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Summary

The balance between excitation and inhibitionE-I balance) is maintained across brain
regions though the network size, strength and numbyeof synaptic connections, and
connection architecture may vary substantially. Hees, we use a culture preparation to
examine the homeostatic synaptic scaling rules tharoduce E-1 balance andin vivo-like
activity. We show that synaptic strength scales Wi the number of connections K) as
~1/VK, close to the ideal theoretical value. Using opgenetic techniques, we deliver
spatiotemporally patterned stimuli to neurons and onfirm key theoretical predictions:
E-l balance is maintained, active decorrelation occursand the spiking correlation
increases with firing rate. Moreover, the trial-to-trial response variability decreased
during stimulation, as observedin vivo. These results — obtained in generic cultures,
predicted by theory, and observed in the intact bran — suggest that the synaptic scaling

rule and resultant dynamics are emergent propertiesf networks in general.

Introduction

The firing dynamics of neural networks depend andkierall balance between excitatid) (
and inhibition (). Maintaining a balance & and! inputs to neurons is crucial for coding
and severe imbalances can lead to neuropathofigiche balanced state, characterized by
neuronal activities that are neither completelgrsilnor saturatéd, exists in a wide range of
networks with different configurations. The sizennection architecture, synaptic dynamics
and strength, and intrinsic propertiestbind|l neurons vary widely across brain regiths
and may change during developntétt and learninif. The presence of the balanced state
under these different conditions suggests thatnpiedey many network variables are adjusted

homeostatically to maintai&-1 balance and functional network dynamics.



Determining the homeostatic rules that lead torimadais difficult given the complexity of
cortical circuits. One approach is to reduce thmiper of variables and use well-established
mean field techniques adapted from statistical rmeids to examine general network
properties analyticallj’'’. Rather than incorporating as many of the expemtaily-
determined variables as possiflenly a few key parameters of the network are icemed:
the number I{l) of excitatory and inhibitory neurons; the strdndi) and numberK) of
synaptic connections per neuron; and the connegirobability @) between cells. For
mathematical rigor, mean field theories are devadlop the limit of infinite network size and
assume statistical independence between the v@siablThe network behaviour depends
critically on howJ, K, P., andN scale with respect to each other. Expressionshfoimean
and variance of the network-generated synaptictiapd conditions to achieve-l balance
can be derived readily (see Supplementary Text)this framework, general properties such
as the firing rate or the correlation between nesircan be analytically predicted from
network properti€s"!”. Ideally, any scaling scheme should not only eehibalance but also
reproduce the salient features iof vivo activity and be constrained by experimentally-

determined parameters.

Under the constraint that the highly irregularrfiriof in vivo neurons is preservEd, one
schemé® requires that] scales with the number of connectidtsas 1/vK. This scaling
ensures that the fluctuations or variageé) in the synaptic inputo? is proportional tax -

J?, see Supplementary Text) does not depend on timbderuof connectionss€ proportional

toK - (1/\/?)2 = constant). Fluctuations cause stochastic crossings osltuie and hence
irregular firing. Note that if insteadiscales ag/K, the variance vanishes with increasig
The balanced state is achieved provided that trenregcitatory synaptic inpl (composed
of recurrent and external drive to the networkgdgial in magnitude to the mean inhibitory
synaptic inputl so that the composite synaptic inpl 1) is close to rheobase (see
Supplementary Text).

Another constraint is that correlation in the fgiof neurons is low. Low correlation is
crucial for ensuring statistical independence afaldes required for mean fi€té*” and for
efficient coding of firing rate information undeorse circumstancés To maintain low
spiking correlations, one possibility is to d€tto be large but much smaller thanh
(1 <<K <<N) by e.g. definingk to be a constant or to increase at a very sloe watih N.
Under this condition, the probability. (= K/N) that neurons are connected is low

(‘sparsely-connected’ network); correlations are reduced because the probabfilitytwo



neurons receive common inputsP(® is also small. However, estimates of the coriorct
density of local cortical networks suggest thatingris not sparse, especially when
considering excitatory-inhibitory wiritg*2232° Nevertheless, correlations can also be small
in networks where& increases proportionately withh so thatP; is non-vanishing (‘densely-
connected’ network). Although dense connectivitguces positive correlations between
isolatedE inputs and between isolatédinputs to neurons, correlations in the composite
synaptic input and spiking is reduced becauseEthadl inputs co-vary in time (track each
other) and cancel. Moreover, the correlation edjmted to decrease with network $fzeln
addition to network parameters, spiking correlatisralso affected by correlations in the
external drive to the netwotkand by the firing rate of neurofis

A shortcoming of the reduced approach is that na&Enye simplifying assumptions needed
for mathematical tractability appear far from ploysgical parameters. The/+/K scaling
rule and the relations between the variables weraveld based not on biological principles
but rather on the fact that the model reprodunedivo-like activity. Furthermore, the
idealized network differs substantially from bioicgl networks, in whiclkK andN are finite,
neurons have diverse membrane and firing propefiesaries with distance and cell type,

andJ exhibits time-dependent depression or facilitation.

