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Résumé
Actuellement, les opérateurs de surveillance maritime par-
courent à la main les quantités massives de données à
leur disposition pour repérer les événements à surveiller.
Les données maritimes viennent de sources variées et
hétérogènes qui peuvent être fusionnées en un graphe de
connaissance dynamique avec attributs, qui représente
l’évolution d’une situation maritime. Via ce graphe,
l’automatisation de la levée d’alerte revient à une tâche
de prédiction de lien: étant donnés des labels venant de
connaissance experte, y a-t-il d’autres situations similaires
que l’on veut relever dans le graphe? Dans cet arti-
cle, nous allons passer en revue plusieurs techniques de
prédiction de lien dans un contexte de surveillance mar-
itime et tirer des conclusions sur les bénéfices que pourrait
apporter l’ajout d’attributs dans les modèles de graphes
dynamiques pour l’exécution de cette tâche.

Keywords
Graphe de connaissance dynamique, situation maritime, at-
tributs, apprentissage machine, prédiction de liens

Abstract
Currently, maritime surveillance operators have to moni-
tor by hand the massive amount of data at their disposal
to spot the events of interest, thus limiting their capabili-
ties. Maritime data comes from various and heterogeneous
sources, that can be merged into a dynamic attributed
knowledge graph which represents an evolving maritime
situation. Using this graph, the automation of alert rising
comes through a link prediction task: given some labels
from expert knowledge, are there similar situations of in-
terest elsewhere in the graph? In this article, we review
link prediction techniques for situation awareness in a mar-
itime context, and draw conclusions on how the addition of
attributes in a dynamic graph model could improve results
on this task.

Keywords
Dynamic knowledge graph, maritime situation, attributes,
machine learning, link prediction

1 Introduction
The maritime domain is the theater of many unlawful ac-
tivities that may go unnoticed: terrorism, piracy, smug-
gling, illegal immigration... That’s why Maritime Situa-
tional Awareness (MSA) is of first importance to maritime
security. It is defined by NATO as “The understanding
of military and non military events, activities and circum-
stances within and associated with the maritime environ-
ment that are relevant for current and future NATO opera-
tions and exercises, where the Maritime Environment (ME)
is the oceans, seas, bays, estuaries, waterways, coastal re-
gions and ports” [1]. MSA is often performed by surveil-
lance operators who monitor the flow of data coming from
maritime activities. This data is diverse, heterogeneous,
and comes from several sources: AIS (Automatic Identi-
fication System), radars, satellites, intelligence, websites...
With more than 50.000 vessels sailing the oceans each day,
there is a need for automation in the detection of illicit
events [2].
A maritime situation implies evolving entities: vessels,
ports, countries... Such a situation can be represented
by a dynamic attributed knowledge graph (DAKG), and
understanding how its elements connect and jointly evolve
gives valuable information pertaining to MSA. This task
is here reduced to a link prediction problem. A link, or
an event, is a relation between two entities at a given time
point, for instance (Titanic ; :builtBy ; WhiteStarCompany
; 1909), and attributed means that entities can have
attributes whose values can change over time, e.g. (Titanic
; :passengers ; 2,344 ; April 10th 1912).

Generally, link prediction is performed by learning an em-
bedding for each entity of the graph, and predictions are
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made by ranking the events in the graph using these em-
beddings. This can benefit to MSA in two ways:

• data completion: when monitoring an operational sit-
uation, the sensors and reports do not always have all
the needed information at their disposal. Using link
prediction, missing data can be inferred to improve
MSA;

• automated alerts: link prediction can discover events
that a human operator would not have noticed in the
massive dataset. Illegal activities could also be antici-
pated by making prediction in the future and evaluat-
ing the risk a ship represents based on its current and
past behavior.

In this article, we review (1) two models on a dynamic
(but not attributed) knowledge graph, (2) the literature on
static/dynamic/attributed knowledge graphs, (3) how to ap-
ply DAKGs to MSA.

2 Previous work
The previous work related to this study can be broadly di-
vided into four categories: maritime related work, static
graphs, dynamic graphs and attributed graphs.

