
HAL Id: hal-02942767
https://hal.science/hal-02942767v1

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Development of Multi-Purpose Interactive
Application (MPIA) for ARINC 661

Neeraj Kumar Singh, Yamine Aït-Ameur, Dominique Méry, David Navarre,
Philippe Palanque, Marc Pantel

To cite this version:
Neeraj Kumar Singh, Yamine Aït-Ameur, Dominique Méry, David Navarre, Philippe Palanque, et
al.. Formal Development of Multi-Purpose Interactive Application (MPIA) for ARINC 661. 7th
International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2019), Nov 2019,
Shenzhen, China. pp.21-39, �10.1007/978-3-030-46902-3_2�. �hal-02942767�

https://hal.science/hal-02942767v1
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1007/978-3-030-46902-3_2

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26285

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Singh, Neeraj and Ait Ameur, Yamine

and Méry, Dominique and Navarre, David and Palanque,

Philippe and Pantel, Marc Formal Development of Multi-

Purpose Interactive Application (MPIA) for ARINC 661. (2020)

In: 7th International Workshop on Formal Techniques for Safety-

Critical Systems (FTSCS 2019), 9 November 2019 - 9 November

2019 (Shenzhen, China).

Formal Development of Multi-Purpose Interactive

Application (MPIA) for ARINC 661

N. K. Singh1, Y. Aït-Ameur1, D. Méry2, D. Navarre3, P. Palanque3, and M. Pantel1

1 INPT-ENSEEIHT / IRIT, University of Toulouse, France
2 LORIA,Université de Lorraine & Telecom Nancy, Nancy, France

3 IRIT, Université de Toulouse, Toulouse, France

neeraj.singh@toulouse-inp.fr, yamine.aitameur@toulouse-inp.fr,

dominique.mery@loria.fr, navarre@irit.fr, palanque@irit.fr,

marc.pantel@toulouse-inp.fr

Abstract. This paper reports our experience for developing Human-Machine

Interface (HMI) complying with ARINC 661 specification standard for inter-

active cockpits applications using formal methods. This development relies on

the FLUID modelling language, we have proposed and formally defined in the

FORMEDICIS1 project. FLUID contains essential features required for speci-

fying HMI. To develop the Multi-Purpose Interactive Applications (MPIA) use

case, we follow the following steps: an abstract model of MPIA is written using

the FLUID language; this MPIA FLUID model is used to produce an Event-B

model for checking the functional behaviour, user interactions, safety properties,

and interaction related to domain properties; the Event-B model is also used to

check temporal properties and possible scenario using the ProB model checker;

and finally, the MPIA FLUID model is translated to Interactive Cooperative Ob-

jects (ICO) using the PetShop CASE tool to validate the dynamic behaviour, vi-

sual properties and task analysis. These steps rely on different tools to check

internal consistency along with possible HMI properties. Finally, the formal de-

velopment of the MPIA case study using FLUID and its embedding into other

formal techniques, demonstrates reliability, scalability and feasibility of our ap-

proach defined in the FORMEDICIS project.

Keywords: Human-machine interface (HMI), formal method, refinement and proofs,

Event-B, PetShop, verification, validation, animation.

1 Introduction

Developing a human-machine interface (HMI) is a difficult and time-consuming task

[22] due to complex system characteristics and user requirements, which require antic-

ipating human behaviour, system components and operational environment. Moreover,

the design principles of HMI are different from traditional software development pro-

cesses, including techniques and tools [29]. Considering every aspect of the HMI devel-

opment process in a single framework, from requirement analysis to implementation, is

1 Funded by ANR (Agence nationale de la recherche), https://anr.fr/

Projet-ANR-16-CE25-0007

a challenging task. Since a long time, formal methods play an important role for analyz-

ing system interaction [5, 10, 11], and their use has been widely adopted in the current

development process of HMI. Yet, to our knowledge there is no standard approach that

can be used to formally develop and design a safety-critical HMI from spec to code.

The ongoing project, ANR-FORMEDICIS [14] where our work takes place, aims

to propose a suite that can be used for developing and designing safety-critical HMIs.

In this project, we develop a pivot modelling language, FLUID (Formal Language of

User Interface Design), for the formal specification of HMI based on state transitions

systems allowing to express requirements, assumptions, expectations, nominal and non

nominal properties, and scenarios. Then, formal models in common languages can the

be derived from a FLUID model for verification, validation, simulation and anima-

tion. The derived formal models use theorem provers and model checkers for analyzing

the different required functional properties, nominal and non nominal properties, and

scenarios. In our work, we use the Event-B [1] modelling language for producing an

abstract formal model and the PetShop CASE tool [27] for producing Interactive Co-

operative Objects (ICO) model [23]. The produced models are analyzed with specific

developed tools. Rodin [2] is used for Event-B models and PetShop for ICO models.

The analyzed models provide feedback to the original FLUID model.

We propose to illustrate the FORMEDICIS approach applying it for the develop-

ment of a complex case study issued from aircraft cockpit design: MPIA (Multi-Purpose

Interactive Applications). First, we develop a FLUID model for MPIA and then we gen-

erate an Event-B model and an ICO model from the developed FLUID model. In this

development, we begin by specifying different MPIA components, including functional

behaviour, states, assumptions, expectations, interactions, properties and scenarios. The

embedding of the formal FLUID development of MPIA in Event-B preserves the re-

quired behaviour in the developed model. In the generated model, we prove important

properties, such as functional behaviour, user interactions, safety properties, and inter-

action related domain properties. We use the ProB model checker tool [21] to analyze

and validate the developed models, and to check temporal properties and possible sce-

nario for HMI. In the ICO model, we provide the dynamic behaviour of MPIA. The

developed ICO specification fully describes the potential interactions that users may

have with the application. It covers both input and output aspects related to users. In the

ICO formalism, there are four components: a cooperative object which describes the

behaviour of the object, a presentation part, activation function and rendering function

to link between the cooperative object and the presentation part.

This paper is organized as follows. Section 2 presents the required background.

Section 3 describes the FLUID language. Section 4 provides the selected MPIA case

study. section 5 presents a formal development of the case study in FLUID. Section 6

and Section 7 illustrates the formal developments of the FLUID model in Event-B and

PetShop, respectively. In Section 8, we provide an assessment of our work and Section 9

presents related work. Finally, Section 10 concludes the paper with future work.

2 Preliminaries

2.1 The Modelling Framework: Event-B

This section describes the modelling components of the Event-B language [1]. The

Event-B language contains two main components, context for describing the static prop-

erties of a system using carrier sets s, constants c, axioms A(s, c) and theorems Tc(s, c),
and machine for describing behavioural properties of a system using variables v, invari-

ants I(s, c, v), theorems Tm(s, c, v), variants V (s, c, v) and events evt. A context can

be extended by another context, a machine can be refined by another machine and a

machine can use sees relation to include other contexts.

