Words of Minimum Rank in Deterministic Finite Automata - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Words of Minimum Rank in Deterministic Finite Automata

Résumé

The rank of a word in a deterministic finite automaton is the size of the image of the whole state set under the mapping defined by this word. We study the length of shortest words of minimum rank in several classes of complete deterministic finite automata, namely, strongly connected and Eulerian automata. A conjecture bounding this length is known as the Rank Conjecture, a generalization of the well known Černý Conjecture. We prove upper bounds on the length of shortest words of minimum rank in automata from the mentioned classes, and provide several families of automata with long words of minimum rank. Some results in this direction are also obtained for automata with rank equal to period (the greatest common divisor of lengths of all cycles) and for circular automata.
Fichier principal
Vignette du fichier
DLT2019.pdf (117 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02942499 , version 1 (13-02-2022)

Identifiants

Citer

Jarkko Kari, Andrew Ryzhikov, Anton Varonka. Words of Minimum Rank in Deterministic Finite Automata. DLT 2019, Aug 2019, Warsaw, Poland. pp.74-87, ⟨10.1007/978-3-030-24886-4_5⟩. ⟨hal-02942499⟩
53 Consultations
103 Téléchargements

Altmetric

Partager

More