MSA. MSA often focuses on anomaly detection [3]. It
can be tackled with clustering [2], bayesian networks [4],
self-organizing maps [5] and many others techniques [6].
Route estimation is also handled, e.g. with neural
networks [7] or Extended Kalman filter [8]. To the best
of our knowledge, this is the first attempt of using link pre-
diction on DAKG to improve MSA.

Static Knowledge Graph. In a static setting, each node
is represented by a single vector. This field is largely cov-
ered with a broad range of techniques. Translational mod-
els evaluate a fact by measuring the distance between the
two entities, generally using the relation during the trans-
lation. TransE [9] is its most known representative. Se-
mantic matching models are similarity-based and compare
the latent semantics of entities and relations embeddings.
RESCAL [10] was the first to do this and has been ex-
tended multiple times [11] [12]. Neural network architec-
tures have also been tried with NTN [13] or VGAE [14].
These models achieve great performances on static knowl-
edge graphs but are not suited to deal with dynamic ones.

Dynamic Knowledge Graph. In a dynamic setting, each
node is represented by a time series of vector modeling its
evolution. This topic is emerging and has less contributions
but advances have already been made. Leblay et al. [15]
predict time validity for unannotated edges using side in-
formation in the learning process. Esteban et al. [16] up-
dates the knowledge graph using an event graph to add new
information, and Trivedi et al. [17] extends the bilinear
model (RESCAL) with a LSTM network in order to learn
non-linearly evolving entities. Jiang et al. [18] incorpo-
rate the valid time of facts using a joint time-aware infer-

ence model based on Integer Linear Programming. Self-
attention networks were tried by Sankar et al. [19].
Although these models are time-aware, they do not include
attribute information in the relation prediction task and we
will show that they are needed when dealing with MSA.

Attributes. Lin et al. [20] can predict discrete attribute
values and find correlation between them. However, they
are not included during the learning of relations and re-
lations are not included in the learning of attributes. Tay
et al. [21] propose a model that jointly learns KGR and
KGA with a neural network and predicts continuous val-
ues with a regression task. However, neither model deals
with temporal data.
Li et al. [22] propose a streaming model (SLIDE) on
dynamic attributed networks using a sketching matrix
that summarizes the currently observed links and node
attributes. They review the challenges pertaining to
such networks and real-world data, but they apply it
on social networks (Epinions, DBLP, ACM) that have
very different kinds of attributes and only a few widely
separated timesteps (~20 timesteps from one month to one
year each). All these models showed that the addition of
attributes improves the results on link prediction.

Table 1 compares representative models from each cate-
gory and shows that no model currently fits our needs per-
fectly (see Part 4 for detailed requirements).

Static Dynamic Attributes
Near

Real-Time
TransE[9] X

Know-Evolve[17] X
MT-KGNN[21] X Continuous

SLIDE[22] X Discrete ∼

Table 1: Application domain of models comparison

3 Problem statement
The relation and attribute prediction problems are formal-
ized in this section.

3.1 Dynamic Knowledge Graphs
Before introducing dynamicity and attributes, we recall the
definition of standard knowledge graphs.

Definition 1 (standard knowledge graph) Let
E = {e1, . . . , en} and R = {r1, . . . , rk} be two finite
sets, of entities and relations, respectively. A knowledge
graph on E,R is a finite set KG ⊆ E×R×E. For a triple
t = (es, r, eo) ∈ KG , es is called the subject of t, r is
called its relation, and eo is called its object.

We now introduce attributes and dynamicity. Note that the
relation between an entity and (some value for) an attribute
can be seen as a triple in a knowledge graph, but we define
it differently because we want to handle them in a specific
manner when predicting with knowledge graphs.
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Definition 2 (frame) A frame is a quadruple
F = 〈E,R,A,D〉 where E, R, and A are finite sets
of elements called entities, relations, and attributes,
respectively, and D : A→ Sa is a function assigning a
range D(A) to each attribute and Sa is a set of possible
values for a ∈ A (discrete or continuous).

We write |E| (resp. |R|, |A|) for the size of E (resp. of R,
of A), and |F | for |E|+|R|+|A|.
We are now in position to define a knowledge graph with
attributes and time (which we simply call “knowledge
graph” for simplicity).

