
HAL Id: hal-02942503
https://hal.science/hal-02942503

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Disruptive Gravity: A Quantizable Alternative to
General Relativity

Ramsès Bounkeu Safo

To cite this version:
Ramsès Bounkeu Safo. Disruptive Gravity: A Quantizable Alternative to General Relativity. Global
Journal of Science Frontier Research: A Physics and Space Science , 2020, 20 (8), pp.43-57.
�10.34257/GJSFRAVOL20IS8PG43�. �hal-02942503�

https://hal.science/hal-02942503
https://hal.archives-ouvertes.fr


© 2020. Ramsès Bounkeu Safo. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Global Journal of Science Frontier Research: A 
Physics and Space Science 
Volume 20  Issue 8 Version 1.0 Year  2020 
Type : Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 2249-4626 & Print ISSN: 0975-5896  
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By Ramsès Bounkeu Safo 
Abstract- Gravity is the most problematic interaction of modern science. Questioning the very 
foundations of gravity might be the key to understanding it better since its description changed 
over time. Newton described it as a force, Einstein described it as a spacetime curvature and this 
paper shows how gravity can be described as a force able to bend spacetime instead. Applied 
to cosmology, gravity as a spacetime bending force doesn't require Dark Energy. Described as a 
spacetime bending force, gravity becomes quantizable as a force in curved spacetime which is 
compatible with the Standard Model of particle physics. Therefore, one could associate the 
Standard Model to this theory and achieve Quantum Gravity. 
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Understanding gravity is one of the most important challenges of modern
science. For a long time, General Relativity had no reason to be questioned
since it was in line with the observations. That was until the observation of
an unexpectedly high rotation speed of galaxies and then, more recently, the
discovery of the accelerating expanding universe through observations of dis-
tant supernovae. Both are not explainable through General Relativity unless
we hypothesize the existence of Dark Matter and Dark Energy respectively, ac-
counting for 95% of the energy of the universe. Current research focuses on
creating models to describe Dark Matter and Dark Energy instead of seriously
questioning General Relativity. Thinking differently about gravitation might be
the key to understanding it better.

Abstract- Gravity is the most problematic interaction of modern science. Questioning the
very foundations of gravity might be the key to understanding it better since its 
description changed over time. Newton described it as a force, Einstein described it as 
a spacetime curvature and this paper shows how gravity can be described as a force 
able to bend spacetime instead. Applied to cosmology, gravity as a spacetime bending 
force doesn't require Dark Energy. Described as a spacetime bending force, gravity 
becomes quantizable as a force in curved spacetime which is compatible with the 
Standard Model of particle physics. Therefore, one could associate the Standard Model 
to this theory and achieve Quantum Gravity.
Keywords: general relativity; modified gravity; mond; dark energy; quantum 
gravity; dark matter; gravitation; gravity.

Newton thought of it as a force, then Einstein theorized it as a spacetime cur-
vature, but what if gravity could be described as a force able to bend spacetime
instead? This paper shows that gravity can be consistently described as a space-
time bending force based on a physical principle inferred from the Schwarzschild
metric. We show that, writing the Lagrangian of a force in curved spacetime, we
get equivalent equations of motion as General Relativity thanks to a physically
acceptable hypothesis. From a simple homogeneous universe model, we then
show that it is possible to explain the accelerating expanding universe with no
Dark Energy. As a spacetime bending force, gravity becomes quantizable as a
force in curved spacetime analogous to electromagnetism.

In this paper, Greek letters range from 0 to 3 (representing spacetime) and
Roman letters range from 1 to 3 (representing space). The metric signature
is (+ − −−) and we use Einstein’s summation convention. The Greek capital
letter Φ is the gravitational potential.
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In this section, we study a scalar approach of gravitation as a spacetime
bending force as an introduction to the theory. It is a special case of the theory
specified in Section

II. A Preliminary Scalar Approach
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Einstein’s General Relativity states that a body moving through gravity is
just following a straight path in curved spacetime. This is described by the
geodesic equations derived from the least action principle with the following
Lagrangian:

where gµν is the metric of the curved spacetime and m0 is the rest mass of
the body. If gravity were a force, in a scalar theory, the Lagrangian would be
of the form:

where ηµν is Minkowsky’s metric of a flat spacetime and Φ is the gravitational
potential. We know this Lagrangian is not correct since it would lead to incorrect
geodesic equations because it doesn’t take into account spacetime curvature.

