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Constraint satisfaction problems (CSPs) are combinatorial prob-
lems with strong ties to universal algebra and clone theory. The
recently proved CSP dichotomy theorem states that each finite-
domain CSP is either solvable in polynomial time, or that it is
NP-complete. However, among the intractable CSPs there is
a seemingly large variance in how fast they can be solved by
exponential-time algorithms, which cannot be explained by the
classical algebraic approach based on polymorphisms. In this
contribution we will survey an alternative approach based on par-
tial polymorphisms, which is useful for studying the fine-grained
complexity of NP-complete CSPs. Moreover, we will state and
discuss some challenging open problems in this research field.

1 ALGEBRAIC BACKGROUND

We begin by providing a self-contained introduction to the underlying algebraic
approach. The reader familiar with universal algebra and clone theory can
safely skim the two following subsections.
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1.1 Partial Operations
Let k ≥ 2 be an integer and let k denote a k-element set. Without loss of
generality we assume that k := {0, . . . , k − 1}. For a positive integer n, an
n-ary partial operation on k is a map f : dom(f) → k where dom(f) is a
subset of kn, called the domain of f . Let Par(n)(k) denote the set of all n-ary
partial operations on k and let

Par(k) :=
⋃
n≥1

Par(n)(k).

An n-ary partial operation g is said to be a total operation if dom(g) =

kn, and we let Op(n)(k) be the set of all n-ary total operations on k and
Op(k) :=

⋃
n≥1

Op(n)(k). For every positive integer n and each 1 ≤ i ≤ n,

let eni denote the n-ary i-th projection defined by eni (a1, . . . , an) = ai for all
(a1, . . . , an) ∈ kn. Furthermore, let Jk := {eni | 1 ≤ i ≤ n, n ∈ N \ {0}} be
the set of all (total) projections. Partial operations on k are composed in a
natural way. For additional details we refer the reader to Lau [49].

Definition 1. A clone is a composition closed subset of Op(k) containing
Jk, and a partial clone on k is a composition closed subset of Par(k) con-
taining Jk. A partial clone is said to be strong if it is closed under taking
suboperations? .

It is well known that a partial clone C is strong if and only if Str(Jk) ⊆ C
(see, e.g., Lemma 2.11 in Haddad and Börner [11]). The set of (partial) clones
on k forms a lattice LOp(k) (LPar(k)) under inclusion, in which the infimum is
the set-theoretical intersection. It is then known that the cardinality of LOp(k)

(LPar(k)) equals the continuum for k ≥ 3 (k ≥ 2), but that LStr(Op(2)), Post’s
lattice, is countably infinite [52]. Similarly, the set of strong partial clones
on k also forms a lattice LStr(Par(k)), which is a sublattice of LPar(k) whose
cardinality also equals the continuum for each k ≥ 2. By definition, Jk and
Str(Jk) are the least elements of LPar(k) and LStr(Par(k)), respectively. For
further background see, e.g., [11, 21, 23]. For F ⊆ Par(k), let [F ]s denote
the intersection of all strong partial clones on k containing F . Similarly,
for F ⊆ Op(k), let [F ] be the intersection of all clones on k containing F ,
and in both cases we write [f ] or [f ]s when F = {f} is singleton. Say that
a strong partial clone C over k is finitely generated if there exists a finite
set F ⊆ Par(k) such that [F ]s = C, and is said to be infinitely generated
otherwise.

? For f, g ∈ Par(k), g is a suboperation of f , g ≤ f , if g = f |dom(g). We denote the closure
of F ⊆ Par(k) under taking suboperations by Str(F ).
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1.2 Relations
An h-ary relation R over k is a subset of kh, and we write ar(R) = h to
denote its arity, and Relk for the set of all relations over k. It is well known
that strong partial clones are exactly those partial clones that are determined
by relations in the following way. Let h, n ≥ 1 be integers, and let R be an
h-ary relation on k. An n-ary partial operation f on k is said to preserve R
if for every h× n matrix M = [Mij ] whose columns M∗j ∈ R, and whose
rows Mi∗ ∈ dom(f), the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ R. Note that if
there is no h × n matrix M = [Mij ] whose columns M∗j ∈ R and whose
rows Mi∗ ∈ dom(f), then f preserves R. It is not difficult to see that

pPol(R) := {f ∈ Par(k) | f preserves R}

is a strong partial clone, called the partial clone determined by the relation
R. Similarly, if Γ is a set of relations over k we write pPol(Γ) for the set⋂
R∈Γ pPol(R). In the total case we similarly write Pol(R) for the set of total

polymorphisms of R and Pol(Γ) if Γ is a set of relations.
The fact that (strong partial) clones can be defined exclusively via relations

suggests a deeper relationship between operations and relations. In fact, for
each clone Pol(Γ) (respectively, strong partial clone pPol(Γ)) there exists
a corresponding set of relations that can be defined through Γ by a suitable
closure operator. First, say that an n-ary relation R has a primitive positive
definition (pp-definition) over Γ ⊆ Relk if R is the set of models of a first-
order formula (with equality) ϕ(x1, . . . , xn) consisting only of existential
quantification and conjunction over positive atoms from Γ. In symbols we
denote such a definition by

R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn),

where ϕ(x1, . . . , xn) is of the form

∃xn+1, . . . , xn+n′ : R1(x1) ∧ . . . ∧Rm(xm)

and where each xi is a tuple of variables over x1, . . . , xn+n′ , and each Ri ∈
Γ ∪ {(x, x) | x ∈ k}. In addition, we say that R has a quantifier-free
primitive positive definition (qfpp-definition) over Γ if R has a pp-definition
over Γ where n′ = 0, i.e., a pp-definition without any existentially quantified
variables. These two definitions naturally induce two closure operators over
relations, in the following sense.