Definition 3 (knowledge graph) Let F = 〈E,R,A,D〉
be a frame. A standard knowledge graph on F is a couple
KG = 〈KGR,KGA〉, where

• KGR is a finite subset of E×R×E×τ with τ the set
of time points,

• KGA is a finite subset of E×A×D×τ such that for
all quadruples (e, a, v, t) ∈ KGA, v ∈ D(a) holds.

For KG = 〈KGR,KGA〉, KGR is called the relational
part of KG , and KGA is called its attributional part. The
last component of each tuple in KGR or KGA is called
its timestamp or time point (t ∈ τ ), the time at which the
attribute’s value or entity’s relation is valid.

Intuitively, (es, r, eo, t) is read “entity es is in relation r
with entity eo at time t”, and (e, a, v, u) is read “entity e has
value v for attribute a at time u”. Given a knowledge graph
KG , we always write KGR (resp. KGA) for its relational
(resp. attributional) part. Figure 1 is an example of the
previously defined KG .

e1 e2 e3

e4

a1

a2a3 a4

r2, t4

r1, t10 r2, t2

r4, t8

v1, t1

v5, t3 v3, t7 v2, t5v4, t1

v6, t3

v7, t4

Figure 1: Example of knowledge graph KG on a frame
F = 〈E,R,A,D〉. The nodes ei ∈ E are entities and the
nodes aj ∈ A are attributes. The relations rn ∈ R are
annotated on edges between two entities. The values vk,
annotated on the edges between two attributes, belong to
the range D(A) of the attribute they are attached to, and
the t′ls are the timestamps of the edges. Attributes of enti-
ties can change their value over time (e3 and a2) and two
entities can have common attributes (e4, e1 and a1) but not
necessarily with the same value. The blue nodes and edges
are KGR and the red edges with all the nodes are KGA.

3.2 Prediction Problems with Knowledge
Graphs

We are interested in predicting the missing relations be-
tween entities and values of attributes in knowledge graphs.
We focus on the case where, for some timestamp, they can
be predicted from the values of a subset of the relations
(R′) and attributes (A′) at previous timestamps.
The relation r∗ (resp. attribute a∗) is said to be determined
by KGR′,A′,≤t∗ if for all timestamps t∗, there is a function
f(·) such as f(KGR′,A′,≤t∗) outputs a relational (resp.
attributional) quadruple comprised of r∗ (resp. a∗) at
time t∗ that exists in KG , where KGR′,A′,≤t∗ denotes the
restriction of KG to quadruples with a relation in R′ or an
attribute in A′, and with a timestamp until t∗. This is the
determined relation (resp. attribute) problem.

With this in hand, the learning problem which we tackle
is the following. Intuitively, for a given knowledge graph
KG∗, we are given all the information just before times-
tamp t∗ together with some information at timestamp t∗,
and the problem is to induce some target relation r∗ (or
attribute a∗) at time t∗.

4 Application to MSA
“Real-world” datasets often have more constraints than the
academic ones (YAGO [23], Wikidata...) because of their
specificities. Maritime datasets are no exception and the
following challenges must be overcome.

4.1 Evolution of attributes
A maritime situation is a fast evolving world with very little
time between two events. For instance, the event databases
ICEWS [24] and GDELT [25] respectively have a tempo-
ral granularity of one day and fifteen minutes. In MSA,
a good evolutionary model is needed for change detection
and the granularity depends on the task. For a change in
the position/course/speed of a vessel (dynamic attributes),
the information must be given within minutes (e.g., rapid
response needed in case of piracy). But to detect a change
in a vessel particulars (identifier, name...), the granularity
needed can be in hours or days. When modeling the evo-
lution of a vessel’s attributes, they can be divided into two
categories [26]:

• Static attributes: related to static information about a
given vessel (name, flag, length...). They are not sup-
posed to change but their evolution must nevertheless
be monitored to report modifications (e.g. change of
owner) or anomalies (e.g. identity fraud).

• Dynamic attributes: these can be divided into two sub-
categories:

– Kinematic attributes that refers to location,
speed, course...

– Non-kinematic attributes such as passengers,
cargo, crew...
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Both types of attributes must be handled in the DAKG.
Note that they can be discrete (e.g. flag) or continuous (e.g.
position).