Here, we use a culture preparation whérean be systematically varied ak¢gJ, andP; can
be measured accurately. To determine whetherctileng results irE-I balance, high spiking
variability, and low correlations, we drive the wetk with specified spatiotemporal patterns
using optogenetic stimulation. Using a varietystimuli delivered under various conditions,
we test whether the results hold under conditiafferdnt from the ideal theoretical limits
and whether the network can accommodate other mletiaahaviours not explicitly predicted

by the theories.

Results

Intrinsic and network properties of cortical cultur es

To confirm that the properties of cortical neurgnswn in the glia-free cultures were similar
to those of neurons in acute slices, we charaetgrikze intrinsic and synaptic properties of
neurons by performing paired whole-cell recordiflgs 491 cells, 1080 tested connections in
131 preparations). A neuron was classified astabacy or inhibitory based on whether
suprathreshold stimulation evoked depolarizing oypenpolarizing responses in its



postsynaptic target (Fig. 1a). Approximately 23%4he neurons in culture were inhibitory,
consistent with estimates in cortical slideand in culture¥>® By 14 daysn vitro (DIV),

the resting membrane potential, the input resigtamd the membrane capacitance remained
constant for at least 30 DIV (Supplementary FigSdpplementary Table 1) and were similar
to those measured in cortical slite&$'?” The density did not change significantly withvDI
for the range examined (Supplementary Fig. 1)

As inin vitro slices of corteX"** the connection probabilityPf) between neurons decreased
with distance, following a Gaussian profile (Figp)1 Organization principles seemed similar
to those measured in cortical slicegg (s ~ 0.2, pg_; =0.3-0.6, p,_z =0.4-0.7, and
pi; = 0.3-0.7 for reported valu€s®232§ with lower peak probability betweeR cells
(pgsg = 0.38) than betwee and | (pgz.; =0.59 andp,_r =0.64) or between cells
(p;=; = 0.59) (Supplementary Fig. 2, Supplementary TahleHowever, the spatial profiles
were wider in this 2-dimensional network than thaseslices. The connection probability
across all cell types decreased with a charadtetetgth of about 600 um as compared to

100-200 pum in cortical slic&s*2%%

To examine how the profile of connections variedhwnetwork size, we pooled data
according to densities. The area under the commmeptofile P; did not change substantially
with density (Fig. 1b-c, Supplementary Fig. 2gpr Each density, we estimated that the total
number E+l; black Fig. 1c) of presynaptic inputK)(to a neuron by integrating the
probability profiles over space (see Methods ansetinof Fig. 1c), which provided a
calibration curve relating the expected numberasfnections as a function of density. This
allowed us to determine th#t increased linearly with density (Fig. 1c, fit: K = 0.82D,

R? = 0.995) indicating that cortical neurons in cratéorm densely-connected networks.

Scaling of synaptic strength with network size

The amplitudes of excitatory and inhibitory postgytic potentials (EPSPs and IPSPs)
decreased with density (Fig. 1a). At low densifiek00 neurons/mf), the unitary EPSP and
IPSP amplitudes were 4.3 +£1.4mV and -3.8 £ 1.7 (mant SD), respectively, while at
high densities (>300 neurons/M)n the values were 1.3+1.1mV and -1.4+1.6 mV,
consistent with previous resufts> Using a general linear model, we determined that
amplitudes did not vary significantly with neurgrpé, DIV, distance, or intrinsic properties
(Supplementary Table 3).



Plotting the PSP amplitudes vs the expected nuwfb@ynnectionK shows that the strengths
J of bothE and| synapses scale witk with an inverse power law (Fig. 1d). Fitting the
combined E-I data in log-log scale (PSP amplitudes are logntlymdistributed,
Supplementary Fig. 3) gives an exponent of -0.82242onfidence interval: [-0.70:-0.47],
R? = 0.232), comparable to the theoretically propoged> scalind® Individual fits for
unitary EPSPs and IPSPs have exponents of -0.600ab8, respectively. Assuming that
there are 1500 connections per neuron in the im@texX?, this scaling J (mV) = 32K ™%
predicts a PSP amplitude of ~0.4 mV, well withinader of magnitude of the unitary PSP
amplitudes (~ 0.1 - 0.5 mV) measured in corticiglest*8:24283

