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Introduction

The concentric or eccentric annular geometry with moving or static walls is used in numerous industrial fields such as drilling of oil wells, circulating muds [START_REF] Escudier | Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and innercylinder rotation[END_REF], food processing [START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF], plastics processing [START_REF] Lin | Heat transfer to generalized non-Newtonian Couette flow in annuli with moving outer cylinder[END_REF] and heat transfer equipment [START_REF] Ahmed | Thermal performance of annulus with its applications; A review[END_REF]. The channel can be helical or curved in some applications for example bio-fluid mechanics or chemical reactors. Combined with different flow behaviors such as Bingham, power-law or viscoelastic models, the problem is sometimes difficult to solve analytically. This paper deals with the use of pseudo-plastic flow behavior in a concentric annular geometry. The mastery of the annulus flow in the industry and laboratories requires the simplest expression of the flow equation in order to help designing geometries and allow parametric investigations between independent parameters [START_REF] Pinho | Fully-developed heat transfer in annuli for viscoelastic fluids with viscous dissipation[END_REF].
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The most simple and representative behavior law used in polymer processing models is the so-called power law [START_REF] Agassant | Polymer processing: principles and modeling[END_REF][START_REF] Ostwald | About the rate function of the viscosity of dispersed systems[END_REF][START_REF] Waele | Viscometry and plastometry[END_REF], which has the advantage to require only 2 parameters as shown in the equation ( 1), [START_REF] Escudier | Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and innercylinder rotation[END_REF] with being the viscosity, K the consistency coefficient, the absolute value of shear rate and n the power-law index (0 1 for pseudo-plastic materials such as polymer [START_REF] Bird | Transport phenomena[END_REF], blood [START_REF] Hussain | Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity[END_REF] and whipped cream [START_REF] Padiernos | High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties[END_REF]).

The shortcoming of the power-law model to describe the viscosity at the zero shear rate was pointed out by Frederickson [START_REF] Fredrickson | Flow of non-Newtonian fluids in annuli[END_REF]. Nevertheless Bird [START_REF] Bird | Experimental tests of generalised newtonian models containing a zero-shear viscosity and a characteristic time[END_REF] and McEachern [START_REF] Mceachern | Axial laminar flow of a non-Newtonian fluid in an annulus[END_REF] showed that this model describes well the rheological behavior of a laminar axial flow in annuli by comparing it to some experimental data, especially in the shear rate ranges used in polymer processing. Escudier & al. [START_REF] Escudier | Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and innercylinder rotation[END_REF][START_REF] Escudier | Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments[END_REF] further confirmed the use of the power-law model with some experimental data and sensitivity analysis.

The first analysis of flow through annulus was done by Volarovich & Gutkin [START_REF] Volarovich | Flow of plastic-viscoplastic material between two parallel flat-walls and in annular space between two coaxial tubes[END_REF], Laird [START_REF] Laird | Slurry and suspension transport-basic flow studies on bingham plastic fluids[END_REF] and in the case of a power-law fluid by Frederickson & Bird [START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF]. The first analytical relation between the flow rate and the pressure drop was achieved by Frederickson & Bird [START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF] in an integral form. The results of Frederickson & Bird were substantiated by the measurement of Tiu & Bhattacharyya [START_REF] Tiu | Flow behavior of power-law fluids in the entrance region of annuli[END_REF]. However, Frederickson & Bird's solution gave an analytical explicit expression either for integer values of 1/n ratio with a cumbersome power series or for a thin annular slit case. The expression of the thin annular slit case has proved to be surprisingly accurate [START_REF] Savins | Generalized Newtonian (pseudoplastic) flow in stationary pipes and annuli[END_REF][START_REF] Vaughn | Laminar flow of non-Newtonian fluids in concentric annuli[END_REF][START_REF] Worth | Accuracy of the parallel-plate analogy for representation of viscous flow between coaxial cylinders[END_REF] for a large range of n and : the ratio between the inner and the outer radius R of an annular flow (figure 1). Later, Bird & al. [START_REF] Bird | Transport phenomena[END_REF] improved this expression by refining the approximation. (figure 1). Nevertheless, Hanks & Larsen's solution requires the use of a numerical procedure in order to calculate the value of lambda.