Definition 2. A set Γ ⊆ Relk is said to be a relational clone, or a co-clone, if
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1) R ∈ Γ for each R pp-definable over Γ, and

2) ∅ ∈ Γ.

Similarly, a set Γ ⊆ Relk is called a weak co-clone, or a weak system, if

1) R ∈ Γ for each R qfpp-definable over Γ, and

2) ∅ ∈ Γ.

1.3 Galois Connections
Clones and strong partial clones are related to co-clones and weak systems,
respectively, in following way. The first important observation is that the set
Inv(F ) of all relations preserved by each (partial) operation in F ⊆ Par(k) is
(1) a co-clone if each operation in F is total, and (2) a weak system otherwise.
Moreover, it is well known that Inv(Pol(Γ)), (respectively Inv(pPol(Γ))) is
the smallest co-clone (respectively weak system) over k containing Γ. Thus,
the operators Inv(·) and Pol(·) constitute a Galois connection between clones
and co-clones, whereas Inv(·) and pPol(·) constitute a Galois connection
between strong partial clones and weak systems.

Theorem 3. [9, 10, 34, 54] Let Γ,∆ ⊆ Relk be two sets of relations. Then (1)
Γ ⊆ Inv(Pol(∆)) if and only if Pol(∆) ⊆ Pol(Γ), and (2) Γ ⊆ Inv(pPol(Γ))

if and only if pPol(∆) ⊆ pPol(Γ).

One practical consequence of Theorem 3 is that properties of clones can
be translated into properties of co-clones, and vice versa. Moreover, due to
the antitone nature of Galois connections, one of these viewpoints may be
substantially simpler than the other one.

2 CONSTRAINT SATISFACTION PROBLEMS

In a constraint satisfaction problem (CSP) the objective is to assign values
to variables subjected to a set of constraints deciding admissible assignments.
Typically, a CSP is formulated as the decision problem of determining whether
there exists an assignment respecting all constraints. For the sake of self-
containment, we follow the predominant definition of CSPs in computer
science literature [55].

Definition 4. A constraint satisfaction problem (CSP) over a set k is defined
as a decision problem of the following form.
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INSTANCE: A tuple (V,C) where V is a finite set, and C a finite set of the
form (Ri, ti), i ∈ I , where Ri ∈ Relk and ti ∈ V ar(Ri).
QUESTION: Is there a function f : V → k such that (f(x1

i ), . . . , f(x
ar(Ri)
i )) ∈

Ri for each (Ri, (x
1
i , . . . , x

ar(Ri)
i )) ∈ C?

The set k is called the domain of the CSP (not to be confused with the
domain of a partial operation). If k = 2, then k is said to be Boolean. The
members of V are referred to as variables and are usually denoted by x, v,
or, if necessary, by using suitable subscripts. A tuple (Ri, ti) ∈ C is called a
constraint, and we typically write R(ti) instead of (Ri, ti). The function f , if
it exists, is called a solution, a model, or a satisfying assignment.

CSPs can be further specified by fixing a set of relations Γ, called a con-
straint language. This class of problems is then denoted by CSP(Γ) and it is
restricted to instances (V,C) where Ri ∈ Γ for each constraint (Ri, ti) ∈ C.
If Γ contains only Boolean relations (and thus k = 2), then CSP(Γ) can
be viewed as a class of satisfiability problems, and it is usually denoted by
SAT(Γ). Note that we have not yet specified how instances of CSP(Γ) are
represented. If Γ is finite then the particular representation is not important,
but if Γ is infinite the precise representation may become relevant. Here, we
take a simple approach and assume that each relation is represented by a list of
tuples. This is certainly not the only possible choice, and there exist languages
where this representation scheme can be exponentially larger than a simpler
encoding. For example, the relation corresponding to a clause (x1 ∨ . . . ∨ xn)

of length n ≥ 1 can naively be represented as a list of 2n − 1 tuples, but
can succinctly be represented by a single tuple encoding the forbidden truth
assignment.

Observe that if we associate a constraint language Γ over a domain D to
a relational signature τ , then Γ can be thought of as a relational structure Γτ .
In this way, an instance ({v1, . . . , vn}, C) of CSP(Γ) can be viewed as an
existentially quantified τ -formula

∃v1, . . . , vn :
∧

(Ri,ti)∈C

Ri(ti),

and the question is then whether this τ -formula has a model.
It is also possible to reformulate CSP(Γ) as a homomorphism problem

since an instance I of CSP(Γ) can be seen as a τ -structure I, and where the
question is then to decide whether there exists a homomorphism between I
and Γτ .
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Example 1. Let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3})
can be seen as an alternative formulation of the monotone 1-in-3-SAT problem
which is well-known to be NP-complete. By choosing a suitable Boolean Γ, a
large range of satisfiability problems can be represented as a CSP(Γ) problem.
For example, for each k ≥ 1 let Γk

SAT be the set of relations of the form {0, 1}k\
{t} for a single k-ary Boolean tuple t. Then SAT(Γk

SAT) can be verified to
be an alternative formulation of k-SAT which is NP-complete for k ≥ 3. It
may also be interesting to note that if we let ΓSAT =

⋃
k≥1 Γk

SAT then the only
difference between SAT(ΓSAT) and the satisfiability problem in conjunctive
normal form, CNF-SAT, is the preferred representation scheme, since a
clause in the latter problem is traditionally represented by a single falsifying
truth assignment, rather than by the list of all satisfying truth assignments.