4.2 Event and threat detection
An event (or quadruple) represents a new relation between
two entities or an abovementionned attribute evolution. A
maritime relation can be proximity between two vessels,
an exchange of goods, harbouring in a port, an attack
on another ship... Such events find their roots in both
KGR and KGA. For instance, two cargo ships from
allied countries stopped at the same position are likely
to be performing a transhipping (proximity, speed, flag).
Currently, most of these events are found using rule-based
systems. Using knowledge graphs and machine learning,
it could be possible to find events using latent features that
cannot be perceived by a human or a rule.

If event mining extracts raw facts, threat detection is a task
highly related to its context and definition. A nation will
not consider a transhipping between two fishing vessels as
a threat since they are more likely to exchange fish than
warheads, but an NGO for ocean conservation can sus-
pect illicit fishing of an endangered species. Performing
this task still requires either expert knowledge or labeled
events.

4.3 Streaming
MSA requires a constant monitoring of maritime areas,
meaning that the model must deal with a continuous flow of
data. Even if the model does not change after training, the
representations of entities and relations must be updated
regularly with the incoming information to keep an up-to-
date view of the situation. Recent work on the subject can
be found in the literature [22, 27].

4.4 Uncertainty
Maritime data often results from hard (sensors) and soft
(websites, intelligence) data fusion. However, this data is
not always 100% certain: an intelligence report may have
a typo, sensors have a range and precision (e.g. +/- 500
meters), or collisions may happen when satellites receive
signals. Errors and approximations are inherent to real-
world data and the uncertainty of facts must be taken into
account when making link prediction [28, 29].

4.5 Explainability
Link prediction models are often black boxes when it
comes to the origin of the prediction. However, a surveil-
lance operator needs to know why a prediction was made
in order to understand it and justify any upcoming response
to an event. Because operators still do not trust AI-based
systems to take decisions, explainability is needed to take
DAKG-based decisions for MSA [30].

An illustration of all these concepts can be found in
Figure 2.

5 Reviewed models
A dynamic and a static link prediction methods are pre-
sented in this section. They use embeddings to represent el-
ements of the graph i.e. continuous vector representations
for entities, attributes ans sometimes relations ([c1, . . . , cn]
with ∀i ∈ [1, n], ci ∈ R and n the dimension of the embed-
ding). Algorithm 1 shows the high level mechanisms of the
two following models.

Algorithm 1: High-level learning algorithm
Result: Up-to-date embeddings
Input: training set S (triples/quadruples), entities E,

relations R, number of iterations nb it
Initialization

Initialize embeddings;
for i← 0 to nb it do

Sample batch from S;
Update embeddings of E (and R if relations have

embeddings) using score function;
Update model parameters (if any) using score

function;
end

5.1 Know-Evolve
Proposed by Trivedi et al. [17], this model uses a temporal
point process framework for temporal reasoning over
dynamically evolving knowledge graphs that models the
occurence of a fact. They propose a novel deep learning
architecture that evolves over time based on availability of
new facts. The dynamically evolving network (Recurrent
Neural Network) ingests the incoming new facts, learns
from them and updates the embeddings of involved
entities based on their recent relationships and temporal
behavior. Their model can predict the occurence of a fact,
but also the time when a fact may potentially occur. It
supports the Open World Assumption and can predict over
unseen entities.

The point process is characterized by the following condi-
tional intensity function:

λes,eor (t|t̄) = exp(ges,eor (t̄))∗(t−t̄) (1)

λes,eor (t|t̄) represents intensity of event involving triplet
(es, r, eo) at time t given previous time point t̄ when ei-
ther es or eo was involved in an event. The exp function
ensures that intensity is positive and well-defined, and the
model is learned by minimizing the joint negative log like-
lihood of intensity function.
The relational score function ges,eor is computed using a
bilinear formulation as follows:

ges,eor = ves(t−)T . Rr . v
eo(t−) (2)
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Vessel type

cargo ; 0.98 ; [t
0 , t

4 ] car
go ; 0.99 ; [t

0
, t 4

]

