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ABSTRACT

Maximum Sustainable Throughput (MST) refers to the amount of

data that a Data Stream Processing (DSP) system can ingest while

keeping stable performance. It has been acknowledged as an accu-

rate metric to evaluate the performance of stream data processing.

Yet, existing operators placements continue to focus on latency and

throughput, not MST, as main performance objective when deploy-

ing stream data applications in the Edge. In this paper, we argue

that MST should be used as an optimization objective when placing

operators. This is specially important in the Edge, where network

bandwidth and data streams are highly dynamic. We demonstrate

that through the design and evaluation of a MST-driven operators

placement (based on constraint programming) for stream data ap-

plications. Through simulations, we show how existing placement

strategies that target overall communications reduction often fail

to keep up with the rate of data streams. Importantly, the constraint

programming-based operators placement is able to sustain up to

5x increased data ingestion compared to baseline strategies.
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1 INTRODUCTION

The mutual low-latency objective for both Data Stream Processing

(DSP) and Edge environments has resulted in a continuous growth

of DSP deployments on Edge or Fog environments [11]. The success

of DSP deployments in the Edge relies on operators placements and

the ability to sustain low latency. Accordingly, much work have

focused on placement strategies across Edge-servers [10] or across

hybrid Cloud and Edge environments [4]. All of these studies have

employed the same metrics and optimization objectives as previous

efforts that handle resource heterogeneity in the Cloud [12]. Specif-

ically, they target reducing latency or response time (sometimes

included in a Quality of Service metric) [10] or minimizing the

overall volume of data exchanged between nodes in the Edge [5].

The input rates of data streams do not usually remain unchanged.

For example, the input rate of messages from twomillion trips taken

in 2013 on New York City taxies ranges from 300 to 5200 msg/s [13].

When the size of input data grows, previous placements – where

network heterogeneity of the Edge is often considered to minimize

delays – can not scale, especially as Edge features with limited

resources. The amount of data that a DSP system can ingest while

keeping stable performance is referred to as Maximum Sustainable

Throughput (MST). Existing works in literature have acknowledged

the importance of MST as an accurate metric to evaluate the per-

formance of DSP systems [6, 7].

Given the dynamic nature of data streams (i.e., data volatility and

bursts), we argue that MST should be considered as an optimization

objective for operators placements in the Edge. Accordingly, we

propose a model to evaluate MST for operators placement in the

Edge, with a strong focus on the heterogeneous nature of network.

We then introduce an optimal operators placement for stream data

applications in the Edge using constraint programming. Through

simulations, we show how existing placement strategies that target

overall communications reduction often fail to keep upwith the rate

of data streams. Specifically, we demonstrate that the constraint

programming-based operators placement is able to sustain up to 5x

increased data ingestion compared to resource-aware placements

(i.e., R-Strom [12]) and graph partitioning-based placement [3].

It is important to note that we are interested more precisely in

long-running applications (where sustainability is crucial) and thus

our model is designed to target the stable state (after the end of

deployment) of such applications.

The rest of this paper is organized as follows. In Section 2, we

analyze the impact of network heterogeneity on the Maximum

Sustainable Throughput of stream data applications. Section 3 in-

troduces our model and a constraint programming formulation for

linear applications. We evaluate our bandwidth-aware placement

using simulation in Section 4 and conclude this paper in Section 5.

2 MST: OCCURRENCE AND IMPLICATIONS

To assess the impact of network heterogeneity and data stream

volatility on the performance instability of stream data applications

in the Edge, we conduct a set of experiments using the Apache

Storm DSP engine (version 2.1.0) [1]. In Storm, an application is

called a topology. It is composed of spout and bolt operators that

respectively emit and process data tuples.

Experimental setup.Our experiments are conducted on the French

scientific testbed Grid’5000 [2]. We use 6 nodes from Ecotype clus-

ter at the site of Nantes. We design two close scenarios with 1

Master and 5 Worker nodes. The goal of these scenarios is to show

the performance differences when deploying the same topology

(i.e., application) on two different heterogeneous network environ-

ments. We vary bandwidths from 50Mbps to 200Mbps (using the tc
tbf command) to represent low-capacity Edge links and we inject

network traffic (with iperf3 using the UDP protocol) to represent

network workloads. The set-up for each bandwidth is represented

on Figures 1a and 1b. It is important to remind that as we focus

on communications, we ensure that CPUs and memory are not

bottlenecks. The considered topology is the wordcount example

provided within the storm-starter package. This topology is com-

posed of 3 operators: a sentence spout emitting a sentence at a fixed

rate (experimental variable), a split bolt splitting sentences into

words, and a count bolt that counts the occurrence of each word

streamed so far. Default average size of each sentence (29.6B) is

increased to an average of 96KB to represent a heavier workload.