Spiking dynamics of optogenetically-driven network

To examine the spiking dynamics in the activateivogk, we stimulated a subset of neurons
that expressed channelrhodopsin (ChR2) using atdDbidiight Processing projector
(Fig. 2a,b). ChR2 (and a fluorescent tag) wereresged either only ik cells (transgenic
lines) or non-specifically in botB andl neurons (viral injection). Regions of interesOIR)
covering the ChR2-expressing neurons were definddsamultaneous cell-attached or whole-
cell recordings established in 4 cells that eittidrot express ChR2 or whose somata did not
overlap with the processes of neurons in the R@. @). Stimuli were trains of random
light pulses with input rategyim, ranging from 2-40 Hz (see Methods, Supplementagy4).
Because the light pulses were suprathreshold (8appitary Fig. 5), the stimulated neurons
approximate the external feedforward input to teéwork (Fig. 2c), though feedback from
the network may generate additional, albeit weal@tjvity in the stimulated neurons
(Supplementary Fig. 5). Because the ChR2-exprgssaurons were often close and had
overlapping processes, each ROl may activate lufbons. Experiments in which ChR2 was
expressed sparsely so that neurons could be steduiadividually, produced qualitatively
similar results (Supplementary Fig. 6). Note #$@dntaneous, network-wide bursts present in
cultures were excluded from analyses (see Datay&eal in the Methods section for

rationale).

The responses in simultaneously recorded neuronslihattached (extracellular) mode were
heterogeneous. Asynchronous stimulation of each &@ Hz increased firing rate above
baseline activity in approximately 65 % of non-silated neurons (106 out of 164 neurons in
44 cultures; see Fig. 3a,b). Identical stimulivigied to the network evoked robust activity in
some (cells 1 and 3 in Fig. 3a) and little in osh@ell 2 and a% cell that did not fire; see

also Supplementary Figs. 6 and 7). Such varighikely occurred because, a finite number



of neurons within an enclosed area were stimulatethat local heterogeneity in the network
circuitry produced differences in the aver&gandl inputs to each cell.

The evoked activity is consistent with several kiegoretical predictions. First, the action

potential firing were irregular: the Fano factor sval and did not increase with the

observation window (Supplementary Fig. 8a), indicpa near Poisson process. Second, in
accordance with thé/vK scalind®, the spiking variability did not decrease withrie@sing

N (Fig. 3c, red). Third, the distribution of firimgtes was long tailed and approximately log-
normal (Fig. 3b and Supplementary Fig. 8b-c), whishpredicted by balance network

theory®3"and is also in line with experimental restitts

In addition, the network exhibit firing behaviouhsat are consistent with those documented in
intact animals with natural stimuli. As observau vivo*® and predicted by theofy
stimulation of the network quenches variabilitytire number of spikes evoked over a time
interval (Fig. 3c). The increase in firing rateridg stimulation (Fig. 3b) was accompanied by
a significant drop in the Fano factor across atgitees (Fig. 3c). Examination of evoked
activity during several sweeps of identical stimsifiows that the times of occurrences of
some spikes were repeatable across trials (Figge®aalso Supplementary Figs. 6 and 7). To
characterize the underlying synaptic inputs, wraak+ecordings with Nachannels blocker
QX-314 present in the internal solution, were tlestablished in the same cells (shown for
cell 3; Fig. 3a, see also Supplementary Fig. 7arge voltage transients coincided with the
reliable extracellularly recorded spikes while wate membrane potentials coincided with the
unreliable spikes. Other spikes were variable oepetitions of the identical stimulus and

likely resulted from variability generated by tleeuarrent activity.
E-I balance in the activated network

To confirm that theE and | synaptic potentials evoked during stimulation bedanced,
whole-cell current clamp recordings were estabtisie 1-4 cells (Fig. 4a). At resting
potential, the evoked compound PSP (cPSP) was mmirf EPSPs and IPSPs. To isolate
the EPSPs (IPSPs), the membrane potential wasatel@0 mV (0 mV), near the reversal
potential for IPSPs (EPSPs) and stimuli identioahiat used to evoke cPSPs were delivered.
Consistent with the balanced regime imvivo datd’, the EPSPs (red in Fig. 4a) were
countered by IPSPs (blue) of comparable amplitudsulting in smaller cPSPs (black).
Balance was achieved at the cellular level: theage evoked IPSPs and EPSPs to a single
cell were linearly related (Fig. 4b) similaritovivo findings'%



The balanced regime was maintained irrespectivieebiork size. The mean cPSP did not
increase significantly with network density (despihevK term in Eq. 3 of Supplementary
Text) because the excitatory drive was matched bgomparably size inhibitory drive
(Fig. 4c). In accordance with tHg¢vK scaling of synaptic strength, the variability d?$&Ps,
IPSPs, and cPSPs during stimulation did not deeredth density (Fig. 4d). This effect was

maintained for both low (Fig. 4a, left) and higlglit) number of stimulated neurons.