In a scalar approach, to describe gravity as a spacetime bending force, we
need to include spacetime curvature and a potential term in the Lagrangian as
follows:

where m is the inertial mass. As such, we still wouldn’t get the same geodesic
equations as General Relativity. Is it possible to slightly change it in a physically
acceptable way for it to become equivalent to General Relativity’s Lagrangian?
Speed of light cannot be modified since Special Relativity laws wouldn’t apply
anymore. The only thing that could be changed is the inertial mass of the body.
Let’s then hypothesize that the inertial mass is relative such that:

m = α(Φ)m0

where the rest mass m0 is defined as the inertial mass in case of zero potential.
So we have: α(0) = 1. Inertial mass relativity is physically acceptable since we
already consider that the relativistic mass of a body is relative depending on its
speed.

The Lagrangian becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − α(Φ)m0Φ (1)

For more clarity, let’s also write: ṡ0 =
√
gµν ẋµẋν

We then have: L = −α(Φ)m0cṡ0 − α(Φ)m0Φ [i]

The Lagrangian equation restricted to space variables is:

∂L

∂xi
− d

dτ

∂L

∂ẋi
=

Since Φ doesn’t depend explicitly on ẋi, we have:

−∂α(Φ)m0cṡ0

∂xi
− ∂α(Φ)m0Φ

∂xi
+

d

dτ

∂α(Φ)m0cṡ0

∂ẋi
[iii]

[ii]

= 0

0

L0 = −m0c
√
gµν ẋµẋν

L′
0 = −m0c

√
ηµν ẋµẋν −m0Φ

L = −mc
√
gµν ẋµẋν −mΦ



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Disruptive Gravity: A Quantizable Alternative to General Relativity

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
III

Y
ea

r
20

20

45

  
 

( A
)

© 2020 Global Journals

Leading to: −∂α(Φ)cṡ0

∂xi
− ∂α(Φ)Φ

∂xi
+

d

dτ
(α(Φ)

∂cṡ0

∂ẋi
) = 0 [iv]

It comes:

−α(Φ)
∂cṡ0

∂xi
− ∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)

d

dτ

∂cṡ0

∂ẋi
= 0 [v]

We see the Lagrangian equation of General Relativity in the first and last
terms of the equation [v]. Let L0 = −m0cṡ0 , it comes:

−∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [vi]

Parametrizing with the body’s proper time, we have: ṡ0 = c. Thus:

−∂(α(Φ)c2 + α(Φ)Φ)

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [vii]

We see that, for it to give correct equations of motion in the Newtonian limit,
we necessarily have:

∂(α(Φ)c2 + α(Φ)Φ)

∂xi
[viii]

It yields: α(Φ) = (1 + Φ/c2)−1 [ix]

Then: dα(Φ)

dτ
=
∂α(Φ)

∂Φ

∂Φ

∂xµ
ẋµ = −(1 + Φ/c2)−2 ∂Φ

∂xµ
ẋµ/c2 [x]

Hence, recasting in [vii] we get:

(
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = (1 + Φ/c2)−1 ∂Φ

∂xµ
ẋµ
∂cṡ0

∂ẋi
/c2 [xi]

Notations can be misleading. We cannot replace ṡ0 by c in the expression
∂cṡ0

∂ẋi
since it’s a partial derivative. We have in fact:

∂cṡ0

∂ẋi
= c ·

∂
√
gµν ẋµẋν

∂ẋi
= c · 2 · gµiẋµ

2 ·
√
gµν ẋµẋν

= c · 2 · ẋi
2 · c

= ẋi

Hence: (
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = (1 + Φ/c2)−1 ∂Φ

∂xµ
ẋµẋi/c

2 [xii]

And calculating (
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 gives a known standard result of General

Relativity [1][2][3][4]:

(
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = gµiẍ

µ + 1/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν [xiii]

Thus, after multiplying [xii] by gik (which is the inverse of the restriction of
the metric to space), defining Christoffel symbols as:

= 0
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(as said in the introduction, Roman letters span from 1 to 3 whereas Greek
letters span from 0 to 3) we get:

ẍk + Γkµν ẋ
µẋν = (1 + Φ/c2)−1 ∂Φ

∂xµ
ẋµẋk/c2 [xiv]

After neglecting second order terms, it yields:

ẍk + Γkµν ẋ
µẋν =

∂Φ

∂xµ
ẋµẋk/c2 [xv]

These equations of motion look like the geodesic equations of General Rela-
tivity. For weak-fields and low speeds, if α(Φ) = (1 + Φ/c2)−1 we trivially get
the Newtonian limit.