Latitude

Longitude

43.547 ; 0.94 ; [t4, t4]

31.579 ; 0.94 ; [t4
, t4

]
Latitude

Longitude

43.549 ; 0.89 ; [t3, t4]

31.573 ; 0.89 ; [t3 , t4 ]

Entities
Attributes

X ; 0.97 Uncertainty of X

:isIn Relation type

[ti, tj ] Interval of validity
→ Relation
→ Attribute value
→ Predicted

Figure 2: Example of KG at time t4 (best viewed in color). Events in red represent KGA and the other events KGR. Ship
A and Ship B are vessels from different countries, moving in the Black Sea. They have a static attribute (vessel type) setting
them as cargos and dynamic attributes (latitude and longitude) revealing their positons. Before t4, the two vessels were
moving in the Black Sea and had different positions, but now (t4) they have stopped and are close to each other. A possible
link prediction from KG<t4 is that the two vessels are performing transhipping. Note that the :isStopped relation can be
deduced from the speed attribute going to zero, not represented here for the sake of clarity. If relations such as Russia having
a shore on the Black Sea are 100% sure, some are more uncertain: the position of Ship B is only 89% sure because the signal
was picked up by a satellite in an area with high ship density. More, the uncertainty of predicted relations (:transhipping)
depends on the uncertainty of the root events. Finally, to predict the transhipping action in time, the model must be updated
with the root causes as soon as they are available, hence the need for streaming link prediction.

with ves , veo ∈ Rd the latent feature embeddings of en-
tities, Rr ∈ Rd∗d the relationship weight matrix and t−
represents time point just before time t.
In Know-Evolve, events are included in KGR and the
model partially solves the determined relation problem
(only using KGR). KGA is not included as Know-Evolve
does not consider attribute nodes.
The authors proposed a more recent model [31] that im-
proves the first one with an attention mechanism ; however
in the absence of source code, it is Know-Evolve that is
evaluated here1.

5.2 TransE
TransE [9] is the most representative translational distance
model and now has many extensions [32]. It represents
both entities and relations as vectors in the same space.
Given en event (es, r, eo), the relation is interpreted as a
translation vector r between es and eo so that r connects
the two embedded entities with low error, i.e., es+r ≈ eo

when (es, r, eo) holds. The scoring function is then defined
as the (negative) distance between es+r and eo , i.e.,

fr(es, eo) = −‖es+r−eo‖1/2
where 1/2 refers to the L1 or L2 norm. The score is ex-
pected to be large if (es, r, eo) holds. But this method
has problems dealing with 1-to-N, N-to-1 and N-to-N re-
lations, and can not process a temporal graph nor KGA. It

1https://github.com/rstriv/Know-Evolve

can learn over new relations but not over new entities. In
our study, it only tackles the determined relation problem
without t and KGA. The evaluation was performed using
OpenKE [33]2.

6 Experiments
In these experiments, the performed task is the prediction
of the position of a vessel at the next time points. Obvi-
ously, there are many better fitted methods to do this (like
regression or a Kalman filter), but the ultimate goal is to
use the full capacities of the knowledge graph i.e. exploit
all the relationships, events and attributes in the maritime
surveillance ecosystem to perform better link predictions.
Position prediction is just a reduction of this task to test
knowledge graphs capabilities on MSA. As we could not
find a method handling both time and attributes that can be
tested on our data, the attribute :location is replaced by a
relation :isLocatedIn between a vessel and an area.

6.1 Dataset
In the absence of publicly available maritime knowledge
graph, we created our own in order to evaluate the models.

AIS data. The dataset used in our experiments is based
on real maritime data: AIS messages transmitted by ves-
sels. AIS is a short range (37-74km) ship-to-ship and ship-
to-shore navigational data exchange system. It is currently

2https://github.com/thunlp/OpenKE
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Dataset #Vessels #Areas #Events Train Test
Gibraltar

1M 2,545 1,556 955k 720k 235k

Table 2: Dataset composition

the main source of information available in support of mar-
itime surveillance. The satellite version of AIS (S-AIS)
gives a broader range (~5000km) but the transmissions are
less regular and more subject to signal collision [2]. AIS
provides the following non-exhaustive list of information
about ships:

• the unique identifier of the vessel (called MMSI),
• its longitude/latitude,
• its speed and course,
• the timestamp of the report,
• the type of ship,
• the destination.