Several analytical expressions (2), ( 3) and ( 4) of lambda exist for respectively n = 1, n = 0 and tending to infinity [START_REF] Bird | Transport phenomena[END_REF][START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF].
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For a more general solution, Frederickson & Bird [START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF] proposed tabulated values of lambda which were obtained from the numerical integration and from the interpolation between the non-integer values of the 1/n ratio. Many authors like McEachern, Pinho and Daprà [START_REF] Mceachern | Axial laminar flow of a non-Newtonian fluid in an annulus[END_REF][START_REF] Daprà | Analytical solution for axial flow of a Giesekus fluid in concentric annuli[END_REF][START_REF] Pinho | Axial annular flow of a nonlinear viscoelastic fluid -an analytical solution[END_REF] used numerical calculations to determine lambda. Hanks & Larsen [START_REF] Hanks | The flow of power-law non-Newtonian fluids in concentric annuli[END_REF] also used a table of computed values for lambda depending on the n and parameters. Wein & al. [26] found an analytic differential equation for lambda, but the result is a recursive formula based on approximate values determined by the tangent method. Ilicali & Engez [START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF] proposed to use the Newtonian case ( 1) lambda value in the Hanks & Larsen's flow rate expression, when the radius ratio is greater than 0.3 (figure 1). However, their experiments were performed on materials with a power-law index n ranging from 0.62 to 0.97 only. Based on the equations ( 2) and (3), David & al. [27] found a pseudo-plastic lambda's approximate expression [START_REF] Pinho | Fully-developed heat transfer in annuli for viscoelastic fluids with viscous dissipation[END_REF] as one of the most recent and accurate lambda models.
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With the same numerical approach, David & Filip [START_REF] David | Explicit solution of laminar axial flow of power-law fluids in concentric annuli[END_REF][START_REF] David | Explicit pressure drop-flow rate relation for laminar axial flow of power-law fluids in concentric annuli[END_REF][START_REF] Filip | Applicability of the Limiting Cases for Axial Annular Flow of Power-Law Fluids[END_REF] also obtained other approximate expressions for a dilatant fluid's lambda and for the flow rate. All expressions of lambda are either limited to a small range of ( , ) values or cannot be fully demonstrated with analytical methods. Besides, semi-analytical solutions constructed with numerical values are cumbersome for analytical use.

In this paper we present a mathematical procedure to obtain a new analytical lambda for pseudo-plastic fluids. The proposed expression of lambda is simple enough in order to allow the parametric analysis and the identification process. A comparison is carried out between the new lambda's expression and numerical values. The precision of the flow rate calculated with our lambda expression is also evaluated against some other solutions for the validation of our model in a large range of power-law index n and radius ratio .

Pseudo-plastic Fluid Flow in an annuli Channel

The case studied is an incompressible steady laminar axial viscous flow in an annular duct without taking inertia terms into account. The momentum conservation equation in the flow can be written as equation ( 6),
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where p is the pressure and τ is the shear stress. At the zero shear rate (maximum velocity) position r = λR, the shear stress equals to zero (figure 1). With this boundary condition, equation ( 6) can be integrated and becomes equation ( 7).
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Since we assume that the flow follows the pseudo-plastic power law, the shear stress is defined by ( 8),
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where w is the axial velocity with |/6//3|.

Kinetic equations of the annular flow

By combining equations ( 7) and ( 8), we obtain the shear rate profile as equations ( 9) and [START_REF] Hussain | Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity[END_REF] which should be written into 2 parts to avoid negative sign problems with 0 ≤ 1.
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In order to obtain the velocity profile as equations ( 11) and ( 12), we integrate the shear rate equations ( 9) and [START_REF] Hussain | Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity[END_REF]. 
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According to the scientific literature, relation ( 13) is by far the simplest expression to compute lambda numerically.

By integrating the velocity profile, we obtained the exact analytical expression ( 14) of the flow rate as described by Hanks & Larsen [START_REF] Hanks | The flow of power-law non-Newtonian fluids in concentric annuli[END_REF] in 1979.
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We recall that the exact solution of the flow rate for a Newtonian fluid is written as [START_REF] Escudier | Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments[END_REF].
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It should be noted that when and tend to 0, the expression ( 14) becomes the flow rate expression [START_REF] Volarovich | Flow of plastic-viscoplastic material between two parallel flat-walls and in annular space between two coaxial tubes[END_REF] for a circular tube.
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With all these equations from shear rate to flow rate, we can see that ( , ) is involved in every analytical calculation of an annular flow.