Example 2. Let us also consider a few non-Boolean examples. One of the
prototypical examples of a CSP is the k-COLOURING problem: given an
undirected graph (V,E), can (V,E) be coloured using at most k colours? To
formulate this problem as a CSP we take the relation R 6=k

= {(x, y) ∈ k2 |
x 6= y} and for each (x, y) ∈ E introduce a constraint R6=k

(x, y). It is also
easy to find examples of tractable CSPs, i.e., CSPs solvable in polynomial time.
One such example is systems of linear equations x1 + . . .+ xn = 0 (mod k)

which can be solved in polynomial time using Gaussian elimination. As we
will see in Section 3 this discrepancy in complexity between tractable and
NP-complete CSPs can be explained using algebraic methods.

Although this survey mainly focuses on finite-domain CSPs, a substan-
tial amount of research is dedicated towards infinite-domain CSPs. This is
especially true in artificial intelligence where many classical problems are
intrinsically linked to constraints over infinite domains. Some examples in-
clude spatial and temporal reasoning problems such as ALLEN’S INTERVAL

ALGEBRA, THE REGION CONNECTION CALCULUS, and the RECTANGLE

ALGEBRA (cf. the surveys [7, 32]).

3 POLYMORPHISMS AND THE COMPLEXITY OF CSPS

Feder & Vardi conjectured that CSP(Γ) is either tractable or NP-complete [33].
This conjecture is usually referred to as the CSP dichotomy conjecture. It
was then realized that several classical algorithms that run in polynomial time,
e.g., Gaussian elimination and k-consistency, in a uniform manner could be
explained by the presence of certain polymorphisms of Γ [38]. More generally,
Jeavons proved the following reducibility result, usually interpreted as “the
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polymorphisms of Γ determine the complexity of CSP(Γ) up to polynomial
time reductions”.

Theorem 5 ([37]). Let Γ and ∆ be two finite constraint languages over k. If
Pol(Γ) ⊆ Pol(∆), then CSP(∆) is polynomial-time many-one reducible to
CSP(Γ).

Proof. From Theorem 3 the condition Pol(Γ) ⊆ Pol(∆) is equivalent to the
condition that ∆ ⊆ Inv(Pol(Γ)). Hence, each relation in ∆ is pp-definable
over Γ. The reduction from CSP(∆) to CSP(Γ) then follows as a classical
“gadget reduction” where each constraint in an instance (V,C) of CSP(∆) is
replaced by the set of constraints corresponding to a pp-definition over Γ, and
any two variables occuring in an equality constraint are identified. This can be
accomplished in polynomial time with respect to |C| and |V | since

1) each pp-definition of R ∈ ∆ can be precomputed and stored in a table
whose size depends only on the two finite sets Γ and ∆,

2) the identification of variables is a special case of ST-CONNECTIVITY

which is solvable using only logarithmic space [53], and

3) ∆ is finite and thus |C| is polynomially bounded in |V |.

The proof can then be completed by observing that the resulting instance
of CSP(Γ) may contain up to |C| ·m fresh variables, for a constant m de-
pending on Γ and ∆, since existentially quantified variables in pp-definitions
correspond to the introduction of fresh variables.

Now, to obtain a dichotomy for CSP(Γ) over k one would, in principle,
need to consider all operations over k and to determine which combinations
of operations that result in tractable CSPs. However, such a process turns out
to be unecessary, since the classical complexity of CSP(Γ) only depends on
the identities or the strong Maltsev conditions, satisfied by the polymorphisms
of Γ [18, 2]. In technical terms, this means that the complexity of CSP(Γ)

depends only on the variety to which Pol(Γ) belongs to. For example, if
Pol(Γ) contains a Maltsev operation satisfying the identities m(x, x, y) ≈
y,m(x, y, y) ≈ x, then CSP(Γ) is tractable since it can be solved by the
simple algorithm for Maltsev constraints [17]. The main advantage of this
observation is that it suffices to describe all identities resulting in tractable
CSPs rather than all concrete operations. This approach recently culminated
in the following dichotomy theorem.
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Theorem 6 ([16, 63]). Let Γ be a constraint language over k. Then CSP(Γ)

is either tractable or NP-complete.

Although simple to state, Theorem 6 is the result of decades of intense
research, and was known to hold for several important, special cases [56, 13,
14] before the main result could be proven. For additional details concerning
the classification project of CSP and the algebraic approach based on strong
Maltsev conditions, see e.g. the survey by Barto [1].

4 PARTIAL POLYMORPHISMS AND THE FINE-GRAINED COM-
PLEXITY OF CSPS

We begin this section by outlining how partial polymorphisms can be useful for
(classical) complexity classifications where the standard algebraic approach
based on polymorphisms falls short. We then discuss the rather vague term
“fine-grained complexity” in relationship to CSPs in Section 4.2, and in Sec-
tion 4.3 describe how the algebraic approach based on partial polymorphisms
can be used to study this question in greater detail.

4.1 Weak Bases and Classical Complexity
Before we describe how partial polymorphisms can be used to study the
fine-grained complexity of CSPs, we take a slight detour in order to outline
a related application, which preceded fine-grained complexity in time. To
understand this motivation it is important to realise that many CSP-related
problems have been classified during the last decades as well, and in almost
all cases using a very similar algebraic toolbox. Some promiment examples
are counting CSPs [15, 27], min-ones [41], and propositional abduction [30].
For further details and additional examples, see e.g. the survey by Creignou &
Vollmer [29].