Hence, if the inertial mass is relative such that:

m = (1 + Φ/c2)−1m0 (3)

gravity described as a spacetime bending force instead of a spacetime curva-
ture yields similar results. The small deviation from General Relativity induced
by ∂µΦẋµẋk/c2 makes this theory testable.

For more clarity, let’s write: m0
∂Φ

∂xµ
ẋµẋk/c2 = (−~F · ~v) · ~v/c2

where ~F is the gravitational force and ~v the speed of the body. We can
interpret it as an anomalous thrust unexpected from General Relativity. In the
case of Mercury, its speed around the Sun is v = 47km/s so v2/c2 = 2.5 · 10−8

that makes it neglectable and hard to detect since the term Γkµν ẋ
µẋν is of the

same order of magnitude as the gravitational Such an anomaly
expected to be measurable in the recently launched Parker Solar Probe if solar

wind and radiation pressure can be neglected so close to the Sun. That would
be a test of this theory.

In case of orbital motion, we see that for a circular trajectory, this force is
null. Thus, it can be neglected for low eccentricities yielding the same predic-
tions of orbit precession as General Relativity, especially Mercury’s perihelion
precession.

In this section, we described gravity with a scalar theory as an introduction.
We need to extend it to a vectorial theory that would make it a special case.
That is the aim of Section

Describing gravity as a spacetime bending force has to yields equivalent equa-
tions of motion as General Relativity and account for predictions such as: Time
Dilation, Light Bending, Shapiro Delay, Lens-Thirring and geodetic effects.

We know the Lens-Thirring and the geodetic effects are both well described
by Gravitoelectromagnetism [5] which is a theory of gravity in a flat spacetime
analogous to Maxwell’s theory of electromagnetism. So including spacetime
curvature in Gravitoelectromagnetism would still make those predictions.

III. A Spacetime Bending Force

(2)

Γkµν = gik/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν

III IV.and

acceleration .~F/m0

is
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Analogous to electromagnetism in General Relativity, we can consider grav-
ity as some kind of gravitoelectromagnetism in curved spacetime and see if it
makes the same predictions as General Relativity. The Lagrangian of an elec-
trically charged body in General Relativity is:

L = −mc
√
gµν ẋµẋν − qẋµAµ

where Aµ is the electromagnetic four-vector potential and q the electric charge
of the body. The idea is to consider a gravitational four-vector potential Gµ
analogous to the electromagnetic four-vector potential Aµ and consider the fol-
lowing Lagrangian:

L = −minertialc
√
gµν ẋµẋν −mgravitationalẋ

µGµ

where minertial is the inertial mass of the body and mgravitational is its grav-
itational mass. For some reason that will become clear in Section
the gravitational mass as:

mgravitational = γ−1minertial

where γ is defined as γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
similar to the Lorentz factor.

Same as Section II, we hypothesize that the inertial mass is relative such that:

minertial = α(Φ)m0

where m0 is the rest mass, defined as the inertial mass if the gravitational
potential is null: α(0) = 1. The Lagrangian becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ (4)

How the Gravitational four-vector potential Gµ is calculated is not of rele-
vance in this paper since gravity is not postulated to be Newtonian. It should
then be subject to further studies. It depends on the type of gravitational po-
tential. If Newtonian, it would be the exact analogous of electromagnetism in
curved spacetime as we would just have to replace ε0 by −1/4πG where G is
Newton’s constant.

In electromagnetism, the four-vector potential is of the form Aµ = (V/c, ~A)

where V is the electrical potential and ~A is the potential vector. Gµ remains to
be calculated depending on the gravitational potential theory used (not neces-
sarily Newtonian). But we know that analogously to electromagnetism, it is of

the form Gµ = (Φ/c, ~G) where Φ is the gravitational potential.

