission in Proakis C channel is considered with
K = 256 and with QPSK, 8-PSK and 16-QAM constella-
tions. In Fig. 8, BER of TV DFE with APP and EP feedback
are compared to the proposed predictive IV implementations.
IV DFE converges towards the curve of TV counterparts,
especially at high SNR, but it is seen that a gap remains
at medium BER for some constellations, due to dynamic
filtering capabilities of TV receivers. EP feedback is shown
to be mostly equivalent to APP feedback in this uncoded use
case, but at high BER, EP has an advantage over APP both for
TV and IV receivers, which suggests that improved decoding
thresholds can be obtained with channel coding.

FIGURE 7. Evolution of the predicted APP covariance γ d
x [n+ 1] = fpred(γ d

x [n]), with solid curves with
markers for the initial value with γ d

x [0] = 0 or 1 (as per axis on left) and dashed curves for the proposed
heuristic (γ d

x [0] = min(1, σw )). Plot colors are for SNR varying from 2.5 to 25 dB, with 7.5 dB steps.



FIGURE 8. Uncoded bit-error rate (BER) performance of proposed predictive IV DFEs.

FIGURE 10. Rate-1/2 coded BER with proposed binary and symbol-wise
prediction.

violate the extrinsic message principle of turbo detection,
the rates predicted by EXIT can be too optimistic (e.g. SIR
of APP DFE appears to surpass MAP, which is impossible).
This has been observed for APP-based receivers in [1], [13],
but the EP-based DFE does not suffer from this phenomenon.
Hence in the following, the proposed predictive EP-based IV
DFE is evaluated.

IV DFE EP with symbol-wise prediction scheme is used
for 8-PSK transmissions in the Proakis C channel, and numer-
ically obtained achievable rates are plotted in solid lines
in Fig. 9. Dotted plots illustrate the achievable rates without
turbo-iterations, for each receiver. IV receivers are shown to
follow the behaviour of their TV counterpart within a gap of
about 0.1 bits/s/Hz for both LE and DFE, but IV DFE still
keep a significant upper hand over TVLE atmedium and high
spectral efficiency operating points. Using IV FIR receivers
to operate at a given rate requires about 1.5 dB more energy
than TV FIR, but with significant complexity savings.

Approximate computational complexity per turbo-iteration
of considered FIR receivers is given in the Table 1. TV LE

FIGURE 9. Achievable rates of FIR receivers for 8-PSK in Proakis C 
channel.

B. ON THE OPERATING REGIONS OF FIR RECEIVERS
A previous work on TV FIR turbo equalizers concluded 
that TV DFE significantly outperforms TV LE at high data 
rates [1], whereas TV LE remains preferable at very low rates, 
as it achieves same performance with less complexity. In the 
following, the asymptotic behaviour and the computational 
complexity of the proposed receiver along with IV FIRs is 
evaluated in a similar manner.
Through the extrinsic information transfer (EXIT) analysis 

of a SISO module, a mutual information (MI) based transfer
function model, IE = TR(IA, h, σw2) is obtained [18], where 
IA and IE denote respectively the MI between coded bits and 
the prior LLRs and the extrinsic LLRs.
EXIT functions notably allow to numerically predict the 

achievable rates of SISO receivers, through the area theorem 
of EXIT charts [22]. Indeed, MAP detector’s EXIT chart’s 
area yields an accurate prediction of the channel symmetric 
information rate (SIR) [23], the highest possible transmission 
rate for practical constellations, without channel knowledge 
at the transmitter. However, for approximate receivers which



FIGURE 11. Coded 8-PSK bit-error rate (BER) performance comparison of turbo FIR receivers across turbo-iterations for different code rates.

TABLE 1. Computational complexity of FIR receivers.

and DFE receivers use the reduced-complexity TV matrix
inversion algorithms in [1], and IV receivers exploit Cholesky
decomposition for matrix inversion. The filter computation
cost of the proposed IV DFE increases linearly with the
number of prediction iterations Npred.