In the balanced regime, the mean firing rate ofroesi should on the average be proportional
to the magnitude of the external dri¥é° Increasing the numbeN§;) of ROIs caused a
linear increase in the evoked raté (Fig. 4e) and in the average (Fig. 4a and f) staddard
deviations (inset of Fig. 4f) of EPSPs, IPSPs, eR8Ps. Similar observations were made
when the rate of each ROV{,; at constaniNgim) was increased (Fig. 4g,h). The apparent
non-linear relation became more linear (Supplemgrey. 9) whenvgim was corrected for
the frequency-dependent decline in the efficacfCbR2 (Supplementary Fig. 5). Synaptic
depression and/or firing rate adaptation may atsuribute to the saturation. The firing rate
gain /vsim) Was homeostatically maintained and did not chamigie density (Figs. 3b and

4qg; the mean drive is proportional M, */ and was kept constant at each density by
scalingN;;,, by /density).
Spiking and membrane potential correlations in driven networks

Because the networks are densely-connedtea {V so thatP. is constant) with thé ~%-59
synaptic scaling, neurons share substantial amesgtinputs from common sources, which
would result in significant spiking correlation time largeN limit. However, correlations are
reduced becaugeandl track and cancel each otff&** during stimulation, the fluctuations
in the isolatedE inputs to neurons mirror thoselimputs (Figs. 4a and 5a). A hallmarkief

| tracking is that the correlation betweEninputs to two neurons and between isolated
inputs is larger than that between cPSPs. This aeasirmed in simultaneously-recorded
pairs by cross-correlating the isolated EPSPs Gagred), isolated IPSPs (blue), and cPSPs
(black). Similar results were obtained by crosgaating the trial-averaged traces (‘signal
correlation’) and by cross-correlating the indivadluraces after subtracting the averaged
traces (‘noise correlation’) (Supplementary Fig).10

In the asynchronous state, the spiking correlatienreases witiN due to improvede-I|
tracking®. As predicted, increasing the network densityuced both the correlations in

spikes and cPSPs whiteE andlI-I correlations remained high (Fig. 5b).



To confirm thatE-l tracking attenuates correlations in the extermiaietf, we systematically
varied the correlation between the stimulated nesiroCorrelations in the light stimuli were
adjusted via th€gim parameter of the algorithm for generating pulséng” (Supplementary
Fig. 4 and Methods). The time courses of bothBR&Ps and IPSPs mirrored each other and
changed in parallel witlCsim (Figs. 5a, Supplementary Fig. 6) to preserve Iisthbalance
(Supplementary Fig. 11) and tracking. The sigiad.(5¢c) and noise (Fig. 5d) correlations
between cPSPs were substantially less than thdeede the isolated EPSPs or IPSPs. The
noise correlation did not change wi@yin. The increase in signal correlation wi@in
reflects the fact that the tracking was not perfeBecause onl{ neurons were stimulated,
there was a short delay between excitation andbitidm, which prevented complete
cancellation and became more apparent at Gigh The enhanced voltage transients in the
cPSPs with increasinGsim (Fig. 5a, black) resulted in more precise spikamgl hence high
spike correlations (Fig. 5e). Using cultures wheoéh E andl neurons were photo-activated
simultaneously to eliminate tiel delay reduced correlations in the cPSP and theréfahe

spikes (Supplementary Fig. 12).

Finally, we confirm that spiking correlation co-yawith the firing rate of the neurons due to
the threshold non-linearity in the neuronal tranéfiactions™. This relation between rate and
correlation has been difficult to examimevivo because potential correlations in the recurrent
synaptic inputCi, cannot be controlled. As predicted, increasingngus rate (4im, as in
Fig. 49), increased both the firing rate and sgleorrelations between neuron pairs (Fig. 6a).
Similar results were obtained withi, fixed at 5 Hz, which produced a sufficiently broad
range of firing rates for analyses (Fig. 6b). Tinrease in correlation was not accompanied
by an increase i€i,: the signal (Fig. 6¢) and noise (Fig. 6d) coriielad in the subthreshold
membrane potential (cPSP-cPSP, black) were flat.

Discussion

In summary, the data indicate that théVK scaling rule predicted by theory occurs in a
network of live neurons. This scaling ensured tatbalance and network dynamics were
homeostatically maintained in different size netwgor The biological mechanism underlying
the scaling is unknown but may be related to thevowk parameters as follows. To a first
approximation,] = s, - n;,, wheren, is the number of boutons from a single presynaptic

cell®®?® each of which evokes a unitary response with fitag®s,. The total number of



boutons onto a cell is therefokg = K - n, so thaf = s, - N, /K. In culturess, (taken to be
miniature EPSPs) is consthsuggesting that it ilsl, that should increase &% to satisfy the
1/VK scaling.