In electromagnetism, the magnetic field is derived as the curl of ~A. Analo-
gously, defining the gravitational tensor as:

Fµν = ∂µGν − ∂νGµ =


0 − 1

cE
x
G − 1

cE
y
G − 1

cE
z
G

1
cE

x
G 0 BzG −ByG

1
cE

y
G −BzG 0 BxG

1
cE

z
G ByG −BxG 0


provides a good description of the Lens-Thirring and the geodetic effects.

we defineIV,
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Another prediction of General Relativity is Gravitational Waves. It is not
mentioned in the tests because it is due to a gauge choice. Whereas viewing
gravity as a spacetime bending force, gravitational waves would not be due to a
gauge choice since Gµ is Lorentzian by definition. Indeed, Lorentz gauge induces
a wave equation of the potential.

As we said in the previous section, we consider the following Lagrangian:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ [i]

Let’s demonstrate that this Lagrangian yields the special case scalar theory
of Section II when the Lens-Thirring and the geodetic effects can be neglected
in case of non-relativistic speeds and in weak-fields.

Let’s first simplify the Lagrangian by neglecting second-order terms. If the
Lens-Thirring and the geodetic effects can be neglected, then cross-terms be-
tween space and time can be neglected. Parametrizing with the body’s proper
time, we have c2 = g00(ẋ0)2 + gij ẋ

iẋj which yields for non-relativistic fields:

ẋ0 · √g00 = c · (1− 1/2 · gij ẋiẋj/c2 [ii]

Similarly, with γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
, we have:

γ−1/
√
g00 =

√
gµν/g00 ·

dxµ

dx0

dxν

dx0
=

√
1 + gij/g00 ·

dxi

dx0

dxj

dx0
[iii]

Since dx0

dτ = ẋ0 and for non-relativistic speeds ẋ0 ≈ c, neglecting second-order
terms it comes:

γ−1/
√
g00 =

√
1 + gij/g00 · ẋiẋj/(ẋ0)2 = 1 + 1/2 · gij/g00 · ẋiẋj/c2 [iv]

Since in weak-fields 1/g00 ≈ 1− 2Φ/c2, neglecting second-order terms yields:

γ−1/
√
g00 = (1 + 1/2 · gij ẋiẋj/c2 [v]

Multiplying [ii] and [v] we get:

γ−1ẋ0 = c · (1 + 1/2 · gij ẋiẋj/c2 − 1/2 · gij ẋiẋj/c2 − (1/2 · gij ẋiẋj/c2)2) [vi]

Neglecting second-order terms again it comes: γ−1ẋ0 = c [vii]

The Lens-Thirring and the geodetic effects being neglected, we also have
G0 = Φ/c and Gi = 0 we get:

ẋµGµ = ẋ0G0 = ẋ0Φ/c [viii]

Recasting [vii] yields: γ−1ẋµGµ = γ−1ẋ0Φ/c = Φ [ix]

Introducing Lorentz factor in the definition of the gravitational mass is conve-
nient as it suppresses perturbative terms. Its physical meaning is quite intuitive

IV. First Order Non-Relativistic Dynamics

)

)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Disruptive Gravity: A Quantizable Alternative to General Relativity

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
III

Y
ea

r
20

20

49

  
 

( A
)

© 2020 Global Journals

though: the faster a body, the more massive it gets in terms of relativistic mass,
and the less the influence of a force on it. Taking this into account implies the
introduction of Lorentz factor in the definition of the gravitational mass.

The Lagrangian [i] becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − α(Φ)m0 [x]

Which is the special case already studied in Section II. Thus, if the inertial
mass is relative such that minertial = (1 + Φ/c2)−1m0 , describing gravity as
a spacetime bending force yields equivalent equations of motion as General
Relativity.

The Lagrangian of this theory is then:

L = −(1 + Φ/c2)−1m0c
√
gµν ẋµẋν − γ−1(1 + Φ/c2)−1m0ẋ

µGµ (5)

with γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
.

The reader may have noticed that the Lagrangian’s variables xµ and ẋµ are
not independent since parametrizing with the body’s proper time we have c2 =
g00(ẋ0)2+gij ẋ

iẋj . We then have to choose a set of independent variables. Since
space and time are disjoint by hypothesis, it is convenient to choose xi and ẋi

as a set of independent variables. This is why we restricted the Lagrangian
equation to space variables in Section II.

