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ABSTRACT

In this paper, a novel category of expectation propagation

(EP) based frequency domain (FD) semi-blind receivers are

proposed for single-carrier block transmissions. A recently

proposed EP-based framework for deriving double-loop turbo

detectors is extended to handle joint data-aided channel es-

timation along with EP-based soft interference cancellation

(IC). When addressing this problem in a message passing

framework, an unconventional probability density function

prevent us from establishing analytical update functions for

estimating data and channel estimates. This is solved with

variational inference methods, such as mean-field (MF), ex-

pectation maximization (EM) or EP, using a three-loop re-

ceiver structure with flexible performance-complexity trade-

off, thanks to fast Fourier transform (FFT) based processing.

Index Terms— turbo equalization, joint channel estima-

tion and detection, expectation propagation, message passing.

1. INTRODUCTION

Interference mitigation is a key technology for wireless re-

ceivers that need to cope with increasing throughput require-

ments. Channel estimation is among the foremost aspects of

interference mitigation techniques, a poorly-estimated chan-

nel state information (CSI) limits these algorithms’ potential.

While the availability of a high number of pilot symbols for

channel estimation improves the CSI quality, it also severely

degrades the system’s spectral efficiency. Hence, semi-blind

channel estimation algorithms which also exploit data offer

more attractive performance - spectral efficiency trade-off.

Conventional turbo-iterative equalizers [1], based on

Gaussian-approximated belief propagation (GaBP) message-

passing on factor graphs [2] use soft data estimates from

the decoder feedback, to improve detection for systems with

bit-interleaved coded-modulation (BICM). These soft esti-

mates are also usable for data-aided channel estimation [3],

as demonstrated for multi-carrier [4] or single-carrier systems

with frequency domain equalization (SC-FDE) [5].

In recent years, more advanced approximate Bayesian in-

ference algorithms, such as expectation propagation (EP) or

mean field (MF) [6, 7], have gained significant interest. Such

techniques, when formulated as message passing algorithms,

have proven themselves to be practical for addressing com-

plex communications systems [8]. In particular, they have

been used for channel impulse response (CIR) estimation in

multi-carrier systems with hybrid BP-(EP)-MF frameworks

[9, 10], and with an EP-only frameworks in [11, 12]. In these

works, FD data symbols are discrete variables (for instance,

due to the use of orthogonal frequency domain multiplexing,

i.e. OFDM), which allows for low-complexity message com-

putations, however this is not the case for SC-FDE systems,

for which alternative joint estimation techniques have been

investigated in [5, 13].

In this paper, the doubly-iterative low-complexity fre-

quency domain (FD) receivers with perfect CSI in [14],

are extended by applying the EP framework with tempo-

rally white message statistics for channel frequency response

(CFR) estimation for SC-FDE. The technical contribution

of this paper is CSI estimation with non-discrete data in the

FD with EP, which requires resolving factor nodes where

Gaussian variables are multiplied. This problem is addressed

by resolving the multiplier node with three approaches: (a)
with expectation-maximization (EM) [2], (b) hybrid EP-MF

[9, 10] and (c) EP extended with the quadratic-approximation

(QA) [12]. Moreover, semi-blind receivers need to handle the

correlations caused by the CFR interpolation of CIR over

the data block through a truncated discrete-Fourier transform

(DFT). To this end, we propose thrice-iterated joint channel

estimator and equalizer, using a factor graph approach.

Notations Bold lowercase letters are used for vectors: let u be

a N × 1 vector, then un, n = 1, . . . , N are its entries. Capi-

tal bold letters denote matrices: for a N × M matrix A, [A]n,:

and [A]:,m respectively denote its nth row and mth column, and

an,m = [A]n,m is the entry (n,m). IN is the N × N identity

matrix, 0N,M and 1N,M are respectively all zeros and all ones N ×
M matrices. Diag(u) denotes the diagonal matrix whose diago-

nal is defined by u. FK is the normalized K-point DFT matrix

with [FK ]k,l = exp(−2jπ(k − 1)(l − 1)/K)/
√
K, and such that

FKFH
K = IK . For random vectors x and y, µx = E[x] is the

expected value, and Σx,y = Cov[x,y] is the covariance matrix

and Σx = Cov[x,x]. The circularly-symmetric complex Gaus-

sian probability density function (PDF) of mean µ and covariance

Σ is CN (x;µ,Σ). Bernoulli distribution of success probability p is

B(b; p) and δ(·) is the Dirac delta function.



fCH

h

fDFTh

h1

hk

hK

fSYM1

...

fSYMk...

fSYMK

x1

xk

xK
fDFTx

. . .
x1

...xk

...xK
. . .

fDEMk

dk,1

...
dk,Q

...