In short, such complexity dichotomies are usually proved by first estab-
lishing a counter part to Theorem 5, and for a set of operations F either (1)
prove that Inv(F ) results in a tractable problem, or (2) show that there exists
Γ ⊆ Inv(F ) resulting in an intractable problem (typically NP-hard or co-NP-
hard). Hence, instead of considering arbitrary constraint languages we for
each clone only have to consider a fixed constraint language. Informally, this
strategy works for all problems parameterised by constraint languages where
the introduction of fresh variables (stemming from existentially quantified
variables in pp-definitions) does not affect the existence of a solution. However,
what if this is not the case? This question motivated Schnoor & Schnoor [58]
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to investigate a connection between partial polymorphisms and the complexity
of CSP-related problems which had been difficult to classify by existing tools.

Example 3. CSP(Γ) is sometimes said to be a priori compatible with poly-
morphisms due to Theorem 5. In contrast, there exist problems proven to be a
posteriori compatible with polymorphisms, in the sense that Pol(Γ) determines
whether the problem is tractable or intractable, but where an analogue of
Theorem 5 cannot be proven. One such example is the problem of finding a
surjective model of a SAT(Γ) instance (SUR-SAT(Γ)), which is NP-complete
if Pol(Γ) is essentially unary† and tractable otherwise [28]. Curiously, al-
most all CSP-like problems studied in the literature turn out to be either a
priori or a posteriori compatible with polymorphisms, and only a handful of
concrete counter examples exist, e.g., enumerating models of CSP(Γ) with
polynomial delay [57], the inverse satisfiability problem over infinite constraint
languages [44], and the maximum satisfiability problem [26].

Problems that are not a priori compatible with polymorphisms may instead
be compatible with partial polymorphisms. It is, for example, straightforward
to prove that if pPol(Γ) ⊆ pPol(∆) then SUR-SAT(∆) is polynomial-time
many-one reducible to SUR-SAT(Γ). Unfortunately, the usefulness of this
observation remains limited because the lattice of Boolean strong partial clones
LStr(Op(2)) is still not fully known. However, Schnoor & Schnoor [58] realized
that for many classification purposes, there is typically no need to consider the
whole lattice LStr(Op(2)), but only a small fragment corresponding to weak
bases.

Definition 7. [58] Let C = Pol(Γ) be a clone over k where Γ is finite.
A set of relations Γw ⊆ Relk is said to be a weak base of Inv(C) if (1)
Pol(Γw) = C and (2) pPol(∆) ⊆ pPol(Γw) for each set ∆ ⊆ Relk such that
Pol(∆) = C.

Example 4. Let us again consider SUR-SAT(Γ) and assume that we are
given a weak base Γw of a co-clone Inv(C). If we can prove that SUR-SAT(Γw)

is NP-complete, then NP-completeness also carries over to every Γ such that
Pol(Γ) = C. Hence, equipped with a weak base of each Boolean co-clone, we
in practice only need to consider Post’s lattice [52] rather than LStr(Op(2)).

Schnoor & Schnoor [58] also described a procedure for constructing weak
bases for co-clones satisfying the preconditions in Definition 7, which was

† A clone C is essentially unary if C = [F ] for a set of unary operations F .

9



leveraged by Lagerkvist to provide a list of weak bases for all Boolean co-
clones [42], whose inclusion structure was later completely determined [45].
We will not describe the method for constructing weak bases in detail, but
remark that it is based on the observation that the algebra whose universe
consists of all n-ary operations in C can be viewed as a relation R, with the
property that any partial operation not preserving R can be extended to a
total operation. This construction has been referred to as the n-generated free
algebra [1], or the n-th graphic [51]. Using a similar strategy to that used
in Example 4, weak bases have been used to obtain complexity dichotomies
for several classes of Boolean CSP-like problems incompatible with polymor-
phisms [3, 4, 44, 58, 59].

Example 5. Behrisch et al. [5] considered several problems, e.g., nearest
solution (NSOL), nearest other solution (NOSOL), and minimum solution
distance (MSD), all parameterised by Boolean constraint languages. The
optimisation variants of these problems may be defined as follows.

1) NSOL(Γ): given a SAT(Γ) instance I and a function f : V → 2,
compute a satisfying assignment to I with minimal Hamming distance
from f .

2) NOSOL(Γ): given a SAT(Γ) instance I and a satisfying assignment to
I , compute a satisfying assignment to I with minimal Hamming distance
from f .

3) MSD(Γ): given a SAT(Γ) instance I , compute two satisfying assign-
ments to I with minimal Hamming distance.

Among these problems only NSOL is a priori compatible with polymorphisms
in the sense discussed in Example 3, but with a non-trivial reduction, while
NOSOL and MSD can be studied with partial polymorphisms via the weak
bases approach. For instance, if Pol(Γ) = [{f¬}], where f¬(x) = 1−x, then
it is sufficient to show that NOSOL({R}) does not admit a polynomial-time
approximation scheme (unless P = NP) for the weak base R of Inv({f¬})
provided by Lagerkvist [42], instead of having to prove this for every possible
choice of Γ ⊆ Rel2 where Pol(Γ) = [{f¬}].

