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ABSTRACT
Currently, maritime surveillance operators have to monitor by hand the massive amount of data at their disposal to spot the
events of interest, thus limiting their capabilities. Maritime data comes from various and heterogeneous sources that can be
merged into a dynamic attributed knowledge graph which represents an evolving maritime situation. Using this graph, the
automation of alert rising comes through a link prediction task: given some labels from expert knowledge, are there similar
situations of interest elsewhere in the graph? In this article, we review link prediction techniques for situation awareness
in a maritime context, and draw conclusions on how the addition of attributes in a dynamic graph model could improve
results on this task.
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1. INTRODUCTION
The maritime domain is the theater of many unlawful activities that may go unnoticed: terrorism, piracy, smuggling, illegal
immigration... For this reason, Maritime Situational Awareness (MSA) is of first importance to maritime security. It
is defined by NATO as “The understanding of military and non-military events, activities and circumstances within and
associated with the maritime environment that are relevant for current and future NATO operations and exercises where
the Maritime Environment (ME) is the oceans, seas, bays, estuaries, waterways, coastal regions and ports”.1 MSA is often
performed by surveillance operators who monitor the flow of data coming from maritime activities. This data is diverse,
heterogeneous and coming from several sources: AIS (Automatic Identification System), radars, satellites, intelligence,
websites... With more than 50.000 vessels sailing the oceans each day, there is a need for automation in the detection of
illicit events.2

A maritime situation implies evolving entities: vessels, ports, countries... Such a situation can be represented by a dy-
namic attributed knowledge graph (DAKG), and understanding how its elements connect and jointly evolve gives valuable
information pertaining to MSA. This task is here reduced to a link prediction problem. A link, or an event, is a rela-
tion between two entities at a given time point, for instance (Titanic ; :builtBy ; WhiteStarCompany ; 1909), and attributed
means that entities have attributes whose values may change over time, e.g. (Titanic ; :passengers ; 2,344 ; April 10th 1912).

Generally, link prediction is performed by learning an embedding for each entity of the graph and predictions are made
by ranking the events in the graph using these embeddings. This benefits to MSA in two ways:

• data completion: when monitoring an operational situation, the sensors and intelligence services do not always have
all the needed information at their disposal. Using link prediction, missing data can be inferred to improve MSA;

• automated alerts: link prediction will discover events that a human operator would not have noticed in the massive
dataset. Illegal activities could also be anticipated by making prediction in the future and evaluating the risk a ship
represents based on its current and past behavior.

In this article, we review (1) two models on a dynamic (but not attributed) knowledge graph, (2) the literature on
static/dynamic/attributed knowledge graphs, (3) how to apply DAKGs to MSA.
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2. PREVIOUS WORK
The previous work related to this study can be broadly divided into four categories: maritime related work, static graphs,
dynamic graphs and attributed graphs.

2.1 MSA
MSA often focuses on anomaly detection.3 It can be tackled with clustering,2 bayesian networks4, self-organizing maps5

and many others techniques6. Route estimation is also handled, e.g. with neural networks7 or Extended Kalman filter.8

These strategies perform well on trajectory analysis but do not take the whole context of a situation to detect an anomaly
or a threat. To the best of our knowledge, this is the first attempt of using link prediction on DAKG to improve MSA.

2.2 Static Knowledge Graph
In a static setting, each node is represented by a single vector. This field is largely covered with a broad range of techniques.
Translational models evaluate a fact by measuring the distance between the two entities, generally using the relation during
the translation. TransE9 is its most known representative. Semantic matching models are similarity-based and compare
the latent semantics of entities and relations embeddings. RESCAL10 was the first to do this and has been extended
multiple times.11, 12 Neural network architectures have also been tried with NTN13 or VGAE.14 These models achieve
great performances on static knowledge graphs but are not suited to deal with dynamic ones.

2.3 Dynamic Knowledge Graph
In a dynamic setting, each node is represented by a time series of vector modeling its evolution. This topic is emerging
and has less contributions but advances have already been made. Leblay et al.15 predict time validity for unannotated
edges using side information in the learning process. Esteban et al.16 update the knowledge graph using an event graph
to add new information, and Trivedi et al.17 extend the bilinear model (RESCAL) with a LSTM network in order to learn
non-linearly evolving entities. Jiang et al.18 incorporate the valid time of facts using a joint time-aware inference model
based on Integer Linear Programming. Self-attention networks were tried by Sankar et al.19

Although these models are time-aware, they do not include attribute information in the relation prediction task and we will
show that they are needed when dealing with MSA.