Indeed, several lines of evidence suggest thamntimeber of synaptic boutons per neuron
increases with the number of neurons in the cultdnereasing the density 8-fold decreased
synaptic strength 3-fold but increased the numbedemdritic spines 2-foff. Similarly,
increasing the network size 10-fold while maintagiconstant density weakened synaptic
strength 4-fold but increased the number of boutBsfsld®®. Altogether, these results
suggest that the decreased synaptic strength isederetworks is mediated by a sublinear
increase in the number of synaptic boutons. Thaedying physiological and molecular
mechanisms are unknown but may be related to tmeebstatic processes that regulate
activity in culturd* andin vivo®™. In these cases, a combination of synaptic sgadind
modification of intrinsic properties regulate theecall activity of the neuronal network in
response to a stress. In our experiments, actigitgl and variability, both of which are

constant across density, may be the set pointhlaga

Two concerns are that the culture preparation daedully replicate the conditions vivo
and that the cellular and synaptic characterisiiggend on the particular methodol&t/.
Under the conditions of our experiments, the isidrproperties of neurons and the projected
PSP amplitudes calculated with the scaling rulecaraparable to those measured in acute
slices. Importantly, the evoked activity of theltated neurons replicated several salient
features ofin vivo activity —irregular firing and stimulus-dependetgcrease in trial-to-trial

spiking variability®, lognormal distribution of firing raf& E-I trackind™*%-

found in
functionally diverse brain areas. Thus, culturesmtain essential elements common to

neuronal networks in general.

With unprecedented control of key experimental aldes, we confirmed the major
predictions of seminal theories and show that theld under conditions far from the
asymptotic limits whereK and N are large. Spike variability, the balanced regiraed
decorrelation bye-1 tracking occurred even in low-density networkst thare driven with
spatially-restricted, correlated external stimuliHence, highly-simplified models when
backed by a strong theoretical framework can be tselucidate basic operating principles

of networks.
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Figure 1: Synaptic scaling in networks of differentsizes.

(&) Representative excitatory (red) and inhibitoryué PSPs in low and high density
networks (arrows iml). (b) Connection probability vs intersomatic distancaétworks with
average densities of 72 (n = 194 connections teést@8 preparations, blue), 171 (n =329 in
45, green), 294 (n=270 in 32, orange), 548 (BZ ! 29, red) neurons/nfm All
connection types are pooled together. Data predeas mean = SEM. c)( Number of
connections K) vs density forE-to-E (red), I-to-E (blue) and total (black). Standard
deviations calculated by bootstrapping data.ininset: integral of the connection probability
profile over space. dj Amplitudes {) of unitary EPSPs (red, n =261) and IPSPs (blue,
n =99) vsK. Inset: data in log-log scales. Slope of lingas -0.59.
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Figure 2: Optogenetic activation with spatio-tempoal control.

(a) Culture visualized with IR-DIC and fluorescentanuscopy. If) Using a Digital Light
Projector (DLP), the network was driven by delingrilight pulses (green boxes &) to
neurons expressing ChR2 and a fluorescent tag. (fed¥he photostimulated ChR2 neurons
(top) are effectively the external inputs to théagek (bottom).
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Figure 3: Evoked activity in the network.

(@) Top: raster plots showing the spatiotemporallitggaed stimuli (36 ROIs). Middle:
rasters of evoked spikes (21 trials) in 3 simultarsty cell-attached recorded neurons.
Bottom: whole-cell recordings from cell 3. Singlgals (grey) superimposed on average
(black). @) Firing rate during spontaneous (black, averagesities 97, 314, 744
neurons/mrf) and evoked (red, average densities 188, 364, &%Bons/mrf) activity in
networks of different densities. Also shown is tiada combined across densities. Statistical
significance was assessed using Mann-Whitdetgst (the number of recorded neurons is
shown below the statistical significance bars amdnlmer of cultures in brackets). No
statistical difference was found between densiiiesa given condition. d) Fano factor of
spike counts vs density during spontaneous (blakerage densities 89, 289, 769
neurons/mrf) and evoked (red; average densities 186, 364, r&elons/mrf) activity
(number of trials was 10-30). Box plots indicatedian and interquartile range, whiskers

cover the full range of the distribution and ousiare plotted individually.
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Figure 4: Excitation-inhibition balance in activated networks.

(a) Trial averaged isolated EPSPs (red) and IPSRe)jhnd composite PSPs (black) evoked
with 12 & 50 ROIs in 2 simultaneously recorded €elp) Plot of mean IPSP vs mean EPSP.
Data points (n =194 cells in 56 preparations) awerage magnitudes during optical
stimulation (input ratea/sim = 5 Hz, stimulus correlatio@gim = 0) relative to baseline. IPSP
magnitude increased linearly with IPSP magnitudea(Bon correlation: r = 0.49,= 3x10