We now have a vectorial theory of gravitation that yields equivalent equations
of motion as General Relativity and accounts for the Lens-Thirring and the
geodetic effects. We are then left with finding a way to derive the metric so that
the Schwarzschild metric is a solution to this theory. If so, it would account
for Mercury’s Perihelion Precession, Time Dilation, Light Bending and Shapiro
Delay. For that, let’s first have a look at the physical implications of inertial
mass relativity in the next section.

The hypothesis of inertial mass relativity yields equivalent results as Gen-
eral Relativity in weak fields and non-relativistic speeds. This hypothesis has
physical implications and interpretations that we study in this section.

Mathematically, a natural physical interpretation arises. Indeed, we can give
a physical meaning to EΦ = minertialc

2 thanks to inertial mass relativity:

EΦ = m0c
2/(1 + Φ/c2)

Generalized to a relativistic body, we have:

EΦ = γmc2/(1 + Φ/c2) where γ = 1/
√

1− v2/c2 is Lorentz factor [6].

Let’s rewrite it as: EΦ =
√
m2

0c
4 + p2

0c
2(1 + Φ/c2)

V. Physical Implications

Φ



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Or rather, for brevity : EΦ = E0/(1 + Φ/c2) (6)

Applied to photons of energy E0 = hν0, with EΦ = hνΦ we have:

νΦ = ν0/(1 + Φ/c2)

That looks a lot like General Relativity’s formula of gravitational redshift.
Thus we define EΦ as the Apparent Energy of the body.

Writing it as EΦ = E0/
√
g00, it’s as if the energy of a body could be redshifted.

It’s as if a body was also a wave which we know accurate since De Broglie’s
hypothesis of wave-particle duality.

Apparent Energy is nothing new. When a wave is Doppler-shifted for a
moving observer, the shifted frequency is said to be apparent frequency. Anal-
ogously, the energy of a photon for a moving observer doesn’t change, but since
its frequency is Doppler-shifted, the change in energy is its apparent energy.

This physical meaning implies the time dilation factor be: g00 = (1 + Φ/c2)2

This provides another testable deviation from General Relativity. Indeed in
General Relativity we have:

g00,schwarzschild = 1 + 2Φ/c2

The second-order difference is (Φ/c2)2 . It’s measurable and is another
testable deviation from General Relativity.

In this section, we show that we can give a physical meaning to the Schwarzschild
metric that is analogous to the speed of light invariance principle. From there,
it is possible to derive the metric so that the Schwarzschild metric is a special
case, as shown in Section VII and VIII.

Let’s write the Schwarzschild metric [7] :

ds2 = (1 + 2Φ/c2)c2dt2 − (1 + 2Φ/c2)−1dr2 − r2(dθ2 + sin2θdψ2)

Then let’s consider the following equivalent metric in weak-fields:

ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2)

Space and time being disjoint, we can define the space metric:

ds2
Space = (1 + Φ/c2)−2dr2 + r2(dθ2 + sin2θdψ2)

The volume element of a Riemannian manifold is the square root of the de-
terminant of the metric in absolute value times the coordinate elements. For
the Schwarzschild space metric it yields:

dV =
√

(1 + Φ/c2)−2 · r2 · r2sin2θ · drdθdψ = (1 + Φ/c2)−1 · r2|sinθ|drdθdψ

VI. Physical Meaning of the Schwarzschild Metric
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It comes:

(1 + Φ/c2) · dV = r2|sinθ|drdθdψ

This doesn’t depend on Φ, which is an invariance principle. Let’s multiply by
ρc2 where ρ is a hypothetical mass density of the vacuum, we get:

(ρc2 + ρΦ) · dV = ρc2 · r2|sinθ|drdθdψ

In other words, analogous to the invariance of the speed of light, we have the
following principle:

”The energy of the vacuum is invariant”.

It seems like the same way speed of light invariance induces time dilation,
vacuum energy invariance induces space dilation. Just as the Strong Equivalence
principle is a postulate of General Relativity, Vacuum Energy Invariance (VEI)
can be taken as a postulate. We will see that it yields the Schwarzschild metric
in weak-fields and therefore provides the same predictions as General Relativity.

In Section VII and VIII, we derive the metric thanks to this principle.