2.4 Attributes
KR-EAR20 can predict discrete attribute values and find correlation between them. However, they are not included during
the learning of relations and relations are not included in the learning of attributes.21 propose a model that jointly learns
KGR and KGA with a neural network and predicts continuous values with a regression task. However, neither model
deals with temporal data.

Li et al.22 propose a streaming model (SLIDE) on dynamic attributed networks using a sketching matrix that summarizes
the currently observed links and node attributes. They review the challenges pertaining to such networks and real-world
data, but they apply it on social networks (Epinions, DBLP, ACM) that have very different kinds of attributes and only
a few widely separated timesteps (~20 timesteps from one month to one year each). All these models showed that the
addition of attributes improves the results on link prediction.

Table 1 compares representative models from each category and shows that no model currently fits our needs perfectly
(see Part 4 for detailed requirements).

Static Dynamic Attributes
Near

Real-Time
TransE9 X

Know-Evolve17 X
MT-KGNN21 X Continuous

SLIDE22 X Discrete ∼

Table 1: Application domain of models comparison



3. PROBLEM STATEMENT
In this section, we define a knowledge graph structure to represent a maritime situation.

3.1 Knowledge graph

DEFINITION 1 (FRAME). A frame is a quadruple F = 〈E,R,A,D〉 where E, R, and A are finite sets of elements
called entities, relations, and attributes, respectively, and D : A→ Sa is a function assigning a range D(A) to each
attribute and Sa is a set of possible values for a ∈ A (discrete or continuous).

DEFINITION 2 (DYNAMIC ATTRIBUTED KNOWLEDGE GRAPH). Let F = 〈E,R,A,D〉 be a frame. A standard knowl-
edge graph on F is a couple KG = 〈KGR,KGA〉, where

• KGR is a finite subset of E×R×E×τ , with τ the set of time points,

• KGA is a finite subset of E×A×D(A)×τ such that for all quadruples (e, a, v, t) ∈ KGA, v ∈ D(a) holds.

For KG = 〈KGR,KGA〉, KGR is called the relational part of KG , and KGA is called its attributional part.

Intuitively, (es, r, eo, t) is read “entity es is in relation r with entity eo at time t”, and (e, a, v, u) is read “entity e has
value v for attribute a at time u”. Given a knowledge graph KG , we always write KGR (resp. KGA) for its relational
(resp. attributional) part. Figure 1 is an example of the previously defined KG .
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Figure 1: Example of knowledge graph KG on a frame F = 〈E,R,A,D〉. The nodes ei ∈ E are entities and the nodes
aj ∈ A are attributes. The relations rn ∈ R are annotated on edges between two entities. The values vk, annotated
on the edges between two attributes, belong to the domain D(A) of the attribute they are attached to, and the t′ls are the
timestamps of the edges. Attributes of entities can change their value over time (e3 and a2) and two entities can have
common attributes (e4, e1 and a1) but not necessarily with the same value. The blue square nodes and edges are KGR and
the red edges with all the nodes are KGA.

3.2 Prediction problem
We are interested in predicting the missing relations between entities and values of attributes in knowledge graphs. We
focus on the case where for some timestamp, they can be predicted from the values of a subset of the relations and attributes
at previous timestamps. In this article, we experiment attribute prediction (position) from past attributes.

4. APPLICATION TO MSA
“Real-world” datasets often have more constraints than the academic ones because of their specificities. Maritime datasets
are no exception and the following challenges must be overcome.



• Evolution of attributes: a maritime situation is a fast evolving world with very little time between two events. In
MSA, a good evolutionary model is needed for change detection and the granularity depends on the task. For a
change in the position/course/speed of a vessel (dynamic attributes), the information must be given within minutes
(e.g. rapid response needed in case of piracy). But to detect a change in a vessel particulars (identifier, name...), the
granularity needed can be in hours or days.

• Event and threat detection: an event (or quadruple) represents a new relation between two entities or an abovemen-
tionned attribute evolution. Using knowledge graphs and machine learning, it could be possible to find events using
latent features that cannot be perceived by a human or a rule. If event mining detects facts, threat detection is a task
highly related to its context and definition. A nation will not consider a transhipping between two fishing vessels as
a threat since they are more likely to exchange fish than warheads, but an NGO for ocean conservation can suspect
illicit fishing of an endangered species. Performing this task still requires either expert knowledge or labeled events.