4.2 Fine-Grained Complexity
Recall from Section 3 that polymorphisms are useful for studying the classical
complexity of CSPs up to polynomial-time reductions. However, there are
reasons to believe that, in practice, even NP-complete problems can exhibit a

10



striking difference in complexity, and that it may be disadvantageous to group
them together under the guise of polynomial-time reductions. For example,
SAT({R1/3}) from Example 1, is known to be solvable in O(1.0984n) time,
where n denotes the number of variables [62], whereas it is not known whether
CNF-SAT is solvable in O(cn) time for c < 2. This phenomena is not
restricted to CSPs: for example, van Rooij et al. [8] proved that the PARTITION

INTO TRIANGLES problem restricted to graphs of maximum degree 4 can be
solved in O(1.0222n) time despite being NP-complete.

Our main concern in this survey paper is thus to study the complexity of
NP-complete CSPs with regards to O(cn) time complexity. To make this
question more precise we begin with the following definition.

Definition 8. Let k ≥ 2. For Γ ⊆ Relk, set

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn},

where n is the number of variables in an instance of CSP(Γ).

Note that CSP(Γ) may be solvable in O(2(c+ε)n) time for every ε > 0

despite not being solvable inO(2cn) time, thus showing that the use of infimum
in Definition 8 is necessary. If T(Γ) = 0, then CSP(Γ) is said to be solvable in
subexponential time. It is important to observe that no concrete value of T(Γ)

is known when CSP(Γ) is NP-complete, but that a large number of upper
bounds of the form T(Γ) ≤ c are known for concrete constraint languages
Γ. For example, as already mentioned, T({R1/3}) ≤ log2(1.0984) since
SAT({R1/3}) is solvable in O(1.0984n) time, and if we take the relation R 6=k

from Example 2 then T({R 6=2} = 0 (since 2-COLOURING is in P), and for
each k ≥ 3 it is known that T({R 6=k

}) ≤ 1 [6].
To study the function T and its connection to partial polymorphisms, we

will make use the following conjecture, which is of central importance in
current research on fine-grained complexity and lower bounds.

Definition 9. The exponential-time hypothesis (ETH) [35] conjectures that
T(Γ3

SAT) > 0.

In other words, the ETH states that there exists a c > 0 such that 3-SAT
is not solvable in O(2cn) time, i.e., not in subexponential time. Although
not immediate from Definition 9, the ETH is also known to imply that the
sequence T(Γ3

SAT),T(Γ4
SAT), . . . , increases infinitely often, i.e., that for every

k there exists k′ > k such that T(Γk
SAT) < T(Γk′

SAT) [35]. It is tempting to also
conjecture that the limit of the sequence T(Γ3

SAT),T(Γ4
SAT), . . . equals 1. This
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conjecture is known as the strong exponential-time hypothesis (SETH) [19, 35].
Under this conjecture, the unrestricted SAT problem cannot be solved in
O(2cn) time for any c < 1.

The ETH and the SETH are important conjectures also when studying
fine-grained complexity from an algebraic point of view, since they represent
the best possible bounds that one should realistically aim for. This is similar
to how one should not hope to achieve a polynomial-time algorithm for an
NP-hard problems if P 6= NP. Indeed, it is then known that we cannot achieve
subexponential-time algorithms for NP-complete finite-domain CSPs without
violating the ETH.

Theorem 10. ([40]) Let Γ ⊆ Relk such that CSP(Γ) is NP-complete. Then
T(Γ) > 0 unless the ETH fails.

Subexponentiality can also be ruled out for certain classes of structurally
restricted CSPs [31], but we refrain from formally stating these results since
the current focus is on constraint language restrictions. Let us also remark
that CSP(Γ) for Γ ⊆ Relk is always solvable in O(kn) time by simply
enumerating all possible assignments over k. Hence, T(Γ) ≤ log2(k) for
every Γ ⊆ Relk. It is also known that if Γ ⊂ Relk is finite then CSP(Γ) is
solvable in O(cn) time for some c < k [61], implying that T(Γ) < log2(k).

4.3 An Algebraic Approach Based on Partial Polymorphisms
We are now ready to present the link between partial polymorphisms and the
function T, which allows us to study the fine-grained complexity of CSPs
using partial polymorphisms.

Theorem 11 ([39]). Let Γ and ∆ be two finite sets of relations over k. If
pPol(Γ) ⊆ pPol(∆), then T(∆) ≤ T(Γ).

Proof. By Theorem 3, this result can be proved rather explicitly: given an
instance (V,C) of CSP(∆) each constraint in C can be rewritten as a set
of constraints over Γ ∪ {{(x, x) | x ∈ k}} without introducing any fresh
variables, and the same techniques that were used in the proof of Theorem 5
can then be employed to complete the reduction in polynomial time. Hence,
Theorem 11 can be restated in a slightly stronger version without making use
of the function T, but for our purposes the above statement is sufficient. Also
note that Theorem 11 is valid even if CSP(Γ) and CSP(∆) are both solvable
in polynomial time since in this case we have that T(Γ) = T(∆) = 0.

Now, let C be a clone such that Pol(Γ) = C, and suppose that CSP(Γ) is
NP-complete. Theorem 11 then offers an algebraic method to analyse T(Γ) by
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studying the properties of IStr(C) := {pPol(Γ) | Pol(Γ) = C}. For example,
if IStr(C) is finite, then the fine-grained complexity of CSP(Γ) would fall
into a finite number of cases. Hence, as a rough approximation, we would
like to know the cardinality of IStr(Pol(Γ)) when CSP(Γ) is NP-complete. A
dichotomy has been proved for Boolean clones, with the surprising implication
that these sets are always either finite or equal to the continuum.

Theorem 12 ([25, 60]). Let C be a Boolean clone. Then IStr(C) is finite if

C ⊇ Pol({{(0, 1), (1, 0)}, {(0, 1)}})

or
C ⊇ Pol({{(0, 0), (0, 1), (1, 1)}, {(0, 1)}}),

and is of continuum cardinality otherwise.