Analytical approximate solution for the lambda expression

The mathematical procedure presented in this section consists in obtaining a new analytical explicit lambda expression. We start with equation ( 13) as we change the variable W 3/ , we obtain the expression [START_REF] Laird | Slurry and suspension transport-basic flow studies on bingham plastic fluids[END_REF].
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Considering that X X( , ) 1/ , we obtain equation [START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF].
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Differentiating [START_REF] Fredrickson | Non-Newtonian flow in annuli[END_REF] with respect to , we see that U satisfies the ordinary differential equation [START_REF] Tiu | Flow behavior of power-law fluids in the entrance region of annuli[END_REF], with the initial data lim ,→ X( , ) 1.
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Multiplying ( 19) by 2U and setting [ X 1/ , the calculation leads to the expression [START_REF] Savins | Generalized Newtonian (pseudoplastic) flow in stationary pipes and annuli[END_REF], [START_REF] Savins | Generalized Newtonian (pseudoplastic) flow in stationary pipes and annuli[END_REF] with the initial data lim ,→

Z[ Z -2[ \ [ -1 1 -[ ] + ( 
[( , ) 1 and therefore lim ,→ ^_ ^, ( , ) -1 according to L'Hospital's rule [START_REF] Rudin | Chapter 3 : Differentiation[END_REF] as shown in equation [START_REF] Vaughn | Laminar flow of non-Newtonian fluids in concentric annuli[END_REF].
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For the sake of simplicity, we set ` , the latter can also be considered as a parameter proportional to the ratio between the outer and the inner walls' shear stress. As a consequence of introducing `, our explicit expression [START_REF] Worth | Accuracy of the parallel-plate analogy for representation of viscous flow between coaxial cylinders[END_REF] takes a form which is as simple as the Newtonian lambda's equation ( 2) without any approximation.
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In order to look into the limiting values of ` Then, we can calculate the first terms of the Taylor's expansion of `( , ) with in a neighborhood of 1, by approximating ` with `& following the relation [START_REF] Daprà | Analytical solution for axial flow of a Giesekus fluid in concentric annuli[END_REF],
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. A new analytical explicit expression [START_REF] Pinho | Axial annular flow of a nonlinear viscoelastic fluid -an analytical solution[END_REF] of is achieved.
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In terms of errors, we obtain the following relation ( 26) for close to 1 as a by-product of relation [START_REF] Daprà | Analytical solution for axial flow of a Giesekus fluid in concentric annuli[END_REF].
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Mathematically, we can expect our Deterre & Nicoleau's model !&N to be precise for close to 1 or even for a larger range of like the Bird & al.'s pressure drop-flow rate expression [START_REF] Bird | Transport phenomena[END_REF][START_REF] Savins | Generalized Newtonian (pseudoplastic) flow in stationary pipes and annuli[END_REF][START_REF] Vaughn | Laminar flow of non-Newtonian fluids in concentric annuli[END_REF][START_REF] Worth | Accuracy of the parallel-plate analogy for representation of viscous flow between coaxial cylinders[END_REF] and for materials with a small power-law index n within the whole range of . Some comparisons will be carried out in the next section to verify its precision. It should also be noted that `&( , ) can take forms with more terms other than l( ) to improve the accuracy in a neighborhood of any values of .

Validation procedure for the analytical lambda expression

For the validation of our model, we are going to compare it with numerical lambda values in a large range of n and . Another criterion is the precision of the flow rate calculation with our lambda compared to other solutions.

Comparison criteria with the numerical lambda values

The numerical lambda [λnum] values are computed from the equation ( 13) by minimizing 
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which represents the zero shear rate position's deviation ∆ over the width of the slit (1 -

) while $ !&N for our case and $ !"#$% for the David & al.'s case.