We showed in Section II, III, and IV that gravity can be coherently described
as a spacetime bending force if the inertial mass is relative. We are left with
how the metric can be derived such that the Schwarzschild metric is a particular
case.

We naturally postulate that the metric gµν is of the form:

g =

(
g00(Φ) 0

0 −gs(Φ)

)

Indeed, in General Relativity, cross terms between space and time are re-
sponsible for the Lens-Thirring and the geodetic effects, but since these are
already accounted for by considering gravity as spacetime bending force, we can
postulate that space and time curvature are disjoint.

We then consider that space and time are independently dilated by the VEI.

Let’s derive both det(gs) and g00 thanks to the VEI principle.

At a given point in time t, in a volume element dx1dx2dx3, under zero gravity
and with vacuum energy density E0, we have:

dE0 = E0dx1dx2dx3

and under Φ-gravity potential, we have:

dEΦ = E0(1 + Φ/c2)
√
det(gs)dx1dx2dx3

Applying VEI, we have: dE0 = dEΦ.

It comes:

VII. Metric Derivation (Part I)

Disruptive Gravity: A Quantizable Alternative to General Relativity

          

  

1

G
lo
ba

l
Jo

ur
na

l
ofS
ci
en

ce
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s
ue

  
  
  
 e

rs
io
n 

I
V

V
III

Y
ea

r
20

20

51

  
 

( A
)

© 2020 Global Journals



 
 

 
 

 
 
 
 
 
 
 
 
 
 

det(gs) = (1 + Φ/c2)−2 (7)

Let’s apply the VEI in time domain to have a more rigorous way to find g00.

The reasoning is a bit similar to the one for the derivation of the gravitational
redshift. We reason in terms of observational events.

Let E0 be the total vacuum energy and N be the number of observational
events.

The total vacuum energy by time unit for an observer under a global 0-
potential is:

P0 =
d(NE0)

dt

The total vacuum energy by time unit for the same observer under a global
Φ-potential is:

PΦ =
d(NE0(1 + Φ/c2))

dτ

Applying VEI, we have: P0 = PΦ

It comes: E0dNdτ = E0(1 + Φ/c2)dNdt

With dτ2 = g00dt
2 it eventually comes:

g00 = (1 + Φ/c2)2 (8)

The equation of motion [xvii] of Section II, for non-relativistic speeds becomes:

ẍk + Γk00ẋ
0ẋ0 = 0

In weak-fields, a standard result of linearized General Relativity yields :

ẍk = −1/2 · ∂kh00c
2

where hµν = gµν − ηµν is the perturbation of the metric.

We have h00 = 2Φ/c2 from the VEI, which yields Newton’s law [8].

We still don’t fully know gs. Any gs formula predicting a correct Light Deflec-
tion and reproducing the Schwarzschild metric for the Sun’s mass distribution
works to account for every experimental test.

Considering gravity as a spacetime bending force would give us a space met-
ric gs different from General Relativity. It doesn’t change anything to the New-
tonian limit since, in that case, only g00 is relevant for the equations of motion.
The idea is to aggregate the contributions of every mass of the distribution to
the space deformation. In case of a compact spherical distribution, far from the
sphere, space dilation would be purely radial just as in the Schwarzschild met-
ric, whereas it wouldn’t be the case close to the mass distribution. A non-radial
space dilation is a testable prediction of this theory.

VIII. Metric Derivation (Part 2)
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Space deformations induced by a single punctual mass must be radial for
trivial physical reasons. Then in a local orthonormal basis (~er, ~eu, ~ev) where ~er
is radial, space metric is −gs,ruv of the form:

gs,ruv =

β−2 0 0
0 1 0
0 0 1

 = I + (β−2 − 1)

1 0 0
0 0 0
0 0 0


Applying VEI yields: β = 1 + Φ/c2.