An Event-B model is characterized by a list of state variables possibly modified by

a list of events. A set of invariants I(s, c, v) shows typing invariants and the required

safety properties that must be preserved by the defined system. A set of events presents

a state transition in which each event is composed of guard(s) G(s, c, v, x) and action(s)

v : |BA(s, c, v, x, v′). A guard is a predicate, built on state variables, for enabling the

event’s action(s). An action is a generalized substitution that describes the ways one or

several state variables are modified by the occurrence of an event.

The Event-B modelling language supports the correct by construction approach to

design an abstract model and a series of refined models for developing any large and

complex system. Refinements, introduced by the REFINES clause, transform an ab-

stract model to a more concrete version by modifying the state description. A refine-

ment allows modelling a system gradually by introducing safety properties at various

refinement levels. New variables and new events may be introduced in a new refinement

level. These refinements preserve the relation between the refining model and its corre-

sponding refined concrete model, while introducing new events and variables to specify

more concrete behavior of a system. The defined abstract and concrete state variables

are linked by introducing the gluing invariants. The generated proof obligations ensure

that each abstract event is correctly refined by its concrete version.

Rodin [2] is an integrated development environment (IDE) for the Event-B mod-

elling language based on Eclipse. It includes project management, stepwise model de-

velopment, proof assistance, model checking, animation and automatic code generation.

Once an Event-B model is modelled and syntactically checked on the Rodin platform

then a set of proof obligations (POs) is generated using the Rodin proof engine. Event-

B supports different kinds of proof obligations, such as invariant preservation, non-

deterministic action feasibility, guard strengthening in refinements, simulation, variant,

well-definedness etc. More details related to the modelling language and proof obliga-

tions can be found in [1].

2.2 ICO Notation and PetShop CASE Tool

This section recalls the main features of the Interactive Cooperative Objects (ICOs)

formal description technique used for modelling software of interactive systems. ICO

is dedicated to the specification of interactive systems [23]. It uses concepts borrowed

from the object-oriented approach (dynamic instantiation, classification, encapsulation,

inheritance, client/server relationship) to describe the structural or static aspects of sys-

tems, and uses high-level Petri nets to describe their dynamic or behavioural aspects.

ICOs are dedicated to the modelling and the implementation of event-driven inter-

faces, using several communicating objects to model the system, where both behavior

of objects and communication protocol between objects are described by the Petri net

dialect called Cooperative Objects (CO). In the ICO formalism, an object is an entity

featuring four components: a cooperative object which describes the behavior of the

object, a presentation part (i.e. the graphical interface), and two functions (the activa-

tion function and the rendering function) which make the link between the cooperative

object and the presentation part.

An ICO specification fully describes the potential interactions that users may have

with the application. The specification encompasses both the "input" aspects of the

interaction (i.e. how user actions impact on the inner state of the application, and which

actions are enabled at any given time) and its "output" aspects (i.e. when and how the

application displays information relevant to the user). These aspects are expressed by

means of the activation function (for input) and the rendering function (for output).

ICOs description do not integrate graphical rendering of information and objects. This

is usually delegated to Java code or to other description techniques such as UsiXML [9].

The ICO notation is fully supported by a CASE tool called PetShop [27]. All the models

presented in the next sections have been edited and simulated using PetShop. Some

formal analysis is also supported by the tool but limited to the underlying Petri net,

removing the specificities brought by the high-level Petri net model.

3 FLUID Language

The FLUID language2 developed in the FORMEDICIS project is organized in three

main parts to describe static, dynamic and requirements. The static part defines type

definition, constant, sets and the required features for interactions. The dynamic part de-

fines a state-transition system for describing interactive system. The requirements part

expresses the required behaviour, including user tasks and scenarios. A FLUID model

is an INTERACTION module which is composed of six sections (see Fig. 1). The first

three sections, DECLARATION, ASSUMPTIONS and EXPECTATIONS, describe the

static part of a model. The following STATE and EVENT sections describe the dynamic

part of a model, and the last REQUIREMENT section describes the requirement part

of a model. The DECLARATION section allows to define new typing information that

can be used to describe a HMI model.

The typing information may depend on generic and abstract types, such as sets,

constants, enumerated sets, and natural and integer numbers. The STATE section

declares a list of variables, which are classified as Input, Output, SysInput and

SysOutput. The interactions between system and user can be characterized by the

Input and Output variables while the interactions between system components can be

characterized by SysInput and SysOutput variables. Note that all these variables can

be tagged using domain knowledge concepts borrowed from an external knowledge.

2 Deliverable D1.1a: Language specification Preliminary version

Model using the @tag (i.e. Enabled,

Visible, Checked, Colors) to make ex-

plicit the HMI domain properties of

HMI components. The EVENT sec-

tion describes a set of events to present

a state transition in which each event

is composed of guard(s) and action(s).

All these events are also categorized

as acquisition, presentation and

internal events. Acquisition events

model acquisition operations of HMI

component by modifying the acqui-

sition state variables. Similarly, the

presentation events model presenta-

tion operation by modifying the pre-

sentation state variables. The internal

events model internal operations by

modifying the internal state variables.

These classification of events allow

to check reactive properties, such as

one stating that every acquisition is

immediately followed by a presenta-

tion event or an internal event. This

section also contains an INITIALISA-

TION event to set initial values.

INTERACTION Component_Name

DECLARATION

SETS s

CONSTANT c

STATE

Input State Variables

Output State Variables

SysInput State Variables

SysOutput State Variables

v //A variable without @tag
v@tag //A variables with domain specific @tag

EVENTS

INIT

Acquisition Events

Presentation Events

Internal Events

Event evt@tag[x]
where

G(s, c, v, x, v@tag, x@tag)
then

v : |BA(s, c, v, x, v′, v@tag, x@tag, v′@tag)
end

ASSUMPTIONS

A(s, c)
EXPECTATIONS

Exp(s, c)
REQUIREMENTS

PROPERTIES

Prop(s, c, v, v@tag)
SCENARIOS

NOMINAL

SC(s, c, v, v@tag)
NON NOMINAL

NSC(s, c, v, v@tag)
END Component_Name

Fig. 1: FLUID Model structure

The ASSUMPTIONS section introduces the required assumptions related to en-

vironment that includes the user and machine agents. These assumptions can be ex-

pressed as logical properties to express HMI properties. The EXPECTATIONS section

describes prescriptive statements that are expected to be fulfilled by parts of the envi-

ronment of an interactive system. Note that the assumptions and expectations can be

expressed in the same way, but both are different. The REQUIREMENTS section is

divided into two subsections, known as PROPERTIES and SCENARIOS. The PROP-

ERTIES section describes in logic all the required properties of an interactive system

that must be preserved by a defined system. The SCENARIOS section describes both

nominal and non-nominal scenarios using algebraic expressions, close to CTT [28], for

analyzing possible acceptable and non-acceptable interactions.