By inspecting Post’s lattice of Boolean clones [52] one can then verify that
the finite cases of Theorem 12 only hold for 10 clones. Also, it is known that
SAT(Γ) is NP-complete if and only if Pol(Γ) = [f¬] or Pol(Γ) = J{0,1},
where f¬(x) = 1 − x [56], implying that IStr(Pol(Γ)) is of continuum
cardinality, whenever SAT(Γ) is NP-complete.

However, the fact that IStr(Pol(Γ)) is of continuum cardinality in these
cases says very little of their actual complexity, and it suggests that one needs
a different technique that does not rely on a classification akin to Post’s lattice.
For certain classes of clones C we may immediately observe yet another
striking difference between IStr(C) and Post’s lattice.

Theorem 13 ([46]). Let Γ ⊆ Relk be a finite set of relations such that Pol(Γ)

is essentially unary. Then pPol(Γ) is infinitely generated.

In particular, Theorem 13 holds when SAT(Γ) is NP-complete, which
suggests that a full description of pPol(Γ) (that correlates to fine-grained
complexity via Theorem 11) is a complicated task for finite constraint lan-
guages. To illustrate, let us for the moment concentrate on Boolean constraint
languages Γ such that Pol(Γ) = J{0,1}, which subsume the examples 1-IN-
3-SAT and k-SAT from Example 1. Even though the full description of
IStr(J{0,1}) does not seem realistic by Theorem 12 and Theorem 13, there
are plenty of questions relevant to the study of the fine-grained complexity of
SAT(Γ). To illustrate, we list two below.

• Does IStr(J{0,1}) admit a greatest element, and if this is the case, is it
then possible to describe the maximal elements?
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• Is it possible to describe the minimal strong partial clones of IStr(J{0,1})

— provided they exist (note that a unique least element trivially exists,
namely Str(J{0,1}))‡ .

These questions are pertaining to the study of fine-grained complexity since, by
Theorem 11, “small” members of IStr(J{0,1}) correspond to SAT problems
with high time complexity, and “large” members of IStr(J{0,1}) correspond
to SAT problems of low time complexity.

It is worth observing that one of these questions can be answered im-
mediately, by making use of the concept of a weak base R of a co-clone
Inv(C) recalled from Section 4.1. Indeed, pPol(R) ⊇ pPol(Γ) for each
pPol(Γ) ∈ IStr(J{0,1}) implies that pPol(R) is the greatest element. Fur-
thermore, Inv(J{0,1}) is known to admit a particularly simple weak base
R 6= 6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)} [42].
This observation was then leveraged by Jonsson et al. [39] to show that
SAT({R 6=6= 6=01

1/3 }) constitutes the “easiest NP-complete SAT problem”, in the
following sense.

Theorem 14 ([39]). SAT({R 6= 6=6=01

1/3 }) is NP-complete and T({R 6= 6= 6=01

1/3 }) ≤
T(Γ) for any Boolean constraint language Γ such that SAT(Γ) is NP-complete.

Proof. We give a short sketch of the most important ideas. If SAT(Γ) is NP-
complete then by Schaefer’s dichotomy theorem [56] either Pol(Γ) = [f¬]

or Pol(Γ) = J{0,1}. It is also known [42] that the relation R = R 6= 6= 6=01

1/3 ∪
{(f¬(t) | t ∈ R 6=6= 6=01

1/3 )} is a weak base of Inv({f¬}), and from Theorem 11 it
then follows that T({R}) ≤ T(Γ) or T({R 6=6= 6=01

1/3 }) ≤ T(Γ), since pPol(Γ) ⊆
pPol(R) or pPol(Γ) ⊆ pPol(R 6= 6= 6=01

1/3 ). Hence, it is sufficient to prove that
T({R 6= 6= 6=01

1/3 }) ≤ T({R}), which can be accomplished by a polynomial-time
many-one reduction only introducing a constant number of fresh variables (see
Lemma 19 in Jonsson el al. [39]).

Jonsson et al. [39] also conjectured that the strong partial clones between
pPol(R1/3) and pPol(R 6= 6= 6=01

1/3 ) had a simple structure consisting of only three
elements pPol(R01

1/3), pPol(R 6=01

1/3 ), pPol(R 6= 6=01

1/3 ), such that

pPol(R1/3) ⊂ pPol(R01

1/3) ⊂ pPol(R 6=01

1/3 ) ⊂ pPol(R 6= 6=01

1/3 ) ⊂ pPol(R 6= 6= 6=01

1/3 ).

However, this conjecture turned out to be incorrect: Lagerkvist & Roy showed
the existence of (countably) infinitely many strong partial clones between

‡ We follow the standard terminology where minimal/maximal clones are those directly above/-
below the greatest/least element in the clone lattice.
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pPol(R01
1/3) and pPol(R 6=01

1/3 ), pPol(R 6=01

1/3 ) and pPol(R 6= 6=01

1/3 ), and pPol(R 6= 6=01

1/3 )

and pPol(R 6=6= 6=01

1/3 ) [43]. This was later refined by Couceiro et al. [22] that
constructed families of strong partial clones of continuum size between each
of these pairs of partial clones.

It is also noteworthy to remark that Theorem 14 was extended to a broad
class of finite-domain CSPs, the so-called ultraconservative CSPs, which can
be defined as CSP(Γ) problems where Γ contains all unary relations over
the domain. Here, the term ultraconservative is used instead of the more
familiar “conservative” since it is actually required that the unary relations
are included in the constraint language, and not only that they are primitive
positive definable.