™ (c) Average membrane potential deviation from basetinring stimulation for EPSPs
(red), IPSPs (blue), and composite PSPs (blackeiworks of different densities (116, 273,
544 neurons/mA). Only statistically significant tests using MaWhitney U-test are
indicated. Neurons numbers are indicated beloweridg and numbers of preparations in
brackets. Box plots indicate median and interglearange, whiskers cover the full range of
the distribution and outliers are plotted individlya (d) Same as it but for the standard
deviation of the membrane potentiale) Firing rate vs ROl number (n =16 neurons in 5
preparations). fJ Average magnitude and standard deviation (ingegPSPs (red), IPSPs
(blue), and composite PSPs (black) vs ROl numberZ6 neurons in 10 preparationsy) (
Evoked firing rate vs stimulus rate of light pulsdslivered to each ROI in low (n =20
neurons in 8 preparations, magenta), medium (n ge2ons in 6 preparations, green), and
high (n =18 in 6 preparations, orange) densitywodts. ) Average magnitudes and
standard deviation (inset) of EPSPs (red), IPSRse)pband composite PSPs (black) vs

stimulus rate (n = 45 neurons in 12 preparatiolsgta presented as mean £ SEM.
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Figure 5: Correlations in activated networks.

(@) Trial averaged membrane potentials for two siandobusly recorded cells when the
correlations between ROIE4) were 0 (top), 0.5 (middle), and 1 (bottom)) Excitatory
(red), inhibitory (blue), composite PSP (grey), aspike (orange) zero-lag correlation
coefficient vs density. Stimulus ratgn, =5 Hz and correlatiolCgim = 0. For membrane
potential average densities were 116, 273, 544ons{mn? and for spikes average densities
were 199, 374, 653 neurons/mnStatistical significance was assessed using Mahitney
U-test. Numbers of neuronal pairs are indicatedwelvhisker plots (box: median and
interquartile range, whiskers: full range of thetdbution, outliers are plotted individually)
and numbers of preparations in brackets. dj Correlations between isolated EPSPs (red),
isolated IPSPs (blue) and composite PSPs (blagkigmal (1) and noise €) correlations
(n=45 pairs in 12 preparations). €) (Spike correlation vsCgqm (N =28 pairs in 8
preparations). Inset: corresponding evoked firaig.
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Figure 6: Relationship between rate and correlation

(a) Plot of spike correlation vs geometric mean @ffinng rates evoked by different stimulus
rate vgim (N = 37 pairs in 9 preparations). Numbers indiaat,. (b) Spike correlation vs
geometric mean of the firing rates (constagt, = 5Hz; data were pooled according to their
mean firing rates; each data point represents -&is,pin total 106 neuronal pairs in 44
preparations). ¢ d) Signal €) and noise d) correlation vsvgim for EPSPs (red), IPSPs
(blue), and cPSPs (black) (n =48 neuronal pair8 preparationsCqim = 0; 30-60 ROIs).
Data presented as mean + SEM.



Methods

Primary neuron cultures and expression of channelrbdopsin

Dissociated cortical neurons from postnatal (PO-Rige were prepared as described
previously® and in accordance with guidelines of the New YOrkversity Animal Welfare
Committee. Briefly, the mouse cortex was disseatambld CMF-HBSS (C& and Md* free
Hank’s balanced salt solution containing 1 mM pwteyl5 mM HEPES, 10 mM NaHGP
The tissue was dissociated in papain (15 U/mL, Bpcbntaining 1 mM L-cystein, 5 mM 2-
amino-5-phosphonopentanoic acid and 100 U/ml DN&8¢25; Sigma) for 25 min. After
enzymatic inactivation in CMF-HBSS containing 106/mL BSA (A9418; Sigma) and
40 mg/mL trypsin inhibitor (T9253; Sigma), piecegr@ mechanically dissociated with a
pipette.  Cells concentration was measured befdeting using a haemocytometer.
Approximately 0.2-3x19cells were plated on each coverslip, resulting idensity of ~50-
1,000 cells/mrh at the time of experiment. Neurons were seede German glass
coverslips (25 mm, #1 thickness, Electron Microsc&gience). Glass was cleaned in 3 N
HCI for 48 h and immersed in sterile aqueous safutf 0.1 mg/mL poly-L-lysine (MW:
70,000 — 150,000; Sigma) in 0.1 M borate buffer i h. Neurons were grown in
Neurobasal medium (supplemented with B27, Glutaarak penicillin/streptomycin cocktail;
Invitrogen) in a humidified incubator at 37 °C, $2@,. One third of the culture medium was

exchanged every 3 days.

Expression of channelrhodopsin (ChR2) in excitatogurons was achieved by crossing
homozygoteVglut2-Cre mice (016963, Jackson Laboratory) wifinR2-loxP mice (Ai32,

012569, Jackson Laboratory). Alternatively, ChR&ression was achieved by viral
infection with AAV2-hSyn-hChR2(H134R)-mCherry of rtical neurons harvested from
Swiss Webster wild type mice (Jackson Laboratory)flhe virus was produced at
3x10% cfu/mL by the University of North Carolina Vect@ore Services using plasmid
provided by Karl Deisseroth (Stanford Universitydt 3 daysin vitro (DIV), the culture was

infected with 1 uL of virus. Experiments were penmied at 14-21 DIV, when neuronal
characteristics and network connectivity were gtalnid expression of ChR2 was sufficient to

enable reliable photostimulation.