4 MPIA Case Study

ARINC 661 is a standard, designed by the Airlines Electronic Engineering Committee

(AEEC), for normalizing the definition of a Cockpit Display System (CDS) [6] and

it provides guidelines for developing the CDS independently from the aircraft systems.

The CDS provides graphical and interactive services to use applications within the flight

deck environment. It controls user-system interaction by integrating input devices, such

as keyboard and mouse.

We present the Multi-Purpose Interactive Application (MPIA) that complies with

ARINC 661 standard to demonstrate our formal modelling and verification approach

considering several software engineering concepts related to HMI. Fig. 2 depicts MPIA

which is a real User Application (UA) for handling several flight parameters. This ap-

plication contains a tabbed panel with three tabs, WXR for managing weather radar in-

formation, GCAS for Ground Collision Avoidance System parameters and AIRCOND

for dealing with air conditioning settings. A crew member is allowed to switch to any

mode (see Fig. 2) using tabs. These tabs have three different applications which can be

controlled by the pilot and the co-pilot using any input devices.

The MPIA window of any tab is composed of three main parts: information area,

workspace area and menu bar. The information area is the top bar of any tab that splits

in two parts for displaying the current state of the application on the left part and the er-

ror messages, actions in progress or bad manipulation when necessary on the right part.

The workspace area shows changes according to the selected interactive control panel.

For example, WXR workspace displays all the modifiable parameters of the weather

radar sensor, GCAS workspace shows some of the working modes of GCAS, and AIR-

COND workspace displays the selected temperature inside an aircraft. The menu bar

area contains three tabs for accessing the interactive control panels related to WXR,

GCAS and AIRCOND.

Fig. 2: Snapshots of the MPIA (from left to right: WXR, GCAS and AIRCOND)

5 Formal Development of MPIA in FLUID

We present a formal description of MPIA in FLUID. Due to space limitation, we show

only the FLUID model of weather radar information (WXR). The other HMI widgets,

such as GCAS and AIRCOND, of MPIA are developed in a similar way.

5.1 Declaration

For modelling the HMI of WXR in FLUID, we define a set of enumerated datatypes and

a constant to represent system properties in the DECLARATION clause. Three enu-

meration sets are: WXR_MODE_SELC_SET for modes, WXR_TILT_STAB-_MSG

for messages, and WXR_ACTIONS for actions. A constant WXR_ANGL_RANG is

defined a range of tilt angle.

5.2 State

In WXR model, we define several state variables in STATE clause for representing

Input, Output, SysInput and SysOutput states. There are four variables to represent input

or acquisition states and six variables to represent output or presentation states. All

these variables associated with tag information (Input, Enabled, Visible, Checked, etc.)

are defined with the given datatypes. Note that the associated tags are defined in a HMI

metadata library, including types.
5.3 Events

To model the functional inter-

active behaviour of WXR, we

define a set of events, including

an INIT event in the EVENT

clause. The INIT event only

sets initial value for each state

variable while the other events

are used to model possible

HMI behaviour (state changes).

In the INIT event, we show

initial state of an acquisition

variable (A_ModeSelection)

and a presentation variable

(P_checkMode), including tag

details. Other state variables

and their associated tags are

initialized in a similar way.

DECLARATION

// WXR Mode enumeration set

TYPE WXR_MODE_SELC_SET = enumeration (M_OFF, STDBY, TST, WXON, WXA)

// WXR Tilt and Stabilisation message enumeration set

TYPE WXR_TILT_STAB_MSG = enumeration (ON, OFF, AUTO, MANUAL)

// WXR Tilt angle range

CONSTANT WXR_ANGL_RANG = [-15 .. 15]

// WRX actions

TYPE WXR_ACTIONS = enumeration (TILT_CTRL, STAB_CTRL)

STATE Section

// Acquisition states

A_ModeSelection@{Input, Checked} : WXR_MODE_SELC_SET // Mode state

A_TiltSelection@{Input, Enabled} : WXR_TILT_SELC_SET // Tilt state

A_Stabilization@{Input, Enabled} : WXR_STAB_SELC_SET // Stabilization state

A_TiltAngle@{Input,Enabled} : WXR_ANGL_RANG // Tile angle state

. . .

// Presentation states

// Radio buttons presentation states

P_checkMode@{Output, Checked} : WXR_MODE_SELC_SET → BOOL

// CTRL tilt button presentation state

P_ctrlModeTilt_Button@{Output, Enabled} : WXR_ACTIONS

// CTRL tilt label presentation state

P_ctrlModeTilt_Label@{Output, Visible} : WXR_TILT_STAB_MSG

// CTRL stablization button presentation state

P_ctrlModeStab_Button@{Output, Enabled} : WXR_ACTIONS

// CTRL stablization label presentation state

P_ctrlModeStab_Label@{Output, Visible} : WXR_TILT_STAB_MSG

// Tilt angle value in the presentation state

P_TiltAngle@{Output, Enabled} : WXR_ANGL_RANG

The FLUID model contains 6 acquisition events in the acquisition clause, and 7

presentation events in the presentation clause. Here, we only show two acquisition

events (modeSelection and tiltCtrl) and one presentation event (checkMode) to

demonstrate the modelling concepts related to HMI. Note that the name of acquisition

event is followed by @Acquisition, and the name of presentation event is followed by

@Presentation. The semantics of FLUID language guarantee that an acquisition event

is always followed by the corresponding presentation event or internal event to express

an interaction behaviour composed of several atomic events related to input, output etc.

The event modeSelection is allowed to select any mode to the input or acquisition

state (A_ModeSelection) from the workspace area of WXR (see Fig. 2). Note that only

input variable and associated tag value are updated through event’s actions. Similarly,

the event tiltCtrl is used to select a possible action to the input or acquisition state

(A_T iltSelection). In this event, the actions are also used to update input variable,

including tag. The event checkMode presents the state changing behaviour of a widget

(radio) defined in the workspace area (see Fig. 2).

The guard of this event state that the selected widget option, acquired by the acquisi-

tion state (A_ModeSelection) should not be Checked. The action of this event shows

the selected option as TRUE and the other options as FALSE, and the associated tag

is updated as TRUE. Other events related to acquisition and presentation are modelled

in a similar way.

5.4 Requirements

The REQUIREMENTS clause of FLUID

model contains a set of required proper-

ties, and nominal and non nominal sce-

narios expressing expected, respectively

unexpected, behaviors. In our model, we

define 8 safety properties to check the

correctness of HMI model. The first

safety property (Prop_1) states that al-

ways a single option is selected from the

workspace area (see Fig. 2). The sec-

ond property (Prop_2) states that the

acquisition event modeSelection is al-

ways followed by the presentation event

checkMode. Other properties are defined

to check the interaction behaviour of HMI

components. We define a nominal sce-

nario SC_1 and a non nominal NSC_1
which are started by the INIT event that is

followed by the mode selection, tilt selec-

tion, stabilization and tilt angle activities

using interleaving operator (||). Note that

each activity is composed of acquisition

and presentation events in a sequential or-

der (;). In addition, if there are more than

one possible events of acquisition, or pre-

sentation then we use optional operator []
to compose them. To simulate these sce-

narios iteratively, we use ∗ operator. Note

that the nominal scenario shows possible

expected HMI interactions that may oc-

cur, while the non nominal scenario shows

unexpected HMI interaction that must not

occur.