...

...
fITRLV+DEC

Fig. 1. Joint channel estimation and detection factor graph.

2. SYSTEM MODEL

Single-carrier transmission of a block of K data symbols is

carried out with a BICM scheme. A Kb-bit information block

b is encoded by a rate-Rc forward-error-correction code C
to provide a Kd-bit codeword c, which is then interleaved

to the coded block d with an interleaver Π. A memoryless

modulator ϕ maps d into the data block x ∈ XK , with X ⊂
C, |X | = M and Q = log2 M . This symbolwise operation

maps each Q-bit vector dk , [dQ(k−1)+1, . . . , dQk] to the

symbol xk, and we use ϕ−1
q (xk) or dk,q to refer to d(k−1)Q+q .

X is such that independently and identically distributed (IID)

data symbols have a zero-mean and unit variance, i.e. σ2
x = 1.

The end-to-end baseband channel between the transmit-

ter and the receiver is assumed to be a quasi-static multipath

fading channel, with the CIR h = [h1; . . . ;hL], and L < K.

This model assumes a symbol-level synchronization of the re-

ceiver to the emitter and the receiver is affected by noise and

extra-system interference, jointly modelled as a complex ad-

ditive white Gaussian noise (AWGN) w of variance σ2
w.

The data blocks are received with circular transmissions

through schemes such as cyclic-prefixing. Baseband data ob-

servations are y = Hx+w, with H being the circulant matrix

with column hD = [h;0K−L,1]. Using a K-point DFT, FD

observations are

y = Hx+w, (1)

where y = FKy, H = FKHFH
K = Diag(

√
Kh) with h =

FKhD, x = FKx, and w remains AWGN with variance σ2
w.

In this system, the CIR is interpolated to K-point CFR on

data observations. To model this more succinctly, we denote

the truncated DFT matrix F ′
K = FK [IL;0K−L,L], of size

K × L such that h = F ′
Kh. Note that while F ′H

K F ′
K = IL,

F ′
KF ′H

K is a non-diagonal and a non-invertible matrix. Then,

by denoting ỹ = y/
√
K observations are rewritten as

ỹ
k
= hkxk + w̃k, k = 1, . . . ,K, (2)

where w̃ ∼ CN (0K , σ2
w̃) and σ2

w̃ = σ2
w/K. In the remainder

of this paper, we will consider that σ2
w̃ is perfectly known, and

that there is a prior knowledge on the CIR, with the PDF

p(h) = CN (h;h0, σ
2
h,0IL), (3)

which, for instance, might be provided by a pilot-aided (KP

pilots) least-squares (LS) channel estimator [3].

Table 1. Posteriors and messages of variables nodes.

Description Notation PDF

Posterior at

SYMk

qSYMk
(hk) CN (hk;µ

s
h,k

, γs
h,k

)

qSYMk
(xk) CN (xk;µ

s
x,k

, γs
x,k

)

Extrinsic

from SYMk

mSYMk→hk
(hk) CN (hk;h

s
k, v

s
h,k

)

mSYMk→xk
(xk) CN (xk;x

s
k
, vs

x,k
)

DFTh post. qDFTh(h) CN (h;µf
h
,Γf

h
)

DFTh extr. mDFTh→h(h) CN (h;hf ,Vf
h
)

Post. and

ext. at CH

qCH(h) CN (h;µc
h
,Γc

h
)

mCH→h(h) CN (h;hc,Vc
h
)

Posterior at

DFTx

qDFTx(x) CN (x;µf
x, γ

f
xIK)

qDFTx(x) CN (x;µf
x,Γ

f
x)

Extrinsic

from DFTx

mDFTx→x(x) CN (x;xf , v
f
xIK)

mDFTx→x(x) CN (x;xf ,Vf
x)