Theorem 15 ([40]). For each k there exists a relation Rk ∈ Relk such that
(1) CSP({Rk}) is NP-complete, and (2) T({Rk}) ≤ T(Γ) for any ultracon-
servative Γ ⊆ Relk such that CSP(Γ) is NP-complete.

Proof. Assume that CSP(Γ) is NP-complete for an ultraconservative Γ ⊆
Relk. In this case almost nothing is known concerning the precise structure of
Pol(Γ), making it difficult to construct a weak base of InvPol(Γ)). However,
it is known that Theorem 6 in this case implies that Pol(Γ) does not contain
an operation satisfying a strong Maltsev condition, which in turn is known
to imply that Γ primitively positively interprets (pp-interprets) Γ3

SAT. We
refrain from defining pp-interpretations formally but remark that they may be
viewed as a relational counterpart to varieties, and may be used to compare
the expressive strength of constraint languages which are incomparable with
respect to pp-definitions. From this assumption one can then prove that Γ can
pp-define a relation R with only three tuples, and this pp-definition can be
transformed into a qfpp-definition of a similar relation RΓ, also of cardinality
three. Among all these relations it is then possible to isolate a unique relation
Rk with the property that T({Rk}) ≤ T({RΓ}) for each ultraconservative Γ

where CSP(Γ) is NP-complete. Hence, this proof strategy does not explicitly
use weak bases, due to the largely unexplored clone lattice over k, but it
completely relies on qfpp-definitions.

4.4 The Non-Existence of Minimal Strong Partial Clones
We now turn to the question of minimal strong partial clones in IStr(J{0,1}),
i.e., partial clones pPol(Γ) ∈ IStr(J{0,1}) such that pPol(Γ) ⊃ Str(J{0,1})

but for which there is no pPol(∆) ∈ IStr(J{0,1}) such that pPol(Γ) ⊃
pPol(∆) ⊃ Str(J{0,1}). The existence of a minimal element pPol(Γ) would
have interesting consequences in the light of the SETH, in particular, if
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T(Γ) < 1, since SAT(Γ) would then belong to the class of “hardest” NP-
complete SAT problems that are still easier than the unrestricted SAT problem.

However, this question has a surprisingly straightforward resolution: as
proven by Couceiro et al. [24], there are no minimal strong partial clones.
More specifically, for each k (k > 1) it was proved that if f 6∈ Str(Jk), then
the strong partial clone [f ]s contains a family of strong partial subclones of
continuum cardinality. Two slightly different constructions were given to
prove this result, depending on whether f is constant (i.e., there exists x ∈ k

such that f(αi) = x for all αi ∈ dom(f)) or not. Here, we provide a sketch
of the latter construction.

Let f be an n-ary partial operation not in Str(Jk) and not constant. In
the sequel we assume that the partial operation f is n-ary and with domain
dom(f) = {α1, . . . , αm} ⊆ kn, where αi := (ai1, . . . , a

i
n). LetA be them×

n matrix whose rows are α1, . . . , αm, and consider the following construction.
Let Col(A) be the set of columns of A, and vf = f(A) ∈ km. For

x := (x1, . . . , xh) ∈ kh and ` ≥ 1, let x×` ∈ kh` be

x×` = (x1, . . . , x1︸ ︷︷ ︸
` times

, x2, . . . , x2︸ ︷︷ ︸
` times

, . . . , xh, . . . , xh︸ ︷︷ ︸
` times

),

and let [x] = {x1, . . . , xh}. For a set X ⊆ k with

X = {x1 < · · · < x|X|}

and a ∈ X , let nextX(a) ∈ X be defined by

nextX(a) :=

{
xi+1 if a = xi and i < |X|,
x1 if a = x|X|.

Furthermore, for x = (x1, . . . , xh) ∈ [vf ]h and 1 ≤ i ≤ h, let ci(x) be the
tuple

ci(x) := (x1, . . . , xi−1,next[vf ](xi), xi+1, . . . , xh).

Since the partial operation f is non-constant, the set [vf ] contains at least two
different elements, and so ci(x) 6= x for all x ∈ [vf ]h and all i = 1, . . . , h.
Let t ≥ 0 be the number of columns u

∼
in the matrix A that satisfy [u

∼
] = [vf ].

Without loss of generality, assume that all those t columns (if any) are the first
columns to the left of A.

For each ` ≥ 1, define the relation ρ` of arity `df by

ρ` := {ci(v×`f ) | 1 ≤ i ≤ `df} ∪ {u∼
×` | u

∼
∈ Col(A)}.

16



Notice that |ρ`| = `df + n.
Let M` be the matrix with `df rows, whose (`df + n) columns are the

tuples of ρ` in the following order:

c1(v×`f ), . . . , c`df (v×`f ), u
∼1
×`, . . . , u

∼n
×`,

where u
∼1, . . . , u∼n are the columns of A written in the same order as they

appear in A.
Now let f×` be the (`df + n)-ary partial operation whose domain is the

set of all rows of M` and defined by

f×`(M`) = v×`f .

Notice that x1, . . . , x`df+t ∈ [vf ] whenever x = (x1, . . . , x`df+n) ∈ dom(f×`).

Example 6. Let k = {0, 1, 2}, ` = 3 and

f

0 0 0

1 0 1

0 0 2

 =

0

0

1

 .