EVENTS Section

// Initialisation Event

INIT =

A_ModeSelection := OFF

A_ModeSelection@Checked := TRUE

. . .

// Only OFF mode is selected at initialisation

P_checkMode := {i 7→ j | i ∈ WXR_MODE_SELC_SET ∧
j = FALSE } ∪ { M_OFF 7→ TRUE })\{M_OFF 7→ FALSE}

P_checkMode@Checked := TRUE

. . .

// ACQUISITION Events

// Any mode is allowed to select from WXR to acquisition state

Event modeSelection@Acquisition =

ANY

mode

WHERE

mode : WXR_MODE_SELC_SET

THEN

A_ModeSelection := mode

A_ModeSelection@Checked := TRUE

END

// The tilt selection model : AUTO or MANUAL (to acquisition state).

// The CTRL push-button allows to swap between the two modes

Event tiltCtrl@Acquisition =

ANY

n_tilt

WHERE

n_tilt : WXR_ACTION ∧ n_stab = TILT_CTRL ∧
n_stab@Enabled = TRUE

THEN

A_TiltSelection := n_tilt

A_TiltSelection@Enabled := TRUE

END

Event stabCtrl@Acquisition = . . .

Event tiltAngle@Acquisition = . . .

Event tiltAngle_Greater_15@Acquisition = . . .

Event tiltAngle_Less_15@Acquisition = . . .

// PRESENTATION Events

// Presentation of radio button: Only selected mode will be checked as TRUE

Event checkMode@Presentation =

WHEN

A_ModeSelection@Checked = TRUE

THEN

P_checkMode:=({i 7→ j | i ∈ WXR_MODE_SELC_SET

∧ j = FALSE }∪{ A_ModeSelection 7→ TRUE })\
{A_ModeSelection 7→ FALSE}

P_checkMode@checked := TRUE

END

Event ctrlModeTilt_Auto@Presentation = . . .

Event ctrlModeTilt_Manual@Presentation = . . .

Event ctrlModeStab_On@Presentation = . . .

Event ctrlModeStab_Off@Presentation = . . .

Event tiltAngle_True@Presentation = . . .

Event tiltAngle_False@Presentation = . . .

REQUIREMENTS Section

PROPERTIES

Prop1 :∀ m1,m2· m1∈ WXR_MODE_SELC_SET ∧ m2∈ WXR_MODE_SELC_SET ∧ m17→ TRUE ∈ prj1(prj1(P_checkMode)) ∧
m27→ TRUE ∈ prj1(prj1(P_checkMode)) ⇒ m1=m2

Prop2 :G(e(modeSelection@Acquisition) ⇒ X (e(checkMode@Presentation))))

Prop3 :(e(tiltAngle@Acquisition) ⇒ (e(tiltAngle_True) or e(tiltAngle_False@Presentation)))

Prop4 :{P_ctrlModeTilt_Label = (AUTO7→Output)7→TRUE ⇒ P_ctrlModeStab_Label = (OFF7→Output)7→TRUE}

Prop5 :{P_ctrlModeTilt_Label = (MANUAL7→Output)7→TRUE ⇒ P_ctrlModeStab_Label = (ON7→Output)7→TRUE}

Prop6 :{P_ctrlModeTilt_Label = (AUTO7→Output)7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL7→Output)7→FALSE}

Prop7 :{P_ctrlModeTilt_Label = (MANUAL7→Output)7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL7→Output)7→TRUE}

Prop8 :{P_ctrlModeTilt_Label = (MANUAL7→Output)7→TRUE ⇒ P_TiltAngle = (107→Output)7→TRUE}

SCENARIOS

NOMINAL

SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)

|| (tiltCtrl@Acquisition; (ctrlModeTilt_Auto@Presentation [] ctrlModeTilt_Manual@Presentation))

|| (stabCtrl@Acquisition; (ctrlModeStab_On@Presentation [] ctrlModeStab_Off@Presentation))

|| (tiltAngle@Acquisition [] tiltAngle_Greater_15@Acquisition [] Evt_tiltAngle_Less_15@Acquisition);

(tiltAngle_True@Presentation [] Evt_tiltAngle_False@Presentation))∗

NON NOMINAL

SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)

|| (tiltCtrl@Acquisition; ctrlModeTilt_Auto@Presentation ; (stabCtrl@Acquisition[]tiltAngle@Acquisition)))∗

In this model, the SC_1 shows possible interactions of WXR HMI while the NSC_1

shows some of the impossible WXR HMI interactions, for example, if an acquisition of

tilt selection is followed by the auto mode presentation then the acquisition of stabiliza-

tion or tilt angle is not possible.

6 Exploring the MPIA FLUID Model in Event-B

A FLUID model is translated into Event-B as follows: 1) An INTERACTION FLUID

component is interpreted as a machine and a context in Event-B; 2) All the constants

and sets defined in a FLUID model correspond to an Event-B context; 3) FLUID states

are translated into a set of variables in an Event-B model, and the variable typing is also

defined as typing invariants of Event-B; 4) FLUID initialisation event and the other

events are transformed into an Event-B initialisation event and to a set of events; and 5)

The properties of FLUID model are translated into Event-B invariants. Note that some

properties are translated into temporal properties using LTL or CTL formula in ProB

to check system properties and to animate our models. Finally, the produced Event-B

model is checked within the Rodin environment and all the defined safety properties

proved successfully.

6.1 Model

Context. In the translated model, two different contexts are defined, the first one con-

tains domain specific information related to HMI while the other one is used to define

static properties of HMI. In the domain specific context, we define possible tag informa-

tion for different widgets, for example, we define an enumerated set HMI_TAG to state

the tag properties of HMI states in daxm1. In addition, we also define three constants,

CHECKED, VISIBLE and ENABLED, as boolean to define tag information for HMI

widgets (daxm2). In the second context, we declare three enumerated sets, WXR_-

MODE_SELC_SET for modes, WXR_MODE_SELC_SET for a set of messages, and

WXR_ACTIONS for a set of actions to specify the MPIA components using axioms

(axm1-axm3). Enumerated sets are defined using the partition statement. We also de-

clare a constant, WXR_ANGL_RANG, to specify a range (-15 .. +15) of the tilt angle

in axm4.