Within this topology, we vary the waiting time between emitting



(a) First experimental set-up (Hetero 1). (b) Second experimental set-up (Hetero 2).

0.5 0.8 1.0 1.2 1.5 1.8 2.0 2.2

Input data rate (MB/s)

0.0

1.0

2.0

3.0

O
u

tp
u

t
d

a
ta

ra
te

(M
B

/
s)

Expected

Observed (Hetero 1)

Observed (Hetero 2)

(c) Throughput of wordcount application when

increasing the input data rate.

Figure 1: Impact of network heterogeneity and data stream volatility on the performance of wordcount application.

sentences (from spout) in order to control the application workload.

Note that the amount of data emitted by the split bolt is 0.959 times

the amount of data received (small decrease caused by white space

suppression) and the amount of data written by count bolts is 1.309
times the amount of data received (augmentation caused by the

addition of an integer).

Results and findings. We present the results in Figure 1c. The

x-axis is the input data rate, i.e., the amount of data emitted by the

spout per second. The y-axis is the output data rate, i.e., the amount

of data written to final files by the count bolts. Experiments run for

a duration of 6 minutes, but the first minute (where deployment

occurs) is not included as we are focusing on the stable state (more

representative for the behavior of long-run applications). We draw

a theoretical line that represents the expected scaling (input rate

× 0.959 × 1.309, the multiplication factors of split and count). From
Figure 1c, we can draw the two following observations. First, there

is a point where performance stops following the expected through-

put. This happens when the input data rate increases, and network

is no longer able to handle the amount of data sent through it.

This inflexion point is known as Maximum Sustainable Throughout

(MST) [6, 7]. It is clear that after this point the performances are

unstable. Second, the heterogeneity causes differences. In particular,

the MST for wordcount application is 0.88 MB/s in the Hetero 1

set-up (shown in Figure 1a), while it is 0.96 MB/s in the Hetero 2

set-up (shown in Figure 1b).

Implications. It is clear that to ensure stable performance when

deploying stream data applications in the Edge, we need to improve

the MST of operators placements. Thus, we need to target MST

as an optimization objective for operators placement. This is ac-

knowledged by previous work [7] which demonstrates that MST

can accurately capture the performance of stream data applications

(including latency). The second observation leads us to the conclu-

sion that there is a need for heterogeneity-aware placements when

deploying DSP systems in the Edge and when dealing with this

scalability metric (MST).

3 MODEL

In this section, we propose a simple model which aims to represent

the bandwidth consumption of an operators placement and how

we deduce from it an estimation for the MST. For the sake of sim-

plification, we focus on communications, assuming that CPU or

memory are not bottlenecks (operators are sufficiently replicated).

3.1 Preliminary Definitions

Application. First letGO = (VO, EO,wO) be a weighted DAG that

represents the application with its operators and their dependencies.

VO is the set of operators (two instances of the same operator are

two different vertices ofVO ), EO is the set of edges (oo′ ∈ EO if and

only if o sends data to o′) andwO : EO → R is the weight function

that represents the amount of data sent by one operator to another.

Platform. We represent the targeted platform as a graph GN =

(VN, EN). Each node v ∈ VN has a slot number sv and each edge

uv ∈ EN has a maximum bandwidth buv . We assume the graph to

be complete and we also assume up and down bandwidths to be

equal (edges are not directed).

Placement. A placement is a function σ : VO → VN such that for

all v ∈ VN , |σ−1(v)| ≤ sv (the number of operators allocated to

each node is smaller or equal to its number of slots).

We define the bandwidth usage (BU ) from node u to node v for a

given placementσ asBU (σ ,u,v) =
∑
oo′∈EO ,σ (o)=u ,σ (o′)=v wO(oo

′).

Finally, we define bandwidth exceeding (BE) as the overhead

between bandwidth usage and the maximum bandwidth. More pre-

cisely, BE(σ ,u,v) = max(0,BU (σ ,u,v) − buv ) and total bandwidth

exceeding is defined as BE(σ ) =
∑
u ,v ∈V 2

N
BE(σ ,u,v).

3.2 Maximum Sustainable Throughput

Let GO = (VO, EO,wO) be a weighted DAG that represents the

application with its operators and their dependencies, as described

in Section 3.1. We now assume that wO(oo
′) = βoo′ × D where

D is the input data rate and βoo′ is a fixed multiplication factor

that is given for all edges in EO (we assume that the evolution of

all communications is linear when input rate changes). Let GN =

(VN, EN) be a network topology and σ be a valid placement. We

define theMaximal Sustainable Throughput (MST) τ as the maximal

input rate D such that BE(σ ) = 0.

More precisely (as wO(oo
′) = βoo′ × D), for each u,v ∈ V 2

N
,

BE(σ ,u,v) = 0 if and only if

∑
oo′∈EO ,σ (o)=u ,σ (o′)=v βoo′×D ≤ buv ,

which is equivalent to D ≤
buv∑

oo′∈EO ,σ (o)=u ,σ (o′)=v βoo′
.