AIS to KG. A knowledge graph can be built using these
AIS messages, where vessels are entities with attributes.
Other entities can be added like nations (flag of the ship)
or ports. However, the reviewed methods can only handle
time, not attributes, hence the need to consider attributes
as entities. In our work, the focus is on the evolution of the
positions of vessels. Positions being continuous values,
they need to be discretized to be casted as entities in the
graph. Therefore, the studied area is converted into a grid
made of 1km × 1km squares and each square is an entity
(further referred to as ”areas”).

Moreover, AIS messages are on average received every
three minutes so it can be a reasonable choice to sepa-
rate each time point by three minutes, instead of having
a time point every second as it happens in the data (differ-
ent events can be attached to the same time point). Finally,
as the chosen models can not always handle entities or re-
lations not encountered during the training phase, the test
set is filtered to remove any event involving an entity or
relation not present in the train set. Note that only one re-
lation type is considered here: “vessel :isLocatedIn area”
(|R| = 1) and each event is represented by a quadruple
(es, r, eo, t) ∈ KGR.
To summarize, we build the knowledge graph consisting
of entities = {vessels, areas} and relation = {:isLocatedIn}
over one month, we divide it into train/test sets and run
the methods to predict the relation ”:isLocatedIn” between
vessels and areas.

The dataset covers the Gibraltar Strait from February 2nd,
2017 to March 2nd, 2017 and the test set is comprised
of the eight last day of the studied period. It means that
we are predicting positions at time t given all positions
at times < t. More information is given in Table 2 and
Figure 3 illustrates the trajectories recorded during the con-
sidered period.

Figure 3: One week of maritime traffic in the Gibraltar
Strait (best viewed in color)

6.2 Evaluation task
Link prediction. The evaluation is performed on the link
prediction task: given a quadruple (es, r, eo, t), eo is re-
placed by every possible entity and the resulting quadru-
plet is evaluated by the model. All the quadruples are then
ranked in descending order of plausiblity and we record
the Mean Average Rank (MAR) and the @Hits10 mea-
sure (one of the 10 best ranked quadruples is the true one).
A lower rank means that the quadruple is classified bet-
ter (the best rank being 1 and the worst the number of
entites) and @Hits10 is expressed in percentage of cor-
rectly ranked quadruples i.e. higher is better. The filtering
method of TransE [9] is applied, i.e. the quadruple is not
ranked against corrupted quadruples that are true.

Sliding window evaluation. The performance is tested
using the sliding window evaluation from Know-Evolve.
We divide the test set into 8 different slides, each slide
including one day of time (Know-Evolve uses 12 slides
of two weeks each). This method is said to ”help to
realize the effect of modeling temporal and evolutionary
knowledge” [17].

Static method on dynamic data. As it is a static method,
the evaluation of TransE required some modifications of
the dataset. All the timestamps t are removed and as a
result, multiple occurences of the same triples (es, r, eo)
appear. Those are removed in order to have a unique repre-
sentant for each triple and the dataset is then comprised of
102,470 (train) and 16,807 (test) events. The test set still
only contains entities seen during training.

6.3 Results
Experimental settings. We used the settings reported
in [17] to run Know-Evolve. For TransE, we set batch
size=200, learning rate = 0.001 and embedding dimension
= 64.

Quantitative Analysis. Figure 4 show the results of the
reviewed models over the Gibraltar1M dataset. Know-
Evolve, being a temporal model, performs way better than
TransE which struggle in @Hits10 prediction despite being
not so far from Know-Evolve in Mean Rank. The reason is
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Figure 4: @Hits10 and MAR results of tested models

that TransE depend only on static entity embeddings to per-
form prediction. With an average @Hits10 of 34%, Know-
Evolve captured the relationship between the vessels and
the areas better than TransE but do not excels at the task.