daxm1 : partition(HMI_TAG, {Input}, {Output}, {SysInput}, {SysOutput})
daxm2 : CHECKED = BOOL ∧ V ISIBLE = BOOL ∧ ENABLED = BOOL

axm1 : partition(WXR_MODE_SELC_SET, {M_OFF}, {STDBY }, {TST}, {WXON}, {WXA})
axm2 : partition(WXR_TILT _STAB_MSG, {AUTO}, {MANUAL}, {ON}, {OFF})
axm3 : partition(WXR_ACTIONS, {TILT _CTRL}, {STAB_CTRL})
axm4 : WXR_ANGL_RANG = −15 .. 15

Machine. An Event-B machine is also derived from the FLUID model that is translated

straightforward. The generated Event-B model shows the HMI behaviour and possible

interactions with MPIA widgets. In this model, we introduce 11 state variables (inv1 -

inv11) to model the dynamic behaviour of the system. All these variables are similar

to the FLUID model and are declared as tuple using cartesian product (×). Note that

each variable contains state information and tag information related to HMI. In the

current model, we introduce a safety property saf1 (see property Prop1) to state that

there is only one mode selected from the MODE SELECTION of WXR. Note that other

properties (Prop2 - Prop8) of the FLUID model are defined later in the ProB model

checker.

inv1 : A_ModeSelection ∈ WXR_MODE_SELC_SET × HMI_TAG × CHECKED

inv2 : A_TiltSelection ∈ WXR_ACTIONS × HMI_TAG × ENABLED

inv3 : A_Stabilization ∈ WXR_ACTIONS × HMI_TAG × ENABLED

inv4 : A_TiltAngle ∈ WXR_ANGL_RANG × HMI_TAG × ENABLED

inv5 : P _checkMode ∈ (WXR_MODE_SELC_SET → BOOL) × HMI_TAG × CHECKED

inv6 : P _ctrlModeTilt_Button ∈ WXR_ACTIONS × HMI_TAG × ENABLED

inv7 : P _ctrlModeTilt_Label ∈ WXR_TILT _STAB_MSG × HMI_TAG × V ISIBLE

inv8 : P _ctrlModeStab_Button ∈ WXR_ACTIONS × HMI_TAG × ENABLED

inv9 : P _ctrlModeStab_Button ∈ WXR_ACTIONS × HMI_TAG × ENABLED

inv10 : P _ctrlModeStab_Label ∈ WXR_TILT _STAB_MSG × HMI_TAG × V ISIBLE

inv11 : P _TiltAngle ∈ WXR_ANGL_RANG × HMI_TAG × ENABLED

saf1 : ∀m1,m2·m1 ∈ WXR_MODE_SELC_SET ∧ m2 ∈ WXR_MODE_SELC_SET∧
m1 7→ TRUE ∈ prj1(prj1(P _checkMode)) ∧ m2 7→ TRUE ∈ prj1(prj1(P _checkMode)) ⇒ m1 = m2

Events. In this translated model, we introduce 14 events, including the INITIALI-

SATION event. The INITIALISATION event is used to set the initial value for each

declared state. All these state variables are assigned as tuples to show initial states of

MPIA.
For example,

P_checkMode is

set as M_OFF

mode and other

modes are not

selected from the

option widget of

MPIA (see act6).

EVENT INITIALISATION

BEGIN

act1 : A_ModeSelection := M_OFF 7→ Input 7→ TRUE

act2 : A_TiltSelection := TILT _CTRL 7→ Input 7→ TRUE

. . .

. . .

act6 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪
{M_OFF 7→ TRUE}) \ {M_OFF 7→ FALSE}) 7→ Output 7→ TRUE

act7 : P _ctrlModeTilt_Button := TILT _CTRL 7→ Output 7→ TRUE

. . .

. . .

END

The event modeSelection@Acquisition selects the WXR mode in acquisition mode.

The guard of this event allows to choose any mode by selecting the option widget.
The action of this event states

that the acquisition state

A_ModeSelection of WXR

mode sets the selected mode

with tag information, such

as this variable is in acquisi-

tion state and checked. The

event tiltCtrl@Acquisition

is also specified in similar

style to model the acquisition

behaviour of the tilt angle.

EVENT modeSelection@Acquisition

ANY mode

WHERE

grd1 : mode ∈ WXR_MODE_SELC_SET

THEN

act1 : A_ModeSelection := mode 7→ Input 7→ TRUE

END

EVENT tiltCtrl@Acquisition

ANY n_tilt

WHERE

grd1 : n_tilt ∈ WXR_ACTIONS × HMI_TAG × ENABLED∧
prj1(prj1(n_tilt)) = TILT _CTRL ∧ prj2(n_tilt) = TRUE

THEN

act1 : A_TiltSelection := n_tilt

END

The event checkMode@Presentation is related to presentation to model the WXR

mode. The guard of this event state that acquisition state, A_ModeSelection, of WXR

mode is checked (TRUE) and the action of this event updates the presentation state vari-

able, P_checkMode. The P_checkMode is set as only the selected acquisition mode

and other modes are not selected from the option widget of MPIA (see act1). Other re-

maining acquisition and presentation events are modelled in a similar way. A complete

formal development of the MPIA case study is available at3.

3 http://singh.perso.enseeiht.fr/Conference/FTSCS2019/MPIA_Models.zip

EVENT checkMode@Presentation

ANY n_tilt

WHERE

grd1 : prj2(A_ModeSelection) = TRUE

THEN

act1 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪
{prj1(prj1(A_ModeSelection)) 7→ TRUE})\
{prj1(prj1(A_ModeSelection)) 7→ FALSE}) 7→ Output 7→ TRUE

END

6.2 Model Validation and Analysis

This section summarises the generated proof obligations using Rodin prover. This de-

velopment results in 44 proof obligations, in which 41 (93%) are proved automatically,

and the remaining 3 (7%) are proved interactively by simplifying them.

The model analysis is performed using ProB [21] model checker, which can be

used to explore traces of Event-B models. The ProB tool supports automated consis-

tency checking, constraint-based checking and it can also detect possible deadlocks.

Note that the generated Event-B model is used directly in ProB. In this work, we use

the ProB tool as a model checker to prove the absence of errors (no counterexample

exists) and deadlock-free. We also define LTL properties (Prop1-Prop7) in ProB of

the FLUID model to check the correctness of the generated MPIA model. Note that

the ProB uses all the described safety properties during the model checking process to

report any violation of safety properties against the formalized system behaviour. To

validate the developed MPIA model, we also use the ProB tool for animating the mod-

els. This validation approach refers to gaining confidence that the developed models are

consistent with requirements.

The ProB anima-

tion helps to iden-

tify the desired be-

haviour of the HMI

model in different

scenarios.