C. FINITE-LENGTH FINITE-IMPULSE RESPONSE (FIR)
TURBO-EQUALIZATION PERFORMANCE
In this section, the prediction accuracy is assessed for trans-
missions encoded with non-recursive non-systematic convo-
lutional code (NRNSCC) of polynomial [7, 5]8.
First, the impact of choosing a symbol-wise or a

binary prediction scheme is assessed through finite-length

BER evaluations. The block size is kept atK = 256, similarly
to the uncoded case, and a MAP decoder based on the BCJR
algorithm is used as a SISO decoder [24]. Fig. 10 shows the
case of the EP-based feedback with 8-PSK, and the use of
symbol-wise prediction is shown to accelerate convergence
of the IV DFE performance towards TV DFE [1].

However, despite the improvements brought by the
symbol-wise prediction, covariance estimations tend to be too
optimistic for high prior information at high SNRs (following
1 or 2 turbo iterations, above 15 dB), and degrade BER perfor-
mance. A similar observation was made for the semi-analytic
prediction of turbo linear MMSE receivers in [25], where
a calibration mechanism is applied to correct the predicted
prior covariance with a multiplicative penalty factor. After
some ad hoc optimization, this scheme yields more pes-
simistic predictions that ends up improving the BER predic-
tion accuracy.

Here, a related mechanism is adapted to the proposed
online prediction. To avoid over-estimation of the causal
covariance, the anti-causal covariance can be exploited to
derive a ‘‘lower-bound’’ to estimated causal covariances.
Empirically, turbo detection systems bring most of the



FIGURE 12. BER of the proposed receivers versus turbo-iterations for
8-PSK in Proakis C channel.

improvements at the initial iterations, hence the improve-
ments after a certain number of iterations can no longer be
substantial. Thus, after some trial-and-error tests, we have
selected the predicted causal covariance v̄cx of the current
turbo iteration to be modified with the heuristic v̄cx =
max(v̄cx , β v̄

a
x), with 0 < β ≤ 1.

The proposed heuristic is integrated with the symbol-wise

TABLE 2. Computational complexity of FDE.

FIGURE 13. BER comparison vs. FDE in uncoded Proakis C.

of the gap of iteration zero, with the receiver of [3] slowly
converging to the same limit as the proposed receiver. At high
rate systems (rate 5/6) the gap between them and our proposal
increases, even for 4 turbo-iterations, and from Figure 12
it is seen that the receiver of [4] cannot converge to the
same asymptotic limits, probably due to the usage of only
a few samples for covariance estimation heuristic. The use
of EP-feedback instead of APP does not bring significant
improvement for high-rates, or without turbo-iterations, but
at medium and low rates, it allows for an additional asymp-
totic gain over 0.5 dB. However, the predictability of the EP
feedback over a wider set of configurations makes it a more
attractive solution.

D. COMPARISON WITH LOW-COMPLEXITY FREQUENCY
DOMAIN RECEIVERS
In this section the proposed sliding-window FIR turbo IV
DFE is compared with the state-of-the-art turbo FDE tech-
niques, belonging to the different category of block equaliz-
ers. FDE are known to be attractive for practical receivers,
as they enable low-complexity equalization through the use
of fast Fourier transform (FFT).

In particular, turbo equalization concept has been origi-
nally extended for FDE in [6], and then an original FDE,
called iterative-block DFE (IBDFE), with APP-based feed-
back from a decision device was proposed in [5], [26].
For uncoded systems IBDFE achieves considerable perfor-
mance gains, and its coded extension coincides with the turbo
FDE [5]. The estimated computational complexity of this
structure, per turbo-iteration, is given in Table 2.

Although this structure has quasi-linear computational
complexity, the transmitted signal has an increased overhead,
due to the use of cyclic prefixing, or zero-padding, needed

prediction, with 3 prediction iterations and β = 0.2, and the 
IV DFE-EP performance is displayed in turquoise in Fig. 10. 
Finally, to compare our proposal to the prior work and to 

evaluate its behavior in different operating regimes, the pre-
viously used rate-1/2 encoding with NRNSCC [7, 5]8 is 
punctured to get rate-2/3 encoding with [11; 01] puncturing 
pattern and rate-5/6 encoding with [10001; 01111] punctur-
ing pattern. The BER performance of the proposed IV DFE 
APP and IV DFE EP receivers are shown in red in Fig. 11, 
for 8-PSK transmissions in Proakis C channel, with above 
mentioned codes of rate 1/2, 2/3 and 5/6, and for 0, 1 and 
4 turbo-iterations. Proposed predictive IV DFE receivers use 
symbol-wise prediction with 3 iterations, and the heuristic 
parameter is β = 0.2. IV DFE APP significantly outperforms 
other APP-based DFE receivers when there are no turbo 
iterations, as this is the operating point where the prediction 
scheme is the most accurate. In Figure 12, the evolution of 
BER is plotted as the number of turbo-iterations increases. 
During intermediary iterations of the rate 2/3 system, pre-
vious works of Tao [4] and Lou and Xiao [3] close most