Posterior at

DEMk

qDEMk
(xk) CN (xk;µ

d
x,k

, γd
x)

qDEMk
(dk)

∏
q B(dk,q ;πk,q)

Extrinsic from

DEMk

mDEMk→xk
(xk) CN (xk;x

d
k
, vdx)

mDEMk→dk
(dk)

∏
q B(dk,q ; p

e
k,q

)

Prior to DEMk mdk→DEMk
(dk)

∏
q B(dk,q ; p

a
k,q

)

3. TURBO RECEIVER DESIGN WITH SCALAR EP

The receiver which can optimize the packet error rate perfor-

mance is given by the MAP criterion

b̂ = argmax
b

p(b|ỹ, σ2
w̃). (4)

whose resolution is often intractable or too complex, and vari-

ational Bayes methods are used to maximize this PDF.

3.1. Factor Graph Modelling with Imperfect CSI

Assuming IID equiprobable information bits, the Bayes rule

yields p(b|ỹ, σ2
w̃) ∝ p(ỹ|b, σ2

w̃), and p(ỹ|b, σ2
w̃) is

∫

p(ỹ,x,x,h,h,d, c|b, σ2
w̃) dx dx dh dh dd dc. (5)

The argument of this marginalization is factorized as

p(ỹ,x,x,h,h,d, c|b, σ2
w̃) = p(h)p(h|h)p(x|x)

p(d|c)p(c|b)∏k p(ỹk|xk, hk, σ
2
w̃)p(xk|dk) (6)

where the distributions from the system model are denom-

inated as factor nodes (FN), with fCH(h) , p(h) and

fSYM(xk, hk) , p(ỹ
k
|xk, hk, σ

2
w̃) = CN (y

k
;hkxk, σ

2
w̃),

where ỹ
k

and σ2
w̃ are omitted in the FN, as they are known.

DFT and mapping constraints are modeled with fDFTx(x,x) ,
p(x|x) = δ(x−FKx), fDFTh(h,h) , p(h|h) = δ(h−F ′

Kh)
and fDEMk

(xk,dk) , p(xk|dk) = δ(xk − ϕ(dk)). For in-

terleaving and decoding we denote fITRLV(d, c) , p(d|c) =
δ(d − Π(c)) and fDEC(c,b) , p(c|b) = δ(c − C(b)). The

factor graph of this system is given in Figure 1.



3.2. EP, Variable Node Assumptions and Scheduling

For brevity, the reader is referred to [6, 14] for EP-based mes-

sage passing rules. We denote prior and extrinsic messages

between a variable node (VN) vi, and a FN F respectively

as mvi→F(vi) and mF→vk
(vi). Moreover, qF(vi) is the ap-

proximate posterior on vi at F, which is obtained through

the Kullback-Leibler projection of the belief (or the pre-

projection posterior) on vi , denoted as q̃F(vi).
The posteriors and extrinsic messages of the considered

variables nodes for the factor graph are listed in Table 1.

Coded and interleaved bit dk,q is a Bernoulli variable, with

P[dk,q = 1] measured as a priori padk,q
, extrinsic pedk,q

and a

posteriori πdk,q
estimates from DEM’s point of view. These

are respectively characterized by the log-likelihood ratios

(LLRs) La(dk,q), Le(dk,q) and L(dk,q), such that the LLR

for a success probability p is L = log[(1 − p)/p]. Time-

domain variable nodes x and h lie in white Gaussian dis-

tribution, following the scalar EP framework in [14]. FD

quantities x and h are un-correlated, but coloured Gaussians.

Furthermore, the extended framework uses a three-loop

schedule, where the decoding loop (turbo-iterations between

DEM and ITRLV+DEC) consists of a channel estimation loop

(estimation-iterations between CH and DFTh), which in its

turn includes an inner-detection loop (self -iteration between

DFTx and DEM). The number of iterations of each loop are

respectively denoted by T , E and S . Self-iterations use the

damping heuristic with exponential smoothing on moments,

with β = 0.6, as detailed in [14], for the Equation (7).

3.3. Exact Message Computations

3.3.1. At factor node DEC+ITRLV

Derivation of messages between DEC and ITRLV is omitted,

as these are well-known for any BICM scheme, with Le(dk,q)
being used to update La(dk,q) [15, 16].

