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1. Introduction

Pulmonary diseases are among the main causes of
death in the world, thus representing an important
global health burden. Among them, interstitial pul-
monary diseases affect pulmonary tissue and its alve-
olar structure, thus highly impacting the pulmonary
function. Idiopathic Pulmonary Fibrosis (IPF), for in-
stance, is a chronic disease, in which collagen fibers
accumulate into interstitial tissue, leading to thicken-
ing, stiffening and damage of alveolar walls. This
disease remains poorly understood, poorly diagnosed
and poorly treated and represents a real clinical chal-
lenge [5]. Mechanical modeling-based tools, in inter-
action with data such as medical imaging, could help
clinicians in classifying patients and thus deciding on
the treatment options.

2. Method
2.1

The lungs are porous organs, composed of tissue, air
and blood. We recently developed a model of the
lungs at the breathing time scale and the organ space
scale [6], based on a general poromechanical formu-
lation compatible with large strains and thermodynam-
ics [1], where the “solid” phase is composed of both
tissue and blood while the fluid phase is the air. Sev-
eral pulmonary-specific hypotheses have been formu-
lated, assuming that the transformation is quasi-static
and that the fluid pressure inside the alveoli is homo-
geneous and given. The problem is then simplified
and becomes a coupled problem between the two un-
knowns, the displacement U (or equivalently the de-
formation mapping ¢) and the porosity ¢.

In our model, specific boundary conditions are used
to model loadings applied to the lungs: a pressure on
lung surface representing pleural pressure, and a fric-
tionless contact with the moving thorax [6]. Moreover,
the constitutive behavior of our model allows to repro-
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duce the volumetric response of lungs to a change of
pressure as observed in experimental data [4], as well
as the quasi-incompressibility of the solid phase [6].

2.2 Model personalization

The proposed model can be personalized using clin-
ical data. Two 3D CT-scans Iy and /i, acquired at
end-exhalation and at end-inhalation respectively, are
used (1) to generate (after segmentation [2]) a patient-
specific geometry of the lungs (volume mesh) and tho-
rax (surface mesh), (2) to get a personalized porosity
field, and (3) to compute lung and thorax displacement
field by DIC (Digital Image Correlation) [3]. In princi-
ple, pleural pressure could be measured in patients
and used in the model. However, in this work, normal
values were used since the data was not available.
As a consequence, the results obtained are relative to
these values.

Regional mechanical parameters 6§ are estimated by
minimizing a cost function f describing the error be-
tween data and model. For a given set of parameters,
the unloaded configuration associated with the mea-
sured end-exhalation configuration is first computed
through the resolution of an inverse elastostatic prob-
lem. Then, the end-inhalation configuration is com-
puted, and compared to the measured one.

We investigated two types of parametrization of the
problem, where the estimated material parameters
can be the absolute (i.e., independent from porosity,
in which case the effective parameters depend linearly
on the porosity) or the effective (i.e., those character-
izing the mixture) parameters.

We also investigated two different cost functions,
differing by the nature of the data considered. The first
one is based on the lung displacement field computed
by image registration:

U 0)—U
fDlC (9) - ”fmodel ( ) fD|C||L2 )
1Upicll2

Note that special care must be taken for pulmonary
image registration because of the large discontinuity in
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the displacement field caused by the lung-thorax slid-
ing. The second cost function, which corresponds to
integrated image correlation approaches, is based on
the 3DCT images directly and contains both a shape
term and a configuration term:
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where DICE is the Dice score of the computed vs.
measured end-inhalation configurations and k weighs
the shape and configuration terms.

3. Results and discussion

The estimation pipeline was run on healthy controls as
well as IPF patients.

To prove the classification potential of the estima-
tion, mechanical parameters are estimated in three
different cases: considering the lung as one homo-
geneous zone (case 1z); as two homogeneous zones
defined arbitrarily (case 2zarb); as two homogeneous
zones defined according to the segmentation of the
disease by a radiologist (case 2zseg). For both cost
functions, we obtained: fi; > foan > fzseg. Notably,
the cost function f ¢ improves from 23.5 % and 20.6 %
to 18.3 % (which correspond to 6.3 mm, 5.6 mm and
4.9mm in terms of displacement error), for the cases
1z, 2zarb, 2zseg respectively. These results show that
the model including physiological segmentation of the
disease better represents the data. Statistical signifi-
cance will now be evaluated.

We also studied the impact of estimating the effec-
tive vs. absolute material parameters. In all cases,
the model with absolute parameters performs better
than with effective parameters. The displacement
error decreases from 5.1 mm with effective parame-
ters to 4.9 mm with absolute parameters in the case
2zseg using fpic. Moreover, for the case 2zseg, both
cost functions result in a fibrosis zone stiffer than the
healthy zone, which is consistent with the fact that fi-
brosis leads to tissue stiffening. This indicates that us-
ing a poromechanical model, thus taking into account
porosity, should improve classification potential.

4. Conclusion

We developed a pulmonary poromechanical model,
which takes into account lung porosity and which can
be personalized using clinical data acquired in routine.
The model can be applied on complex pathological
cases involving diseases with an impact on lung me-
chanical behavior, like fibrosis or emphysema. It could
then be used as an augmented diagnosis tool to quan-
tify the mechanical changes induced by the disease,
thus providing objective and quantitative classification
tools to clinicians.
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Figure 1: (Top) Logarithmic strain magnitude in a
sagittal cross-section at end-inhalation for the case
1z and the case 2zseg. (Bottom) Visualization of
the fibrosis segmentation in the same sagittal cross-
section: healthy part in blue, fibrotic part in red.
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