Prop1 : (G(e(AE_modeSelection) => X(e(PE_checkMode))))
Prop2 : (e(AE_tiltAngle) => (e(PE_tiltAngle_True)ore(PE_tiltAngle_False)))
Prop3 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (OFF |− > Output)|− > TRUE}
Prop4 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (ON|− > Output)|− > TRUE}
Prop5 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > FALSE}
Prop6 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > TRUE}
Prop7 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _TiltAngle = (10|− > Output)|− > TRUE}

7 Exploring the MPIA FLUID Model in PetShop

This section describes the embedding of the FLUID model in PetShop for verifying

MPIA interaction behaviour using Petri nets. The ICO specification of MPIA is exe-

cutable. That allows us to get a quick prototype before its implementation. The MPIA

model is also produced in the ICO specification language from the FLUID model. Note

that the ICO model only consider input and output aspects extracted from the MPIA

FLUID model. These input and output aspects are defined by adding more precise de-

tails for execution purpose by analysing and refining the MPIA FLUID model. In the

following section, we describe only the development of MPIA in PetShop.

Structuring of the Modelling. ICOs are used to provide a formal description of the

dynamic behaviour of an interactive application. An ICO specification fully describes

the potential interactions that users may have with the application. The specification

encompasses both the "input" aspects of the interaction (i.e. how user actions impact on

the inner state of the application, and which actions are enabled at any given time) and

its "output" aspects (i.e. when and how the application displays information relevant

to the user). In the ICO formalism, an object is an entity featuring four components: a

cooperative object which describes the behaviour of the object, a presentation part, and

two functions (the activation function and the rendering function) which make the link

between the cooperative object and the presentation part. As stated above we present

how ICOs are used for describing an interactive application using the WXR application

presented in the introduction part of the section 4. We thus successively presents the

four ICO parts for that application.

Presentation Part. The Presentation of an object states its external appearance. In the

case of a WIMP interface, this Presentation is a structured set of widgets organized

in a set of windows. Each widget is for the user to interact with the interactive system

(provide input) and/or for the system to present information to the user (present output).

The way used to render infor-

mation (either in the ICOs de-

scription and/or code) is hid-

den behind a set of render-

ing methods (in order to ren-

der state changes and avail-

ability of event handlers) and

a set of user events, embed-

ded in a software interface, in

the same language as the one

used for the COs interface de-

scription.

Public interface WXR_PAGE extends ICOWidget {

// List of user events.

public enum WXR_PAGE_events {asked_off, asked_stdby, asked_wxa,

asked_wxon, asked_tst, asked_auto asked_stabilization,

asked_changeAngle}

// List of activation rendering methods.

void setWXRModeSelectEnabled(WXR_PAGE_events, List<ISubstitution>);

void setWXRTiltSelectionEnabled (WXR_PAGE_events, List<ISubstitution>);

// List of rendering methods.

void showModeSelection (IMarkingEvent anEvent);

void showTiltAngle (IMarkingEvent anEvent);

void showAuto (IMarkingEvent anEvent);

void showStab (IMarkingEvent anEvent);

}

Fig. 3: Software interface of the page WXR from the user ap-

plication MPIA

Cooperative Objects. Using the Co-

operative Object (CO) description

technique, ICO adds the following

features: (1) Links between user

events from the presentation part and

event handlers from the Cooperative

Object description; (2) Links between

user events availability and event-

handlers availability; and (3) Links be-

tween state in the Cooperative Ob-

ject changes and rendering. As stated

above, a CO description is made up

of a software interface and its be-

haviour is expressed using high-level

Petri nets. The WXR page does not of-

fer public methods (except the default

ones for allowing the event mecha-

nism), and this is why there is no soft-

ware interface here.

Fig. 4: High-level Petri net model describing the be-

haviour of the page WXR

Figure 4 shows the entire behaviour of page WXR which is made of two non con-

nected parts: (1) The Petri net in the upper part handles events received from the 5

CheckButtons (see left-hand side of Fig. 2 for the presentation part). Even though they

are CheckButtons the actual behaviour of that application makes it only possible to se-

lect one of them at a time. The current selection (an integer value from 1 to 5) is carried

by the token stored in MODE_SELECTION place and corresponds to one the possible

CheckButtons (OFF, STDBY, TST, WXON, WXA). The token is modified by the tran-

sitions (new_ms = 3 for instance) using variables on the incoming and outgoing arcs as

formal parameters of the transitions. (2) The Petri net in the lower part handles events

from the 2 PicturePushButton and the EditBoxNumeric. Interacting with these buttons

will change the state of the application. In the current state, this part of the application

is in the manual state and the tokens are placed in the NOT_AUTO and STABILIZA-

TION_OFF. This configuration of tokens is required to make available of the edit box

to the user (visible on the model as transition changeAngle_T1 is in a darker colour).

Activation Function. For WIMP interfaces user towards system interaction (inputs)

only takes place through widgets. Each user action on a widget may trigger one of the

CO event handlers. The relationship between user services and widgets is fully stated by

the activation function that associates each event from the presentation part to the event

handler to be triggered and to the corresponding rendering method for representing the

activation or the deactivation: When a user event is triggered, the Activation function is

notified (via an event mechanism) and requires the CO to fire the corresponding event

handler providing the value from the user event. When the state of an event handler

changes (i.e. becomes available or unavailable), the Activation function is notified (via

the observer and event mechanism presented above) and calls the corresponding acti-

vation rendering method from the presentation part with values coming from the event

handler.
The activation function is

fully expressed through a

mapping to a CO behaviour

element. Figure 5 shows the

activation function for page

WXR. Each line in this ta-

ble describes the three objects

taking part in the activation

process. Fig. 5: Activation Function of the page WXR

The first line, for instance, describes the relationship between the user event ask_-

off (produced by clicking on the CheckButton OFF), the event handler off (from the

behaviour) and the activation rendering method setWXRModeSelectEnabled from the

presentation part. More precisely: (i) When the event handler off becomes enabled, the

activation function calls the activation rendering method setWXRModeSelectEnabled

providing it with data about the enabling of the event handler. On the physical inter-

action side, this method call leads to the activation of the corresponding widget (i.e.

presenting the checkButton OFF as available). (ii) When the button OFF of the presen-

tation part is pressed, the presentation part raises the event called asked_off. This event

is received by the activation function which requires the behaviour part to fire the event

handler off (i.e. the transition off_T1 in the Petri net of Figure 4).

Rendering function. For WIMP interfaces system towards user interaction (outputs)

present to the user the state changes that occurs in the system. The rendering function

maintains the consistency between the internal state of the system and its external ap-

pearance by reflecting system states changes on the user interface. Indeed, when the

state of the Cooperative Object changes (e.g. marking changes for a given place), the

Rendering function is notified (via the observer and event mechanism) and calls the

corresponding rendering method from the presentation part with tokens or firing values

as parameters. In a similar way as for the Activation function, the Rendering function

is fully expressed as a CO class.

The rendering function of the WXR application is presented in Fig. 6. In this table

one line describes the three objects taking part in the rendering process. The first line for

instance describes the relationship between the place MODE_SELECTION, the event

linked to this place (and in which we are interested in token_enter) and the rendering

method showModeSelection from the presentation part component.