Contextual analysis. This evaluation was made on a sin-
gle task: predict in which area a vessel will be next. This
task is made harder by the discretization of the positions:
areas are independant and the graph does not tell if areas
are close to each other or not. The only way to extract
proximity is the analysis of a vessel’s track (the succes-
sion of relations with area entities), meaning that two areas
having a relation with a vessel in a short timespan may be
close. More, a proximity relationship between two vessels
in the same area could not be established because areas are
too wide to consider two vessels as close (e.g. enough to
perform an exchange of goods). At last, areas not seen
in training cannot be predicted as next location due to the
limitations of TransE. Know-Evolve somehow managed to
find some connections between vessels and areas but the
results are very unsatisfactory: a Mean Rank of 400 means
that the correct area is on average ranked 400th, against
MR = 20 on ICEWS [17]. Despite the difficulty induced
by the discretization, position prediction is a simple task
and the models performed poorly: they are not adequated
to address this problem. The use of positions as continu-
ous attributes could solve the abovementionned issues and

improve the results on position prediction with knowledge
graphs.

7 Conclusion and future work
In this article, we reviewed two link prediction techniques
for a task: the evolution of the positions of vessels using
a dynamic knowledge graph for Maritime Situational
Awareness. We showed that relational data (KGR) is not
sufficient for modelling the movement of a vessel and that
attributional information should be used (KGA). We also
exhibited the challenges that need to be overcome to apply
DAKGs on MSA, and formalized the relation and attribute
value prediction problem.

We foresee several tasks for future work: (1) make the
prediction task more realistic by adding more entity and
relation types in the dataset, such as ships going in and
out of ports, or encounters between ships, (2) find a model
that can handle both KGR and KGA for link and attribute
prediction in a temporal setting, (3) perform threat and/or
anomaly detection on DAKGs. These are the three require-
ments to fully evaluate the use of DAKGs on operational
maritime data.

8 Aknowledgements
This work was partially supported by the French National
Association for Research and Technology and by Airbus
Defence and Space.

References
[1] North Atlantic Treaty Organisation, ”MC MSA draft

definition”, 2007

[2] N. Le Guillarme and X. Lerouvreur, ”Unsupervised
Extraction of Knowledge from S-AIS Data For Mar-
itime Situational Awareness”, FUSION, 2013

[3] M. Riveiro, G. Pallotta and M. Vespe, ”Maritime
anomaly detection: A review”, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
2018

[4] S. Mascaro, A. E. Nicholso, and K. B. Korb, ”Anomaly
detection in vessel tracks using Bayesian networks”,
International Journal of Approximate Reasoning, vol.
55, no. 1, pp. 84–98, 2014.

[5] M. Riveiro, F. Johansson, G. Falkman, and T. Ziemke,
”Supporting maritime situation awareness using selfor-
ganizing maps and gaussian mixture models”, FRON-
TIERS IN ARTIFICIAL INTELLIGENCE AND APPLI-
CATIONS, vol. 173, p. 84, 2008

[6] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, G.-
B. Huang, ”Exploiting AIS Data for Intelligent Mar-
itime Navigation: A Comprehensive Survey”, CoRR,
abs/1606.00981, 2016

Link Prediction on Dynamic Attributed Knowledge Graphs for Maritime Situational Awareness

APIA@PFIA 2019 38



[7] D. Zissis, E. K. Xidias, and D. Lekkas, ”Real-time ves-
sel behavior prediction”, Evolving Systems, vol. 7, no.
1, pp. 29-40, 2016

[8] L. Perera, C. Guedes Soares, ”Ocean Vessel Trajectory
Estimation and Prediction Based on Extended Kalman
Filter”, 2nd International Conference on Adaptive and
Self-adaptive Systems and Applications, 2010

[9] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko, ”Translating Embeddings for Mod-
eling Multi-relational Data”, NIPS, 2013

[10] M. Nickel, V. Tresp, and H.-P. Kriegel, ”A Three-Way
Model for Collective Learning on Multi-Relational
Data”, ICML, 2011

[11] M. Nickel, L. Rosasco, and T. Poggio, ”Holographic
Embeddings of Knowledge Graphs”, AAAI, 2016

[12] H. Liu, Y. Wu, and Y. Yang, ”Analogical Inference
for Multi-relational Embeddings”, ICML, 2017