Electrophysiological recordings



Recordings were performed at room temperature fificaal cerebrospinal fluid (aCSF)
bubbled with 95% @ and 5% CQ. The aCSF solution contained (in mM): 125 NaCl, 25
NaHCGQ;, 25 D-glucose, 2.5 KCI, 2 Cag£ll.25 NaHPO, and 1 MgCJ. An alternative aCSF
solution, in which 10 mM HEPES replaces the eqernttoncentration of NaHGOwas also
used to avoid perfusion during the experiment. ctEbeles, pulled from borosilicate pipettes
(1.5 OD) on a Flaming/Brown micropipette puller {8u Instruments), had resistances in the
range of 6-10 M2 when filled with internal solution containing (mM): 130 K-gluconate, 10
HEPES, 10 phosphocreatine, 5 KCIl, 1 MgC4 ATP-Mg and 0.3mM GTP. In some
experiments, 5 mM of QX-314 was added to blockatigon potentials internally.

Cells were visualized through a x10 water-immersadafective using infrared differential
interference contrast (IR-DIC) and fluorescencerascopy (BX51, Olympus). Simultaneous
whole-cell current-clamp recordings were made fngmto four neurons using BVC-700A
amplifiers (Dagan). The signal was filtered attfzkand digitized at 25 kHz using an 18-bits
interface card (PCI-6289, National Instrument)gr@ai generation and acquisition were here
and in the following controlled by a custom useteiface programmed with LabVIEW

(National Instrument).
Analysis of intrinsic and network properties of cotical cultures

For every experiment, IR-DIC images around theaegif recording were saved for off-line
examination using a custom user interface prograinmath LabVIEW (National
Instrument). Neuronal cultures can have localatams in their densities. Thus, cell density
was determined locally by counting somata on a 4Imnf area around the recording site.
In Figs. 3b-c, 4c-d, 49 (and Supplementary Fig, @ayl 5b, data were pooled according to
densities. Low, medium and high densities corredpd to networks of neuronal densities

(in neurons/mr): density < 200, 200 < density < 450, and 450 rsitg, respectively.

Intrinsic properties (Supplementary Table 1 andpBmpentary Fig. 1) were characterized by
applying 15 current steps (-0.1 to 0.5 nA). Thetkreshold membrane (input resistance,
membrane time constant) and suprathreshold firisgiké threshold, spike width,

afterhyperpolarization, rheobase, maximum firingeyawere measured using standard

protocols programmed in Matlab (Mathworks).

To characterize post-synaptic potentials (PSPsyegaecordings were made from two
neurons. Brief (20 ms; 0.1-0.4 nA) suprathrestmldent pulses were delivered to one cell



and the PSP (if connected) was measured in the odle The PSP parameters ¢r I,
magnitude, time-to-peak) were documented (Suppléangable 2). By performing many
paired recordings and documenting the distance dmtwcell somata, the connection
probability . = number of connections / total tested) spatialiiler (Supplementary Fig. 2)
could be determined. The data points were grouped250 pm bins and the spatial profile
fitted with a Gaussian function:

P.(x) = po - exp(—x*/20?)
[1]

wherepg is peak probabilityo represents the spread of connectivity, and the distance

from the centre.

In Fig. 1b, data were first pooled according to signto compute the connection profile for
each density. Then, the number of connectiknglotted in Fig. 1c was calculated by

integration. The number of neurons contained énahnulus betweenandx + dx is:

N(x) = density - 2mx - dx
[2]

The number of connections is then computed by sungriie number of connected neurons

in this annulus over space:

+00
K= j N(x) - P.(x) = density - 622mp,
0
[3]

Note that we used infinite boundaries that mighdesp unrealistic because axons have finite
lengths. However the Gaussian shape of the caoneptofile assures that the integral
rapidly converges such that the contribution ofglatistance connections is minimal (for

example, limiting the integration to= 1,500 um reduced by only 5 %).

We used a bootstrap procedure to estimate theastamiviation of calculateld. For each
density, we randomly subsampled 50 % of the dat#dfthe resulting profile as above
(Eq. 1), and computed the expected number of cdimmsc(Eq. 3). This procedure was
repeated 200 times to obtain an estimate for thanmend the standard deviation of the
distribution (Fig. 1c).

Optical stimulation setup



A Digital Light Processing projector (DLP LightCtaf, Texas Instrument) was used to
stimulate optically neurons expressing ChR2. Thieptor had a resolution of 608x684
pixels. The image of the projector was demagniéied collimated using a pair of achromatic
doublet lenses (35 mm and 200 mm; Thorlabs; FigofZhain text). A dual port intermediate
unit (U-DP, Olympus), containing a 510 nm dichraarror (T510LPXRXT, Chroma), was

placed between the fluorescent port and the priojedens. The resulting pixel size at the
sample plane was a rectangle of dimensions 2.2 [irh gm. The blue LED of the projector,

with 460 nm centre wavelength, was used to stimula ChR2-expressing neurons.