Comparison criteria with analytical or semi-analytical historical flow rate models

The exact flow rate expression has been shown in equation ( 14). Ilicali & Engez [START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF] proposed to use it with the Newtonian lambda's expression (2) even for calculations of pseudo-plastic materials. Bird & al. [9] obtained the expression [START_REF] David | Explicit pressure drop-flow rate relation for laminar axial flow of power-law fluids in concentric annuli[END_REF], with an approximation for in a neighborhood of 1.
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Here for the comparison, we take the exact expression ( 14) with the numerical lambda [λnum],

the Newtonian one [λNewt], our expression [λD&N] and the David & al.'s one [ !"#$% ]. The approximate expression [START_REF] David | Explicit pressure drop-flow rate relation for laminar axial flow of power-law fluids in concentric annuli[END_REF], which has the same approach (for close to 1) as our expression of lambda, is also taken into account for comparison. Since the annular flow rate expression [START_REF] Mceachern | Axial laminar flow of a non-Newtonian fluid in an annulus[END_REF] and the circular tube's flow rate expression [START_REF] Volarovich | Flow of plastic-viscoplastic material between two parallel flat-walls and in annular space between two coaxial tubes[END_REF] share the same multiplicative factor, we introduce a dimensionless flow rate E q as described in the relation [START_REF] Filip | Applicability of the Limiting Cases for Axial Annular Flow of Power-Law Fluids[END_REF] to avoid using arbitrary geometry and pressure drop values in the discussion of results.

E q E " FG"@ E UVG$ %O@ [START_REF] Filip | Applicability of the Limiting Cases for Axial Annular Flow of Power-Law Fluids[END_REF] According to its definition, E q varies from 1 to 0 when the inner radius changes. By we obtain equations [START_REF] Rudin | Chapter 3 : Differentiation[END_REF] and (31) which we will compare in the next section,
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where we will use E q with numerical lambda values as the reference flow rate. And the flow rate errors are calculated as described in equations ( 32) and (33). m r,~ E q ( $ , , -) -E q ( Fn , , -) E q ( Fn , , -)
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€ $ NOPQ ; m r,~ m r,•&' ƒ, € $ !&N ; m r,~ m r,!&N ƒ , € $ !"#$% ; m r,~ m r,!"#$% ƒ and m r,p$@% stand for the flow rate errors calculated with Ilicali & Engez's flow rate approach [START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF],

with our Deterre & Nicoleau's lambda model, with David & al.'s lambda model [START_REF] David | Explicit solution of laminar axial flow of power-law fluids in concentric annuli[END_REF] and with

Bird & al.'s flow rate model [START_REF] Bird | Transport phenomena[END_REF]. We mention that the exact solution for the Newtonian case E q ( NOPQ , 1, ) is included in the Ilicali & Engez's flow rate approach.

Validation of the Deterre & Nicoleau's analytical approximate model

This section compares our lambda values to the numerical ones. Also, comparisons are carried out between the flow rate calculated with our lambda values and some other solutions.

The results are presented for a large set of values ranging from 0.05 to 0.95 with a step of 0.05 and with an additional 0.01 and 0.99 for extremities. n = 0.1, 0.3, 0.5 and 1 in order to cover the full range of rheological behaviors of polymer melts (0.3 to 1 for most thermoplastics and more rarely with close to 0.1 for rubber compounds) [START_REF] Agassant | Polymer processing: principles and modeling[END_REF].

Comparison of the zero shear rate position

The comparison between the lambda values is presented in figure 2. The analytical Newtonian E q ( NOP , 0.3, 0.1) is also negative and doesn't make sense as a flow rate value in such a configuration. We mention that when tends to 0, E q tends to 1 (cylinder flow) according its definition. These results show that the use of the Newtonian lambda in the exact flow rate expression are safely precise for materials with n close to 1, but it can also be less satisfactory for those with small values of n.

The overall precisions of the other models are greatly improved compared to E q ( NOPQ , , )

in figure 4. Both E q ( !&N , , ) and E q p$@% ( , ) have a good ability to describe the flow rate in a large range of n and , and not only when is close to 1.

m r,•&' , m r,!&N , m r,!"#$% and m r,p$@% are plotted in figure 5 for further investigations. m r,•&' for ≤ 0.3 are under -50% and not shown in figure 5. here we can draw the same conclusion that for > 0.5, our model can provide the best overall precision compared to the other solutions.