[13] R. Socher, D. Chen, C. D. Manning, and A. Ng, ”Rea-
soning With Neural Tensor Networks for Knowledge
Base Completion”, NIPS, 2013

[14] T. N. Kipf and M. Welling, ”Variational Graph Auto-
Encoders”, NIPS Workshop on Bayesian Deep Learn-
ing, 2016

[15] J. Leblay and M. W. Chekol, ”Deriving Validity Time
in Knowledge Graph”, in Companion of the The Web
Conference 2018 on The Web Conference, pp. 1771-
1776, 2018

[16] C. Esteban, V. Tresp, Y. Yang, S. Baier, and D.
Krompaß, ”Predicting the Co-Evolution of Event and
Knowledge Graphs”, 19th International Conference
on Information Fusion, 2016.

[17] R. Trivedi, H. Dai, Y. Wang, and L. Song, ”Know-
Evolve: Deep Temporal Reasoning for Dynamic
Knowledge Graphs”, ICML, 2017

[18] T. Jiang et al., ”Towards Time-Aware Knowledge
Graph Completion”, International Conference on
Computational Linguistics, 2016

[19] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang,
”Dynamic Graph Representation Learning via Self-
Attention Networks”, arXiv:1812.09430, 2018

[20] Y. Lin, Z. Liu, and M. Sun, ”Knowledge Representa-
tion Learning with Entities, Attributes and Relations”,
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI), 2016

[21] Y. Tay, L. A. Tuan, M. C. Phan, and S. C. Hui, ”Multi-
Task Neural Network for Non-discrete Attribute Pre-
diction in Knowledge Graphs”, CIKM, 2017

[22] J. Li, K. Cheng, L. Wu, and H. Liu, ”Streaming Link
Prediction on Dynamic Attributed Networks”, in Pro-
ceedings of the Eleventh ACM International Confer-
ence on Web Search and Data Mining - WSDM, Ma-
rina Del Rey, CA, USA, pp. 369-377, 2018

[23] J. Hoffart, F. M. Suchanek, K. Berberich, and G.
Weikum, ”YAGO2: A spatially and temporally en-
hanced knowledge base from Wikipedia”, Artificial In-
telligence, vol. 194, pp. 28–61, 2013

[24] E. Boschee, J. Lautenschlager, S. O’Brien, S. Shell-
man, J. Starz, M. Ward, ”ICEWS Coded Event Data”,
2015

[25] K. Leetaru and P. A. Schrodt, ”GDELT: Global Data
on Events, Location and Tone”, ISA Annual Conven-
tion, 2013

[26] J. Roy, ”Anomaly detection in the maritime domain”,
Proceedings of SPIE - The International Society for
Optical Engineering, 2008

[27] P. Zhao, C. Aggarwal, and G. He, ”Link prediction
in graph streams”, in IEEE 32nd International Confer-
ence on Data Engineering (ICDE), Helsinki, Finland,
pp. 553-564, 2016

[28] D. J. Rezende, S. Mohamed, and D. Wierstra,
”Stochastic Backpropagation and Approximate Infer-
ence in Deep Generative Models”, in International
Conference on Machine Learning, pp. 1278-1286,
2014

[29] M. W. Chekol, G. Pirrò, J. Schoenfisch and H.
Stuckenschmidt, ”Marrying Uncertainty and Time in
Knowledge Graphs”, Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, 2017

[30] A. Adadi and M. Berrada, ”Peeking Inside the Black-
Box: A Survey on Explainable Artificial Intelligence
(XAI)”, IEEE Access, vol. 6, pp. 52138–52160, 2018

[31] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha,
”Representation Learning over Dynamic Graphs”, To
be published in ICLR, 2019

[32] Q. Wang, Z. Mao, B. Wang, and L. Guo, ”Knowl-
edge Graph Embedding: A Survey of Approaches and
Applications”, IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 12, pp. 2724-2743,
2017

[33] X. Han et al., ”OpenKE: An Open Toolkit for Knowl-
edge Embedding”, EMNLP,2018

Jacques Everwyn, Abdel-Illah Mouaddib, Bruno Zanuttini, Sylvain Gatepaille and Stephan Brunessaux

39 APIA@PFIA 2019