• Streaming: MSA requires a constant monitoring of maritime areas, meaning that the model must deal with a contin-
uous flow of data.

• Uncertainty: maritime data often results from hard (sensors) and soft (websites, intelligence) data fusion. However,
this data is not always 100% certain: an intelligence report may have a typo, sensors have a range and precision (e.g.
+/- 500 meters), or collisions may happen when satellites receive signals.

• Explainability: link prediction models are often black boxes when it comes to the origin of the prediction. However,
a surveillance operator needs to know why a prediction was made in order to understand it and justify any upcoming
response to an event. Because operators still do not trust AI-based systems to take decisions, explainability is needed
to take DAKG-based decisions for MSA.30

An illustration of all these concepts can be found in Figure 2.

5. EXPERIMENTS
In these experiments, the performed task is the prediction of the position of a vessel in the next time points. Obviously,
there are many better fitted methods to do this (like regression or a Kalman filter), but the ultimate goal is to use the
full capacities of the knowledge graph i.e. exploit all the relationships, events and attributes in the maritime surveillance
ecosystem to perform better link predictions. Position prediction is just a reduction of this task to test knowledge graphs
capabilities on MSA. As we could not find a method handling both time and attributes that can be tested on our data, the
attribute :location is replaced by a relation :isLocatedIn between a vessel and an area.

5.1 Dataset
In the absence of publicly available maritime knowledge graph, we created our own in order to evaluate the models.

5.1.1 AIS data

The dataset used in our experiments is based on real maritime data: AIS messages transmitted by vessels. AIS is a short
range (37-74km) ship-to-ship and ship-to-shore navigational data exchange system. It is currently the main source of
information available in support of maritime surveillance. The satellite version of AIS (S-AIS) gives a broader range
(~5000km) but the transmissions are less regular and more subject to signal collision.2 AIS provides the following non-
exhaustive list of information about ships: the unique identifier of the vessel (called MMSI), its longitude/latitude, its speed
and course, the timestamp of the report, the type of ship, the destination.
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Figure 2: Example of KG∗ at time t∗ (best viewed in color). Events in red represent KGA and the other events KGR. Ship
A and Ship B are vessels from different countries, moving in the Mediterranean Sea. They have a static attribute (vessel
type) setting them as cargos and dynamic attributes (latitude and longitude) revealing their positons. Before t∗, the two
vessels were moving in the Mediterranean Sea and had different positions, but now (t∗) they have stopped and are close
to each other. A possible link prediction from KG<t∗ is that the two vessels are performing transhipping. Note that the
:isStopped relation can be deduced from the speed attribute going to zero, not represented here for the sake of clarity. If
relations such as CountryA having a shore on the Mediterranean Sea are 100% sure, some are more uncertain: the position
of Ship B is only 89% sure because the signal was picked up by a satellite in an area with high ship density. More, the
uncertainty of predicted relations (:transhipping) depends on the uncertainty of the root events. Finally, to predict the
transhipping action in time, the model must be updated with the root causes as soon as they are available, hence the need
for streaming link prediction.

5.1.2 AIS to KG

A knowledge graph can be built using these AIS messages, where vessels are entities with attributes. Other entities can be
added like nations (flag of the ship) or ports. However, the reviewed methods can only handle time, not attributes, hence
the need to consider attributes as entities. In our work, the focus is on the evolution of the positions of vessels. Positions
being continuous values, they need to be discretized to be casted as entities in the graph. Therefore, the studied area is
converted into a grid made of 1km × 1km squares and each square is an entity (further referred to as ”areas”).

Moreover, AIS messages are on average received every three minutes so it can be a reasonable choice to separate each
time point by three minutes, instead of having a time point every second as it happens in the data (different events can be
attached to the same time point). Finally, as the chosen models can not always handle entities or relations not encountered
during the training phase, the test set is filtered to remove any event involving an entity or relation not present in the train
set. Note that only one relation type is considered here: “vessel :isLocatedIn area” (|R| = 1) and each event is represented
by a quadruple (es, r, eo, t) ∈ KGR.

To summarize, we build the knowledge graph consisting of entities = {vessels, areas} and relation = {:isLocatedIn}
over one month, we divide it into train/test sets and run the methods to predict the relation ”:isLocatedIn” between vessels
and areas.