Conclusion

We have presented in this paper an analytical explicit expression of lambda with a mathematically argued procedure. The accuracy of the values and the derivatives from are also analytically ensured for small n values or for close to 1. Through the comparison of some numerical values of lambda, we proved that our expression can perform a good precision in a large range of for all pseudo-plastic materials. The errors are less than 0.8% for 0. In addition to the flow rate, having an expression of lambda allows us to calculate the shear rate and the velocity profile more easily for viscous dissipation and heat convection studies. It should be noted that the error from the lambda estimation could be amplified by other calculations due to their sensitivity to the lambda value; such is the case of the flow rate especially for small n values close to 0 or for values close to 1 (figure 3 compared to figure 5). Not only the error of our expression is mathematically predictable, but also its form is simple enough for analytical use such as parametric investigations, sensitivity analysis or development of a reduced order model.
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Figure 1 :

 1 Figure 1 : Description of variables and parameters of the annuli flow

1 .

 1 By injecting the relation ` _ , + _ into (20), we see that the function ` satisfies the differential equation (23) thanks to L'Hospital's rule again. In addition, we should have `( 0, ) according to the equation (3), knowing that the expression (2) of the Newtonian lambda is a special case where the differential equation of lambda gives a natural logarithmic function because of n = 1.
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 6 ( ) | with the trust region reflective algorithm in Matlab software. For comparing the David & al.'s lambda values [ !"#$% ] and ours [ !&N ] to the numerical ones, the error m D is calculated according the following definition (27),

  lambda [λNewt] calculated with equation (2) is also plotted and it superimposes with good accuracy on the numerical Newtonian lambda [λnum with n=1]. Furthermore, the numerical lambda values [λnum] have been verified via a comparison with the Hanks & Larsen's table[START_REF] Hanks | The flow of power-law non-Newtonian fluids in concentric annuli[END_REF].

Figure 2 :

 2 Figure 2 : Precision and validity range for the zero shear rate position !&N and !"#$% The advantage of using our model or the David & al.'s one has already been shown when it is compared to solutions using the Newtonian lambda for all values of n. To quantify the

Figure 4 :

 4 Figure 4 : Comparison of the dimensionless flow rate to the reference E q ( NFn , , ) calculated with the numerical lambda values Once again, the curves have a good agreement for n = 1 thanks to the precision of the numerical lambda values. However, Ilicali & Engez's flow rate values E q ( NOPQ , , ) for n = 0.1 are all negative in our range of investigation and thus not shown in figure 4. The value of

Figure 5 :

 5 Figure 5 : Variation of errors m r calculated with the Ilicali & Engez's approach, our lambda model, the David & al.'s lambda model and the Bird & al.'s flow rate model We can see in figure 5 that when n decreases, the absolute values of errors m r,•&' Ilicali & Engez's flow rate approach [2] works only for materials with big power-law index values. David & al.'s model gives the best overall precision for the whole range of our investigation, then comes our model in which the least precise case of …m r,!&N … with n = 1 has the same degree of accuracy as the most precise case of …m r,p$@% … with n = 1. As in the section 4.3.1,

3 ≤ 1 .

 31 And we have confirmed that the smaller n is, the smaller the errors are for all values. Compared to the David & al.'s lambda model which still has the best overall precision so far among those expressions of lambda, our model has at least the same degree of accuracy or a better one for > 0.5.By comparing the flow rate calculation with our lambda model to some other solutions, several advantages of using our model have also been observed. We can calculate the flow rate of all pseudo-plastic materials with our lambda model, and that is not the case of the Ilicali & Engez's approach[START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF]. Compared to the Bird & al.'s flow rate calculation, the use of our lambda model in the flow rate expression has a better precision in a larger range of . The calculation with the David & al.'s lambda model provides the best overall precision, but the solution obtained by using our model has better accuracy for bigger values.

deviation, errors between our model and the numerical lambda values are calculated according to the equation [START_REF] David | Explicit solution of laminar axial flow of power-law fluids in concentric annuli[END_REF] and presented in figure 3. The zero shear rate position parameter , is an internal parameter for the calculation of the flow's physical quantities such as shear rate, velocity and flow rate. In the following section, we will quantify the improvement in the precision of the flow rate thanks to a more precise description of lambda via a comparison of solutions found in literature.

Comparison of the prediction ability of the flow rate

To verify the use of the Newtonian lambda proposed by Ilicali & Engez [START_REF] Ilicali | Laminar flow of power law fluid foods in concentric annuli[END_REF] in the exact flow rate expression, the result of E q ( NOPQ , , ) has been plotted in figure 4 and compared to the reference data E q ( NFn , , ). The comparisons of E q ( !&N , , ), E q ( !"#$% , , ) and E q p$@% ( , ) to E q ( NFn , , ) are also plotted in figure 4.