Hence τ = minu ,v ∈V 2

N

buv∑
oo′∈EO ,σ (o)=u ,σ (o′)=v βoo′

.

From this definition we now define the optimization problem

we want to solve.

Problem 1 (MST-Maximization). Let GO = (VO, EO,wO ) be
an application DAG and GN be a network topology graph. Return a
placement σ that maximizes τ .



3.3 Constraint Programming Formulation for

Linear Applications

A linear application is split into stages, each stage is composed of

several replicas of the same operator. Each replica sends the same

amount of data to each replica of the following stage and receives

the same amount of data from each replica of the previous stage.

Each stage Si is associated with a data multiplier αi . If we denote by
Ini the amount of data received per unit of time by all the operators,

then In1 = D and Ini+1 = αi × Ini (if αi < 1, the operators send

less data than what they receive, if αi > 1, they send more data

than what they receive). We denote by ri the replication level of

each stage (how many operators in stage Si ) and by D the input

data rate that is emitted by S0. To transform such an application

into a DAGGO = (VO, EO,wO) as defined in Section 3.1, we simply

set VO =
⋃
Si , oo

′ ∈ EO if and only if o ∈ Si and o′ ∈ Si+1 and
w(oo′) = Ini+1/(ri × ri+1). We also define βi as β0 = 1/r1 and

βi+1 = βi × αi × (ri−1/ri+1). This way, one can prove that if o ∈ Si
and o′ ∈ Si+1, thenw(oo′) = βiD and thus boo′ = βi .

Constraint programming (CP) is generalization of linear pro-

gramming where decision variables can be multiplied. The general

problem is NP-complete. We here propose a transcription of MST-

Maximization problem for linear applications into a CP model. We

define for that one family of decision variables: ∀i ∈ [0,N ], ∀v ∈

VN, xi ,v where xi ,v represents the number of operators of stage Si
which are placed on the node u (xi ,v is an integer). The constraint

problem formulation of MST-Maximization problem for linear ap-

plication is then:

Maximize D under

∀i ∈ [0,N ], ∀v ∈ VN, xi ,v ≥ 0 (1)

∀i ∈ [0,N ],
∑
v ∈VN

xi ,v = ri (2)

∀v ∈ VN,
∑

i ∈[0,N ]

xi ,v ≤ sv (3)

∀u,v ∈ VN, u , v,
∑

i ∈[0,N−1]

xi ,uxi+1,v βiD ≤ buv . (4)

Equation (1) ensures that xi ,v is positive, Eq. (2) ensures that all

operators of each stage have been allocated and Eq. (3) ensures that

no node receives more operators than its number of slots. Finally,

Eq. (4) evaluates the amount of data transferred from nodeu to node

v and ensures it is lower than the available bandwidth between

these two nodes. More precisely, if xi ,u operators of Si are allocated
on node u and xi+1,v operators of Si+1 are allocated on node v ,
then xi ,uxi+1,v βiD is the amount of data transferred between u
and v between Si and Si+1, as there is xi ,uxi+1,v edge of EO with

weight βiD.

4 EVALUATION

We develop a simulator to evaluate the MST of three baseline place-

ment strategies – representatives of communication-oriented sched-

uling policies – and the optimal placements obtained through con-

straint programming model.

4.1 Placement Strategies

Greedy placements.We proposed here two variants of a greedy

placement inspired by the R-Storm scheduler proposed by Peng et al.

[12]. In R-Storm,GO is first traversed following a BFS (Breadth-First-

Search) order. The node with most available resources is selected

as the referent node. The first operator is then allocated to this

referent node and following operators are allocated to the nodes

that meet best their requirements (in terms of CPU and memory)

while being close enough to the referent node (the choice is made

through a weighted distance function). To mimic this placement

strategy in our model, we propose two variants. In both cases,

operators are sorted by a BFS-traversal order and the node with

the largest number of slots is assigned to operators (an operator

to each available slot). Then, the next operators are given either

to the second node with the largest number of slots (we denote

this strategy as GreedySlots), or to the node that is the closest (i.e.,

with the highest bandwidth) to the referent node (we denote this

strategy as GreedyDistance).
Graph partitioning-based placement. The strategy we propose

here is based on the graph partitioning problem. Given graph, the

goal is to partition the vertices of this graph into n sets of the same

cardinality while minimizing the weight of the edge-cut, i.e., the

sum of weights on the edges that goes from one set to another.

More precisely, let G = (V , E,w) be a graph with weight on edges.