The dataset covers the Gibraltar Strait from February 2nd, 2017 to March 2nd, 2017. It holds around 2.5k vessels and
one million positions. The two evaluated methods are TransE9 and Know-Evolve.17 They use embeddings (vectors of real
values) to represent entities and make link predictions.



Figure 3: One week of maritime traffic in the Gibraltar Strait (best viewed in color)

5.2 Evaluation task
5.2.1 Link prediction

The evaluation is performed on the link prediction task: given a quadruple (es, r, eo, t), eo is replaced by every possible
entity and the resulting quadruple is evaluated by the model. All the quadruples are then ranked in descending order of
plausiblity and we record the Mean Average Rank (MAR) and the @Hits10 measure (one of the 10 best ranked quadruples
is the true one). A lower rank means that the quadruple is classified better (the best rank being 1 and the worst the number
of entities) and @Hits10 is expressed in percentage of correctly ranked quadruples i.e. higher is better. The filtering method
of TransE9 is applied, i.e. the quadruple is not ranked against corrupted (i.e. modified) quadruples that are true.

5.2.2 Sliding window evaluation

The performance is tested using the sliding window evaluation from Know-Evolve. We divide the test set into 8 different
slides, each slide including one day of time (Know-Evolve uses 12 slides of two weeks each). This method is said to ”help
to realize the effect of modeling temporal and evolutionary knowledge”17.

5.2.3 Static method on dynamic data

As it is a static method, the evaluation of TransE required some modifications of the dataset. All the timestamps t are
removed and as a result, multiple occurences of the same triples (es, r, eo) appear. Those are removed in order to have a
unique representant for each triple and the dataset is then comprised of 102,470 (train) and 16,807 (test) events. The test
set still only contains entities seen during training.

Figure 4: @Hits10 and MAR results of tested models



5.3 Results
5.3.1 Quantitative Analysis

Figure 4 show the results of the reviewed models over the Gibraltar1M dataset. Know-Evolve, being a temporal model,
performs way better than TransE which struggle in @Hits10 prediction despite being not so far from Know-Evolve in
Mean Rank. The reason is that TransE depend only on static entity embeddings to perform prediction. With an average
@Hits10 of 34%, Know-Evolve captured the relationship between the vessels and the areas better than TransE but do not
excels at the task.

5.3.2 Contextual analysis

This evaluation was made on a single task: predict in which area a vessel will be next. This task is made harder by the
discretization of the positions: areas are independant and the graph does not tell if areas are close to each other or not. The
only way to extract proximity is the analysis of a vessel’s track (the succession of relations with area entities), meaning
that two areas having a relation with a vessel in a short timespan may be close. More, a proximity relationship between
two vessels in the same area could not be established because areas are too wide to consider two vessels as close (e.g.
enough to perform an exchange of goods). At last, areas not seen in training cannot be predicted as next location due
to the limitations of TransE. Know-Evolve somehow managed to find some connections between vessels and areas but
the results are very unsatisfactory: a Mean Rank of 400 means that the correct area is on average ranked 400th, against
MR = 20 on ICEWS.17 Despite the difficulty induced by the discretization, position prediction is a simple task and the
models performed poorly: they are not adequated to address this problem. The use of positions as continuous attributes
could solve the abovementionned issues and improve the results on position prediction with knowledge graphs.

5.3.3 Experimental settings

We used the settings reported in the associated article17 to run Know-Evolve. For TransE, we set batch size=200, learning
rate = 0.001 and embedding dimension = 64.

6. CONCLUSION AND FUTURE WORK
In this article, we reviewed two link prediction techniques for a task: the evolution of the positions of vessels using a
dynamic knowledge graph for Maritime Situational Awareness. We showed that relational data (KGR) is not sufficient
to modelize the movement of a vessel and that attributional information should be used (KGA). We also exhibited the
challenges that need to be overcome to apply DAKGs on MSA, and formalized the relation and attribute value prediction
problem.

We foresee several tasks for future work: (1) make the prediction task more realistic by adding more entity and relation
types in the dataset, such as ships going in and out of ports, or encounters between ships, (2) find a model that can handle
both KGR and KGA for link and attribute prediction in a temporal setting, (3) perform threat and/or anomaly detection
on DAKGs. These are the three requirements to fully evaluate the use of DAKGs on operational maritime data.
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