The signification of this line is: When a

token enters the place MODE_SELEC-

TION, the rendering function is notified

and calls the rendering method showMod-

eSelection providing it with data concern-

ing the new marking of the place that

is used as parameters of the rendering

method. Fig. 6: Rendering Function of the page WXR

8 Assessment

To the best of our knowledge, there is currently no full fledge development framework

for covering every aspect of modelling and designing related to interactive systems. Our

work project targets such a framework for interactive systems complying with ARINC

661 standard. This is the first integrated formalised framework for formal development

of HMI. To support the proposed framework, we have developed a pivot modelling

language, FLUID, to specify HMI requirements. Since a long time, stepwise refinement

plays an important role for modelling complex systems. We also target a correct by

construction design of interactive systems abstractly and then progressively develop

a concrete model closed to an implementation. This progressive development allows

us to introduce functional behaviour and safety properties related to system and user

interactions.

The proposed language is expressive enough to cover possible functional behaviour,

system input and output states, presentation, and nominal and non-nominal scenar-

ios. The FLUID language allows us to build a complex HMI systematically, including

reasoning for each step systematically considering functions, properties and domain

knowledge related to HMI. To demonstrate the practicality of the proposed language,

we have developed industrial examples. We have already developed the HMIs for Auto-

matic Cruise Control (ACC), Traffic alert and Collision Avoidance System (TCAS) and

MPIA. We can provide a list of safety properties, and nominal and non-nominal scenar-

ios to check the correctness of a formalized system including interaction behaviour. The

properties and scenarios derive from the usability principles, such as usability, flexibil-

ity and robustness. The presented case study covers only some of the usability princi-

ples. such as consistency, observability, tagging and task conformance. In addition, the

ICO specification fully describe the potential interactions that users may have with the

application to validate the dynamic behaviour, visual properties and task analysis.

Modelling an interactive system using the FLUID language provides a common

understanding for the various stakeholders. In summary, the FLUID model is an abstract

pivot core model of HMI for expressing interaction behaviour using state transition

systems, assumptions, properties and scenarios. If there will be any error detected then

the FLUID model can be modified accordingly. Many techniques, like Event-B, ProB,

ICO, task analysis with CTT have been applied on FLUID model. This modelling and

analysing steps can be applied iteratively to obtain a correct FLUID model. Similar to

this framework, in our MPIA case study, we use on the Event-B modelling language

for specifying system and defining safety properties while we use ICO for analysing

possible interactions by refining the FLUID model. Note that the use of different tools

provides us more confidence on the defined FLUID model. On the other hand we need

to check the combination of the approach for an interactive system and the freedom of

the integration of different techniques and tools.

9 Related Work

Several approaches are developed in the past years for modelling, designing, verifying

and implementing interactive systems. Due to increasing complexity, formal methods is

considered as a first-class citizen for modelling and designing the interaction behaviour

of HMI for critical systems. There are several approaches, such as Petri net, process

algebra and model checking, have been used successfully for checking the intended

behaviour of HMI. Palanque et al. [25, 26] propose the development of HMI using In-

teractive Cooperative Objects (ICO) formalism, in which the object-oriented framework

and possible functional behaviour are described with high-level Petri-nets.

Compos et al. [11] propose a framework for checking the HMI system for a given

set of generic properties using model checkers. Navarre et al. [24] propose a framework

for analyzing the interactive systems, particularly for the combined behaviour of user

task models and system models to check whether a user task is supported by the system

model. Bolton et al. [10] propose a framework to analyze human errors and system

failures by integrating the task models and erroneous human behaviour.

In [5], the authors propose an incremental development of an interactive system us-

ing B methods to model the important properties of HMI, such as reachability, observ-

ability and reliability. A development lifecycle for generating source code for HMI from

an abstract model is presented in [3]. The Event-B language is used for developing the

multi-model interactive system supporting with CARE properties using correct by con-

struction approach in [4]. In [19], the authors propose an approach with supported tools

based on CAV architecture, hybrid model of MVC and PAC, for developing HMI from

specification to implementation. In [16], the authors present a developed methodology,

based on MVC architecture, for developing an HMI using a correct by construction

approach for introducing functional behaviour, safety properties and HMI components.

A formal interaction mechanism is described using the synchronous data flow lan-

guage Lustre [17] at ONERA. In [7], the authors present derivation of possible interac-

tions from an informal description of the interactive system. These derived interactions

are used to model a formal model of the interactive system for checking and validating

the required HMI behaviour of interactive system, and for generating the test cases [8].

A modelling language, LIDL (LIDL Interaction Description Language), is proposed

in [20] to describe a formal description of possible interaction of HMI. In this language,

the static nature of HMI is specified using interfaces and the dynamic nature of HMI is

specified as interactions. The semantics of this language is based on synchronous data

flows similar to Lustre that makes the process easy for formal verification and code gen-

eration. In [15], the authors propose a formal development process for designing HMI

for safety-critical systems using LIDL and S3 solver.

The project CHI+MED [13] proposes modelling in Modal Action Logic (MAL) and

proofs in PVS for developing HMI of medical systems. In [18], the authors present a

methodology to design a user interface compliant with use-related safety requirements

using formal methods. In [12], the authors propose an approach for checking the re-

quired properties of executable models of interactive software in djnn framework. The

djnn framework describes interactive components in hierarchical manner, including the

low level details such as graphics, behaviours, computations and data manipulations.

All the above approaches are all confronted with different issues like the lack of

abstraction or of formal design patterns for handling different aspects of interactive sys-

tems. Nevertheless, the main contribution of these researches and studies is to demon-

strate only parts of the interactive systems such as interaction, task analysis etc. To

our knowledge there is no work related to modelling, refinement, domain knowledge

integration and management, scenarios, task analysis together for developing interac-

tive systems. Our work is the first integrated framework for modelling and designing

interactive systems by defining different components of interactive systems. Note that

our defined language FLUID is able to model interaction behaviour, domain properties,

scenarios and tasks properties for interactive systems using a correct by construction.

To specify everything in one language provides a common understanding to the various

stockholders.

10 Conclusion

This paper presents a formal approach for developing Human Machine Interface com-

plying with ARINC 661. This development approach is centered around the pivot mod-

elling language, FLUID, which is proposed in our FORMEDICIS project for specifying

HMI requirements. A FLUID model consists of states, assumptions, expectations, nom-

inal and non nominal properties, and scenarios. A formal model can be derived from a

FLUID model for reasoning and analyzing an interactive behaviour of a system under

the given safety properties. In our work, we have used the Event-B modelling language

for producing a formal model and PetShop CASE tool for producing ICO model. We

have used MPIA case study for developing a FLUID model. Further, the FLUID model

is used for producing Event-B model and ICO model. The Event-B model is used to

check interaction behaviour considering domain properties, including safety properties,

and the ICO model is used for validating visual properties and in task analysis. More-

over, we have also used the ProB model checker tool to analyze and to validate the

developed MPIA model. The formalization and the associated proofs presented in this

work can be easily extended to other formal methods and model checkers that can be

used for modelling interactive systems.