3.3.2. At factor node DEM

DEM receives md→DEM(dk) from the nodes DEC+ITRLV

and mx→DEM(xk) from DFTx. Its belief on VN dk,q follows

q̃DEM(dk,q) ∝
∑1

β=0

∑

α∈Xβ
q
Dk(α)δ(dk,q − β),

where X β
q = {α ∈ X , ϕ−1

q (α) = β}, β ∈ F2, and

Dk(α) ∝ CN (xf
k ;α, v

f
x)

∏Q
q=1 e

−ϕ−1

q (α)La(dk,q). The extrin-

sic LLR on dk,q is given by Le(dk,q) = ln
∑

α∈X 0
q
Dk(α) −

ln
∑

α∈X 1
q
Dk(α)− La(dk,q). The belief on VN xk is

q̃DEM(xk) ∝
∑

α∈X Dk(α)δ(xk − α),

and the parameters of qDEM(xk) are obtained through moment

matching, with µd
x,k = EDk

[xk], γ
d
x = K−1

∑

k VarDk
[xk].

Hence, the parameters of the extrinsic message are

xd
k = vdx(µ

d
x,k/γ

d
x − xf

k/v
f
x), vdx = 1/(1/γd

x − 1/vfx). (7)

3.3.3. At factor node DFTx

Prior messages at DFTx are mx→DFTx(x) from DEM and

mx→DFTx(x) from SYM. This FN’s belief on VN x is

q̃DFTx(x) = CN (FKx;xs,Vs

x
)CN (x;xd, vdxIK),

i.e. a correlated Gaussian PDF. Following projection on to a

white Gaussian PDF, the parameters of qDFTx(x) are

µ
f

x
= FH

K (Vs

x
+ vdxIK)−1(Vs

x
xd + vdxx

s), (8)

γf
x = vdx(1− ξxv

d
x), ξx , K−1

∑

k(v
s
x,k + vdx)

−1,

where xd = FKxd. Extrinsic message parameters are

xf = FH
K

[

xd + ξ−1
x (Vs

x
+ vdxIK)−1(xs − xd)

]

,

vfx = ξ−1
x − vdx. (9)

Moreover, DFTx’s belief on VN x is

q̃DFTx(x) = CN (x;xs,Vs

x
)CN (FH

K x;xd, vdxIK),

and thus, the approximate posterior parameters are

Γf

x
= vdxV

s

x
(vdxIK +Vs

x
)−1,

µ
f

x
= Vs

x
(vdxIK +Vs

x
)−1(xd + vdxV

s

x

−1xs),
(10)

and the resulting extrinsic message parameters are

Vf

x
= vdxIK , xf = xd. (11)

3.3.4. At factor node DFTh

The computations in this FN are more tedious, as F ′
KF ′H

K is

non-invertible. Hence the equivalent factor graph with hD is

solved, assuming that priors p(hD,k), k > l, are Gaussians

with zero means and covariances being infinitesimals.

The parameters of qDFTh(h) are then given by

µ
f

h
= h

c + vchF ′
KF ′H

K Ξh(h
s − h

c), (12)

γf
h,k = vsh,k(1− vsh,k[Ξh]k,k),

where Ξh = (Vs

h
+ vchF ′

KF ′H
K )−1 and h

c = F ′
Khc. The

corresponding extrinsic message is characterized by

hf
k = hs

k + [Ξh]
−1
k,ke

H
k Ξh(h

c

k − h
s

k), (13)

vfh,k = [Ξh]
−1
k,k − vsh,k.

The computation of Ξh is obtained with L iterations of

Sherman-Morrison formula on matrix inversion [17].

3.3.5. At factor node SYM

The belief of SYM on joint variables xk and hk is

q̃SYM(xk, hk) = CN (ỹ
k
;hkxk, σ

2
w̃)

CN (xk;x
f
k , v

f
x,k)CN (hk;h

f
k , v

f
h,k),

(14)
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iterations for Es/N0 = σ2
x/σ

2
w = 16 dB.

which involves a multiplier node [2], whose resolution is non-

trivial. Indeed, the belief of SYM on xk is

q̃SYM(xk) =
CN (xk;x

f

k
,v

f

x,k
)

π(σ2

w̃
+v

f

h,k
|xk|

2)
exp

(

− |ỹ
k
−h

f

k
xk|

2

σ2

w̃
+v

f

h,k
|xk|

2

)

, (15)

and the belief on hk is obtained by symmetry. Moments of

q̃SYM(xk) and q̃SYM(hk) cannot be analytically computed and

approximations are needed to solve the message passing.