Let P = {P1, . . . , Pn } be a partition of V , i.e.,
⋃

Pi = V and ∀i ,
j, Pi ∩ Pj = ∅. The edge-cut of this partition is then defined as

Ecut ⊂ E, with uv ∈ Ecut if and only if u ∈ Pi , v ∈ Pj and i , j.
Graph partitioning is a very classical way to minimize commu-

nications between different processes. This technique has already

been applied by Fischer and Bernstein to data stream processing

[3] and we propose here to evaluate its efficiency with our model.

As graph partitioning solver, we use the well-established METIS

which can be applied to heterogeneous partitions (different size

for each Pi ) [8]. The placement strategy, denoted as GraphParti-
tioningBased, sorts the nodes by decreasing number of slots and

chooses the k first ones with k being the smallest value such that

Sk =
∑
1≤i≤k svi ≥ |VO |. METIS(GO,k, {sv1

/Sk , . . . , svk /Sk }) is
then called to define the placement. Note that to improve the edge-

cut of the resulted partitions, METIS does not always respect the

initial load-balancing. To avoid non-valid placement, we add a small

correction phase. If a node has more allocated operators than slots,

then the operator with minimum data sent or received is moved to

the first node with one free slot.

Constraint programming. We rely on the IBM solver (i.e., CP

Optimizer [9]) to compute optimal results from the formulation

introduced in Section 3.3. The resulted optimal placement targets

maximizing MST while considering the bandwidth heterogeneity

in the Edge.

4.2 Platform and Applications

Platform. We propose, as platform, an Edge environment with 15

nodes. For each node v , sv is randomly chosen from 5 to 10. For

each edge uv , the bandwidth is randomly chosen between 10 and

100 Mbps and are of the same magnitude as the ones used in [11]

for Edge environments.



5 6 7 8 9 10

Number of operators

0

100

200

300

400

500

A
ve

ra
ge

M
S

T
(M

b
p

s)

Constraint Programming

GraphPartitioningBased

GreedySlots

GreedyDistance

(a) Average Maximum Sustainable Throughput.

5 6 7 8 9 10

Number of operators

0.0

2.5

5.0

7.5

10.0

12.5

A
ve

ra
g
e

n
u

m
b

er
o
f

u
se

d
n

o
d

es

Constraint Programming

GraphPartitioningBased

GreedySlots

GreedyDistance

(b) Average number of nodes with at least one

operator.

5 6 7 8 9 10

Number of operators

0

500

1000

1500

2000

A
ve

ra
g
e

in
te

r-
n

o
d

es
co

m
m

u
n

ic
a
ti

o
n

s
(M

b
p

s)

Constraint Programming

GraphPartitioningBased

GreedySlots

GreedyDistance

(c) Average volume (per second) of inter-nodes

communications.

Figure 2: Comparison results of GreedySlots, GreedyDistance, GraphPartitioningBased and Constraint Programming.

Application. For this set of experiments, we generate random

linear applications with 5 to 10 stages (which increase the number

of operators and thus the amount of exchanges). ri is randomly

chosen from 2 to 10 (except first and last stages that only have

one instance). αi is either chosen in [1/3, 1] or in [1, 3] with equal

chances (it has one chance over two of increasing data or one chance

over two of reducing data). In total, we generate 100 applications.

In all cases, the random distributions are uniform.

4.3 Results

Results for MST are shown in Figure 2a. We also present the num-

ber of used nodes (number of nodes with at least one operator) in

Figure 2b and the volume (per second) of inter-node communica-

tions in Figure 2c to complete the analysis. We can clearly see that

the baseline strategies result in low MST compared to the optimal.

Constraint programming-based placement achieves up to 5x higher

MST compared to the three baseline strategies (on average it can

sustain an input data rate of 500 Mbps while the sustainable input

data rates under other strategies are, on average, below 100 Mbps).

We also note a reduction in MST when the number of stages in-

creases, especially under constraint programming. One reason to

explain these differences is that communication-oriented strategies

try to group operators to maximize intra-node communications.

This can result in low inter node-communication (lower or similar

to the one obtained by constraint programming-based placement,

as shown in Figure 2c), but as they are using fewer links to commu-

nicate data, some links can quickly reach their maximum capacities.

This is why optimal solution spreads operators on more than 10

nodes on average (see Figure 2b). This supports our observation

that targeting the volume of inter-node communications may not

be a good metric when dealing with bandwidth heterogeneity.

5 CONCLUSION

In this paper, we propose a model to predict Maximum Sustainable

Throughput of stream data applications in the Edge. Using this

model, we show that communication-oriented strategies often fail

to propose scalable placements, optimal one being often able to

handle 5x more input data. This confirms that placement strategies

for DSP in the Edge has to be bandwidth-aware. In future works,

we plan to implement our constraint programming solution in

Storm and evaluate it on a real testbed. We also plan to test the

scalability limits of constraint programming approach (in terms of

computation time) and work on the design of heterogeneity-aware

heuristics when this computation time is no longer acceptable.
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