As future work, our objective is to define a refinement relationship for FLUID mod-

els to get closer to an implementation. Such refinement allows us to perform formal

verification at the code level and we do not need to add any other verification approach.

Another future work is to automate the model generation process from a FLUID model,

so that a formal model can be produced and verified in any target modelling language.

Acknowledgment. This study was undertaken as part of the FORMEDICIS (FOR-

mal MEthods for the Development and the engineering of Critical Interactive Systems)

ANR-16-CE25-0007.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press, New York, NY, USA, 1st edn. (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An open

toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol. Transf. 12(6),

447–466 (Nov 2010)

3. Aït-Ameur, Y.: Cooperation of formal methods in an engineering based software develop-

ment process. In: Integrated Formal Methods, Second International Conference, IFM 2000,

Dagstuhl Castle, Germany, November 1-3, 2000, Proceedings. pp. 136–155 (2000)

4. Ait-Ameur, Y., Ait-Sadoune, I., Baron, M.: Etude et comparaison de scénarios de développe-

ments formels d’interfaces multi-modales fondés sur la preuve et le raffinement. In: RSTI-

Ingénierie des Systèmes d’Informations 13(2). pp. 127–155 (2008)

5. Aït-Ameur, Y., Girard, P., Jambon, F.: Using the B formal approach for incremental spec-

ification design of interactiv systems. In: Engineering for Human-Computer Interaction,

IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-

Computer Interaction, September 14-18„ Heraklion, Crete, Greece. pp. 91–109 (1998)

6. ARINC 661-2: Prepared by Airlines Electronic Engineering Committee. Cockpit Display

System Interfaces to User Systems. Arinc Specification 661-2 (2005)

7. Ausbourg (d’), B., Durrieu, G., Roché, P.: Deriving a formal model of an interactive system

from its UIL description in order to verify and to test its behaviour. In: Proceedings of the

Eurographics Workshop DSV-IS’96. Namur, Belgium (June 1996)

8. Ausbourg(d’), B.: Using Model Checking for the Automatic Validation of User Interfaces

Systems. In: Markopoulos, P., Johnson, P. (eds.) Design, Specification and Verification of

Interactive Systems ’98. Eurographics, Springer (June 1998)

9. Barboni, E., Martinie, C., Navarre, D., Palanque, P.A., Winckler, M.: Bridging the gap be-

tween a behavioural formal description technique and a user interface description language:

Enhancing ICO with a graphical user interface markup language. SCP 86, 3–29 (2014)

10. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model checking human

- automation interaction using task analytic models. IEEE Transactions on Systems, Man,

and Cybernetics - Part A: Systems and Humans 41(5), 961–976 (2011)

11. Campos, J.C., Harrison, M.D.: Systematic Analysis of Control Panel Interfaces Using Formal

Tools, pp. 72–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

12. Chatty, S., Magnaudet, M., Prun, D.: Verification of properties of interactive components

from their executable code. In: Proceedings of the 7th ACM SIGCHI Symposium on Engi-

neering Interactive Computing Systems. pp. 276–285. EICS’15, ACM, NY, USA (2015)

13. Curzon, P., Masci, P., Oladimeji, P., Rukšėnas, R., Thimbleby, H., D’Urso, E.: Human-

Computer Interaction and the Formal Certification and Assurance of Medical Devices: The

CHI+MED Project. In: 2nd Workshop on Verification and Assurance (Verisure2014), in as-

sociation with Computer-Aided Verification (CAV), Vienna Summer of Logic (2014)

14. FORMEDICIS Project. https://anr.fr/Projet-ANR-16-CE25-0007

15. Ge, N., Dieumegard, A., Jenn, E., d’Ausbourg, B., Aït-Ameur, Y.: Formal development pro-

cess of safety-critical embedded human machine interface systems. In: 11th International

Symposium on Theoretical Aspects of Software Engineering, TASE’17. pp. 1–8 (2017)

16. Geniet, R., Singh, N.K.: Refinement based formal development of human-machine interface.

In: Software Technologies: Applications and Foundations - STAF 2018 Collocated Work-

shops, Toulouse, France, June 25-29, 2018, Revised Selected Papers. pp. 240–256 (2018)

17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming

language Lustre. In: Proceedings of IEEE. pp. 1305–1320. No. 9 in 79 (September 1991)

18. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Verification of user interface software:

The example of use-related safety requirements and programmable medical devices. IEEE

Trans. Human-Machine Systems 47(6), 834–846 (2017)

19. Jambon, F.: From formal specifications to secure implementations. In: Computer-Aided De-

sign of User Interfaces III, Proceedings of the Fourth International Conference on Computer-

Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. pp. 51–62 (2002)

20. Lecrubier, V.: A formal language for designing, specifying and verifying critical embed-

ded human machine interfaces. Theses, INSTITUT SUPERIEUR DE L’AERONAUTIQUE

ET DE L’ESPACE (ISAE) ; UNIVERSITE DE TOULOUSE (Jun 2016), https://hal.

archives-ouvertes.fr/tel-01455466

21. Leuschel, M., Butler, M.: ProB: A Model Checker for B, pp. 855–874. LNCS, Springer

(2003)

22. Myers, B.A.: Why are human-computer interfaces difficult to design and implement? Tech.

rep., Carnegie Mellon University, Pittsburgh, PA, USA (1993)

23. Navarre, D., Bastide, R., Palanque, P.: A tool-supported design framework for safety critical

interactive systems. Interacting with Computers 15(3), 309–328 (2003)

24. Navarre, D., Palanque, P.A., Paternò, F., Santoro, C., Bastide, R.: A tool suite for integrating

task and system models through scenarios. In: 8th International Workshop on Interactive

Systems: Design, Specification, and Verification (DSV-IS). pp. 88–113 (2001)

25. Palanque, P., Bastide, R., Sengès, V.: Validating interactive system design through the verifi-

cation of formal task and system models, pp. 189–212. Springer US, Boston, MA (1996)

26. Palanque, P.A., Bastide, R.: Petri net based design of user-driven interfaces using the interac-

tive cooperative objects formalism. In: Design, Specification and Verification of Interactive

Systems, Proc. of the First International Eurographics Workshop, Italy. pp. 383–400 (1994)

27. Palanque, P.A., Ladry, J., Navarre, D., Barboni, E.: High-fidelity prototyping of interactive

systems can be formal too. In: Human-Computer Interaction. New Trends, 13th International

Conference, HCI International 2009, San Diego, CA, USA, Part I. pp. 667–676 (2009)

28. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models, pp. 362–369. Springer US, Boston, MA (1997)

29. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N.: Designing the User In-

terface - Strategies for Effective Human-Computer Interaction, 6th Edition. Pearson (2016)