Then vf = (0, 0, 1), v×3
f = (0, 0, 0, 0, 0, 0, 1, 1, 1),

A =

0 0 0

1 0 1

0 0 2

 ,

Col(A) = {(0, 1, 0)T , (0, 0, 0)T , (0, 1, 2)T }, and f×3(M3) =

f×3



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 1 0 1

1 1 1 1 1 1 0 1 1 0 0 2

1 1 1 1 1 1 1 0 1 0 0 2

1 1 1 1 1 1 1 1 0 0 0 2


=



0

0

0

0

0

0

1

1

1


.

It is not difficult to verify that this construction yields the following result.

Lemma 16 ([24]). For every ` ≥ 1, f×` ∈ [f ]s. Moreover, for `′ ≥ 1,
f×` ∈ pPol(ρ`′) iff ` 6= `′.
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As an immediate consequence, we thus have the desired corollary.

Corollary 17. Let C be a strong partial clone on k and suppose that C
contains a partial operation f 6∈ Str(Jk) that is not a constant operation.
Then the set of strong partial clones contained in C is of continuum cardinality.

5 OPEN QUESTIONS AND RELATED WORK

The study of fine-grained complexity is still in its infancy and we have only
concentrated a handful of results pertaining to partial polymorphisms. We now
present a few concrete questions arising from the results presented thus far,
and discuss related research directions.

On the non-existence of minimal strong partial clones
We provided a sketch of one of the constructions in [24], which shows that
for any non-constant f /∈ Str(J{0,1}) there exists g /∈ Str(J{0,1}) such
that [g]s ⊂ [f ]s. Assuming that T(Inv({f})) < 1, can we use a similar
construction to find a g such that T(Inv({f})) < T(Inv({g}))?

Maximal elements of IStr(Jk)

We have seen that IStr(J{0,1}) has a largest element pPol(R 6=6= 6=01

1/3 ), that
constitutes the “easiest NP-complete SAT problem” SAT({R 6= 6= 6=01

1/3 }). Given
the non-existence of minimal strong partial clones one may be sceptical about
the existence of maximal elements of IStr(J{0,1}). However, such elements
do in fact exist. For instance, one can prove that pPol({R 6= 6= 6=01

1/3 , {(0)}}) and
pPol({R 6=6= 6=01

1/3 , {(1)}}) are both maximal elements. The caveat here is that
T ({R 6= 6= 6=01

1/3 }) = T({R 6=6= 6=01

1/3 , {(0)}) = T({R 6= 6= 6=01

1/3 , {(1)}), implying that
these elements are not interesting from a complexity theoretical point of view.
This raises the question of whether there exists a maximal element pPol(Γ) of
IStr(J{0,1}) such that T({R 6= 6= 6=01

1/3 }) < T(Γ).

Strong Maltsev conditions and partial polymorphisms
Lagerkvist & Wahlström [47] propose a usage of partial polymorphisms which
is similar to how strong Maltsev conditions are used to characterize the clas-
sical complexity of CSPs. For example, given a k and the identities defining
a Maltsev operation m(x, x, y) ≈ y,m(x, y, y) ≈ x, we can define a partial
operation f such that dom(f) = {(x, x, y), (x, y, y) | x, y ∈ k} and such that
f(x, x, y) = y and f(x, y, y) = x. Such a partial operation f is then called a
partial Maltsev operation.
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Now given an operation thus constructed, the goal is then to devise an
algorithm for CSP(Inv(f)) with a running time better than O(kn). Surpris-
ingly, this is indeed possible for the partial Maltsev operation, where one
obtains the upper bound O(k

n
2 ). An interesting continuation to this line of

research is to consider the identities defining near unanimity operations and
edge operations, and investigate if similar improved bounds can be obtained
for the corresponding partial operations.

A related application of partial polymorphisms in the realm of exponential-
time algorithms was recently demonstrated by Brakensiek & Guruswami [12].
They prove that if Γ is preserved by an infinite family of partial threshold
polymorphisms then SAT(Γ) can be solved by a fast exponential-time algo-
rithm based on linear programming. For example, this holds for R1/3 and for
Γk

SAT for k ≥ 3. While these two problems are known to admit even faster
specialised algorithms [50, 62], the linear programming framework of Braken-
siek & Guruswami also provides a clear explanation of why these problems
admit an exponentially improved algorithm, which demonstrates a distinct
advantage of studying fine-grained complexity of such problems in a more
abstract, algebraic setting.

Sparsification via partial polymorphisms
There exists many computational properties with a similar flavour as fine-
grained complexity. One example from parameterized complexity is spar-
sification: given an instance of a computational problem, associated with a
parameter k ≥ 0, is it possible to compute (in polynomial time) an equivalent
instance whose size is bounded by a fixed function in k? For example, in the
case of CSP(Γ) we could be interested in reducing the number of constraints
with respect to the number of variables in the instance, and ask whether it is
possible to reduce the number of constraints in an instance (V,C) to O(|V |)
or O(|V |2).

Sparsification of SAT problems were studied by Jansen & Pieterse [36] who
observed that in many interesting cases this question could be translated into
properties of (low-degree) polynomials. This same idea was generalised by
Lagerkvist & Wahlström [48] who studied this question by embedding CSPs
into CSPs preserved by a Maltsev operation and, more generally, by embedding
an NP-complete CSP problem into a tractable CSP over a larger domain. The
property of admitting “embeddings” of this form could then be witnessed by
partial operations closely linked to strong Maltsev conditions. However, the
question of whether this algebraic framework could give a complete dichotomy
for CSPs admitting linear sparsifications was left open. Similar conditions
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with closely matching results were later also obtained by Chen et al. [20].
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