FIGURE 14. BER comparison vs. FDE in a uniformly distributed 10-tap
Rayleigh fading channel for 1 turbo iteration.

for circular transmission. This causes a loss of spectral effi-
ciency, which can be more or less significant depending on
the delay spread of the channel. Moreover, when using an
FDE, interference-cancellation has to be carried out in a
parallel-schedule, whereas FIR structure use serial decision
feedback, on top of the decoder feedback. Hence FIR struc-
tures have likely better computational complexity trade-off
for systems that need to exploit the benefits of serial decision
feedback, such as the considerable energy-efficiency gains in
high data rate applications. Finally, when the channel is no
longer quasi-static, neither FDE or FIR IV DFE structures
are able to cope with the time-selectivity of the channel, and
FIR TV DFE structures [1] or time-domain block filter-bank
structures are needed [27].

For comparing these structures with numerical results,
we first consider their uncoded BER performance in Proakis
C, as illustrated in Figure 13. In this case, we compare the
uncoded original IBDFE’s [5] performance across the num-
ber of iterations Nsi, in the Proakis C channel, with 8-PSK
and K = 256. It is seen that while IBDFE manages to
have a lower error-rate, at low SNR, it is unable to recover
the full channel diversity, unlike IV and TV DFE structures.
Moreover, FDE structures are penalized by approximately
0.1 dB, due to cyclic prefixing.

The turbo-equalization performance of IBDFE, in coded
systems is given in Figure 12, for the same rate-2/3 and

rate-5/6 convolutionally coded systems as in the previous sub-
section. IBDFE of [5] becomes a frequency domain linear
equalizer [6] in the turbo context, which uses the soft decoder
feedback for equalization, and hence faces the similar limita-
tions to the FIR IV LE.

Next, we look into the turbo equalization performance of
these structures in a more realistic Rayleigh fading channel,
with L = 10, and uniformly distributed, symbol-spaced
power-delay profile. In Figure 14, rate-2/3 and rate-5/6 con-
volutionally coded systems with K = 128 are compared
for 1 turbo-iteration. FIR DFE solutions have significant
advantage over IBDFE and FIR LE, with the proposed DFE
and the receiver of [4] exhibiting lower bit error rates. The
performance differences between FIR DFEs is lower, as most
realizations of the random quasi-static fading channel are not
significantly frequency-selective.

In conclusion, while the FDE structure have a significant
computational complexity advantage, they are outperformed
by FIR structures which manage to exploit serial decision
feedback, and without being penalized by cyclic prefixing
overhead. IV DFE hence provide an alternative solution for
equalization in high throughput applications, with improved
decoding performance, at the expense of some additional
computational costs.

V. CONCLUSION
This paper carries out an original approach to the design
of turbo DFE receivers with static filters, through the use
of online prediction, based on semi-analytic performance
prediction techniques as used in physical layer abstraction
methods. Due to the lack of a closed-form solution for
such receivers, various heuristics are used throughout the
literature. However, discussion on the optimality of such
approaches was lacking and it is one of the contribution of
this paper.

Here, semi-analytical performance prediction of exact
time-varying turbo DFE with dynamic filters is exploited to
derive static DFE filters. This approach has been carried out
for DFE with APP-based or EP-based soft feedback and their
detection performance has been evaluated in various configu-
rations. This framework could also be applied to self-iterated
FIR DFE [1] for further improved performance, by updating
anti-causal variances with causal EP variance of the last self-
iteration.

Our analysis shows that significant complexity savings can
be achieved with respect to TV DFE, while offering reason-
ably close performance. Moreover, our method is compatible
with any constellation, and spectrally efficient on a large
interval of coding rates, with or without turbo-iterations. The
proposed structure is also shown to be a good alternative to
low-complexity frequency domain turbo equalizers (IBDFE)
as they can decode with lower received signal strength for
high data rate applications, without being penalized by cyclic
prefixing overhead, but at the cost of increased filter compu-
tation complexity.
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