LetMT be the change of basis orthonormal matrix from (~er, ~eu, ~ev) to (~e1, ~e2, ~e3).
So with ~er = ri~ei , ~eu = ui~ei and ~ev = vi~ei , changing coordinates we have:

gs = MT gs,ruvM with MT =

r1 u1 v1

r2 u2 v2

r3 u3 v3



Since MTM = I, it comes: gs = I + (β−2 − 1)MT

1 0 0
0 0 0
0 0 0

M

Eventually:

gs = I + (β−2 − 1)

 r2
1 r1r2 r1r3

r2r1 r2
2 r2r3

r3r1 r3r2 r2
3

 or gs,ij = δij + (β−2 − 1)rirj

In weak-fields, this is equivalent to the Schwarzschild metric written in Carte-
sian coordinates. This doesn’t depend on the choice of ~eu and ~ev. For a mass
distribution, the unit vector pointing from a massive point towards a local point
in space is the same as the radial vector ~er so we can aggregate their influence
thanks to the above formula.

Indeed, for an infinitely small potential dΦ, we have β−2 − 1 = −2dΦ/c2 and
the metric becomes when integrating over every infinitely small potential:

gs,ij = δij + λ ·
∫
−2rirjdΦ/c2 with λ such that det(gs) = (1 + Φ/c2)−2

Space being curved there might not be a unique choice of ri. Therefore
we introduce the potential angular distribution φ(~σ), where ~σ is the observed
direction. Leading to the following metric equation:

gs,ij = δij + λ ·
∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (9)

With: Bij =

∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (10)

We have: gs,ij = δij + λBij

In fact, for any 3x3 matricial function f such that f(P−1MP ) = P−1f(M)P
and f(M) = I + M if M is small, gs = f(λB) would also be valid. For
physical reasons, rather than summing the infinitely small perturbations, we
should multiply the metrics induced by each infinitely small perturbations. That
would yield:

Disruptive Gravity: A Quantizable Alternative to General Relativity
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gs = eλB (11)

Deriving λ is then straightforward. Since B is symmetric, it is diagonal in a
certain basis, and eλB would be a diagonal matrix in such a basis. Thus, the
determinant of eλB is the exponential of the sum of the eigenvalues of λB. The
sum of the eigenvalues being the trace of λB, we have:

det(eλB) = eTr(λB)

Applying the VEI principle we then have : eλTr(B) = (1 + Φ/c2)−2

Hence : λ = −2 · ln(1 + Φ/c2)/Tr(B) (12)

So in the weak-fields limit we have: gs,ij = δij − 2Φ/c2 ·Bij/Bkk (13)

In the case of a punctual mass, space deformation is radial. Hence, in spherical
coordinates we trivially obtain a Schwarzschild-like metric:

ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2) (14)

So this predicts Mercury’s Perihelion Precession and Light Deflection by the
Sun since its mass is concentrated in its core. But in case of a homogenous
spherical mass distribution like the Earth, the radial dilation would be smaller
than the one predicted by the Schwarzschild metric because the deformation is
fairly distributed according to the influence of every part of the mass distribu-
tion, inducing an azimuthal space dilation not predicted by General Relativity.
This could be measured through interferometry and provides another test.

Gravity as a spacetime bending force can be summarized by the following
equations:

Φ0 = Φ

L = −(1 + Φ0/c
2) −1m0c

√
gµν ẋµẋν − γ−1(1 + Φ0/c

2)−1m0ẋµGµ

γ−1 =

√
gµν

dxµ

dx0

dxν

dx0

g =

(
(1 + Φ0/c

2)2 0
0 −eλB

)

Bij =
∫
−2φ0(~σ)/c2 · ri(~σ)rj(~σ)dσ

λ = −2 · ln(1 + Φ/c2)/Tr(B)

This can be easily adapted to any violation of the Weak Equivalence princi-
ple by separating vacuum gravitational potential from the bodies’ gravitational
potential: Φ0 6= Φ

IX. Summary

Disruptive Gravity: A Quantizable Alternative to General Relativity
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The Cosmological Redshift can as well be interpreted as due to an expanding
universe if we postulate that the universe is homogeneous and isotropic and has
a beginning. Indeed, if gravity is a force, gravitational potential propagates at
the speed of light. The older the universe, the more propagated the gravitational
potential, and the greater space dilation would be.

global vacuum gravitational potential evolves in a homogeneous
and isotropic universe from its creation. The potential is induced by the mass
in a cT radius sphere where T is the age of the universe. The gravitational
potential is:

Φ =
∫ cT

0
φ(r)ρ · 4πr2dr

Taking space dilation into account and conservation of matter, we have:

ρ = ρ0 · (1 + Φ/c2)−1

And with the variable change t = r/c we have:

Φ = 4πρ0c
3 ·
∫ T

0
φ(ct)(1 + Φ/c2)−1t2dt

Hence the following gravitational potential differential equation:

dΦ/dT = 4πρ0c
3 · φ(cT )(1 + Φ/c2)−1T 2

Separating variables, we get:

Φ + Φ2/2c2 = 4πρ0c
3 ·
∫ T

0
φ(ct)t2dt

Hence the solution:

1 + Φ/c2 =

√
1 + 8cπρ0 ·

∫ T

0

φ(ct)t2dt (15)

The age T is the time elapsed from the point of view of an observer in a null
gravitational potential, as if he was shielded from gravity.

Since the universe is homogeneous, VEI implies that the scale factor is a =
(1 + Φ/c2)−1/3 so recasting the solution yields:

a(T ) = (1 + 8cπρ0 ·
∫ T

0

φ(ct)t2dt)−1/6 (16)

To be able to compare this model with Friedmann-Lemaitre-Robertson-Walker
models, we need to express the dilation factor with a time equivalent to comov-
ing observers. The time Tc of a comoving observer satisfies:

dTc =
√
g00dT = (1 + Φ(T )/c2)dT

It comes: Tc =

∫ T

0

(1 + 8cπρ0 ·
∫ t

0

φ(cτ)τ2dτ)1/2dt (17)

X. Universe Expansion 

Disruptive Gravity: A Quantizable Alternative to General Relativity

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
III

Y
ea

r
20

20

55

  
 

( A
)

© 2020 Global Journals

theLet’s see how



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Intuitively, the dilation factor has a positive acceleration because it is a divi-
sion by a quantity that seems to near zero. The above equations show that the
absolute time T can have a finite limit value when the comoving time Tc tends
to infinity. That depends on the gravitational potential theory used. Let’s do
the calculation for a Newtonian potential φ(r) = −G/r. We have:

Tc =
∫ T

0
(1− 4πGρ0t

2)1/2dt

And: a(T ) = (1− 4πGρ0T
2)−1/6

From this simple Newtonian model, we see the scalar factor has a positive
acceleration. The potential is not necessarily Newtonian, but we see that an
accelerating expanding universe would be more expected than a non-accelerating
universe, especially for non-Newtonian potentials such that G/r ·φ(r)−1 = o(1).
This model doesn’t require Dark Energy to explain such acceleration.

Describing gravity as a force in curved spacetime, we now have a coherent
way to blend gravity into the quantum realm. What follows is based on Fock’s
equation [9] as a curved spacetime version of Dirac equation:

[iγµ(∂µ − Γµ − ieAµ)−m] · = 0

where γµ are the generalized gamma matrices defining the covariant Clifford
algebra [10]: γµγν + γνγµ = 2gµν

where gµν is the spacetime metric, whose signature is (+ − −−), Γµ is the
spinorial affine connection, and Aµ is the electromagnetic four-vector potential.

To take into account gravity, we just write m = m0(1+Φ0/c
2)−1 and we take

into account the gravitational four-vector potential Gµ. We get:

[iγµ(∂µ − Γµ − ieAµ − im0(1 + Φ0/c
2)−1Gµ)−m0(1 + Φ0/c

2)−1] · = 0 (18)

Gravity can be consistently described as a spacetime bending force based on
an invariance principle inferred from the Schwarzschild metric. Analogous to
the speed of light invariance which implies time dilation through speed, Vacuum
Energy Invariance implies space dilation through gravitational potential. Writ-
ing the Lagrangian of a force in curved spacetime, we get equivalent equations
of motion as General Relativity if the inertial mass is relative depending on
the gravitational potential. This is a physically acceptable hypothesis since the
relativistic mass of a body is already relative, depending on its speed.

This theory not only yields the same classical predictions as General Rela-
tivity such as Mercury’s Perihelion Precession, Time Dilation or Light Bending
but is also testable through many predicted deviations such as an anomalous
thrust, a time dilation second-order correction and a non-radial space dilation
described in Section II,

This approach of gravitation is compatible with non-Newtonian gravitational
potentials and violations of the weak equivalence principle. From there, one can
develop many models to fit the available cosmological data. The reader can then

XI. Quantizing Gravity

XII. Conclusion 
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