4. PROPOSED PRACTICAL RECEIVERS

4.1. Joint Estimation and Detection with MF and EM

The MF approach [10] estimates both xk and hk with a pos-

teriori point-estimates, as follows

xs
k =

µs
h,k

∗ỹ
k

|µs
h,k|2 + γs

h,k

, vsx,k =
σ2
w̃

|µs
h,k|2 + γs

h,k

, (16)

where µs
h,k and γs

h,k are posterior statistics of hk, with

µs
h,k =

vsh,kh
f
k + vfh,kh

s
k

vsh,k + vfh,k
, γs

h,k =
vsh,kv

f
h,k

vsh,k + vfh,k
, (17)

hs
k and vsh,k are obtained by symmetry, with µs

x,k and γs
x,k.

The EM approach [2] simplifies the data estimates, by ne-

glecting CSI estimates’ reliability, i.e. γs
h,k = 0.

4.2. Joint Estimation and Detection with EP-QA

The final alternative we consider for computing messages at

the FN SYM is the QA method proposed in [12], which con-

sists in computing the second-order local approximation of

the argument of the exponential in Eq. (15), around a point-

estimate mx,k of the mean of xk. As a result, we have

q̃SYM(xk) ≈ CN (xk;x
f
k , v

f
x,k)CN (xk;x

s
k, v

s
x,k), (18)

where the approximated Gaussian component’s statistics are

xs
k =

hf
k
∗ỹ

k

|hf
k |2 + vfh,kχx,k

, vsx,k =
σ2
w̃ + vfh,k|mx,k|2

|hf
k |2 + vfh,kχx,k

, (19)
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Fig. 3. BER vs SNR for T = 0 (left) and T = 5 (right).

where χx,k = 1− |ỹ
k
− hf

kmx,k|2/(σ2
w̃ + vfh,k|mx,k|2). The

selection of the hyper-parameter mx,k has an impact on the

convergence speed of the algorithm. The message parameters

hs
k and vsh,k in SYM node are obtained by symmetry.

The selection of mx,k and mh,k for local quadratic ap-

proximations, is handled by focusing on their impact on the

extrinsic messages of SYM. We have selected mx,k = xf
k to

ensure statistical consistency in the computation of ξx (and

similarly mh,k = hf
k for stabilizing Ξh). Moreover, to avoid

degrading the extrinsics when the priors are poorly known,

χx,k is clipped to be positive with χx,k = max(0, χx,k).

4.3. Numerical Results

We consider a SC-FDE transmissions with 8-PSK coded by

a convolutional code of polynomials [5, 7]8, K = 128, over

the Proakis C channel (h = [1; 2; 3; 2; 1]/
√
19). Prior chan-

nel estimates are obtained through a pilot-aided LS estima-

tion, with KP = 10, and we compare the performance of the

three variants of the EP-based receiver (EM, MF, EP-QA),

with mismatched CSI (p(h) = δ(h− h0)) and with a perfect

CSI receiver. In the Fig. 2 the impact of turbo-iterations T
is given, and while all three proposed algorithms significantly

benefit from self-iterations, EP-QA achieves lower BER, and

faster convergence. In the Fig. 3 the decoding capabilities are

given. Among joint receivers (E = 1), proposed EP-QA ap-

proach has over 1 dB gain over the proposed ones based on

EM and MF, for S = 1. Moreover, joint estimation brings

up to 3 dB gain over pilot-only CSI (E = 0, i.e. [14]), when

comparing receivers with the same T and S .

5. CONCLUSIONS AND PERSPECTIVES

In conclusion, self-iterations significantly improve data-based

channel estimation, and EP-based inference yields receivers

with flexible options for scheduling. EP-QA approach for

joint channel-estimation also appears to be promising for

SC-FDE systems. In future works, the complexity - spectral-

efficiency trade-off of these structures has to be explored.

Moreover it needs to be extended to multi-block CSI estima-

tion for comparison with alternative approaches [5, 13].
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