The CCD camera (C8484, Hamamatsu) was used toraaithe light intensity as follows.
The short-pass dichroic mirror was replaced witlhadf reflecting mirror and a 100%
reflecting mirror was placed at the sample plarféhis allowed measurement of the light
intensity at the point of stimulation and at othegions to estimate the contrast ratio. This is
an important measure because it provides an estimlthe light intensity that a non-
stimulated neuron receives during stimulation ef@hR2 expressing neurons. There are two
common methods of measuring contrast. The fulfudiroff method measures the averaged
brightness of a white and a black test patternexulesses the two measurements as a ratio of
white to black. The measured ratio was 815:1, eclws the 685:1 ratio specified by the
manufacturer. The ANSI contrast measurement usbeekerboard pattern composed of 16
rectangles, eight white and eight black. The @sttratio is then defined as the quotient of
the averaged white pixels to the averaged blaclelpix The ANSI contrast was 21:1
(compared to the 43:1 value provided by the manufag, which gives a lower bound for
the contrast ratio. To get an insight of the m@itrast ratio during experiment, namely to
measure background illumination of our system, veasared the contrast ratio when a single
region of interest was illuminated or when 20 are@&se simultaneously illuminated. We
found the respective values of 700:1 and 170:lringexperiments, we used a light intensity
of 10 mW/mnf, which was calibrated with the camera and confitméth a light power
meter. Thus, we estimated the background liglenisity to lie between 10 and 50 pW/fmm
during photostimulation, which would give rise togbocurrent of about 8-32 pA. This value,
while insufficient to elicit spikes, could nevertbgs generate postsynaptic potentials on the
order of 0.1 to 1 mV. We therefore recorded nesirthrat either did not express ChR2 or
whose dendritic processes did not overlap with dti@ulated cells to avoid any spurious
correlation with the stimulus. However, note thhe largest estimate of background

stimulation is only relevant when neurons are symebusly activated.



Images were streamed continuously at a rate of0lk#4from the computer to the projector
via a graphic card (01G-P3-1526-KR; EVGA) using HieMI port. We also measured the
light intensity at the output of the projector ugpia photodiode (TSL13T; Texas Advanced
Optoelectronics Solutions Inc.). We used this aigrs an accurate trigger for synchronizing

photostimulation and electrophysiological recordindfline.
Stimulation and recordings protocols

The cultured network was optically stimulated akofes. After identifying the fluorescent
ChR2-expressing neurons, a subset of these neweres designated for photo-stimulation
with regions of interest or ROIs that surroundedirtisomata (Fig. 2a). Typically, 15-60
ROIls were used so that about 10 % of neurons ifiglcewere stimulated. A (3-5 seconds)

train of brief light pulses (5 ms) was deliveredhe neurons in each ROI.

Although the sequence of light pulses could be g#ad using a Poisson process, we opted to
use noise-driven leaky-integrate-and-fire (LIF) megumodels instead. With the appropriate
parameters, the use of LIF minimized the occurrerméeclosely-spaced spikes, which would
cause failure in activation of ChR2 (see Suppleamyntig. 5). The LIF model had a
membrane time constanj, = 60 ms and input resistanBg, = 300 MQ2. The input current to
each unit was a sum of a time varyihdt) and a constant,; component so thdf (t)

obeys:

Tka(t) = _Vk(t) + Rm(lcst + Ik(t))
[4]

A spike was generated whéf exceeded the voltage threshdid=-50 mV and was then

reset toV,....: = -65 mV. The initial condition wak,(t,) = -60 mV. Given the parameters
mentioned here and the statistics of the noisyeotirinput/, (t) (see below), the generated
spike trains had an average firing ratgn~ 4.8 Hz and a Fano factor of ~1. The large

membrane time constant and the refractory petjod= 10 ms eliminated high frequency

bursts. The stimulus ratg;m was modulated by varying the constant input curkgp

The input current obeys the following equation (Sepplementary Fig. 4):

Iy (t) =/ Cstim * Icom(t) + 1= Cstim * Iind,k (t)
[5]



wherel,,,(t) is a noisy input common to all stimulated neurdpg, (t) is an independent
noisy input to each neurdq andCygin, is a constant. Becau$g,,(t) andl;,, . (t) have the
same variance and are independent random variatiles,cross-correlation coefficient

between two input currentg(t) andl;(t) converges t&«inm for long time series:

R ORAG)
VG072,

stim

[6]

where (-), denotes average over time. The spatial croselation Cgm (called here
“stimulus correlation”) was varied between 0 an¢irlsteps of 0.25). The resulting spike
correlation measured as the Pearson correlatitimediiring rates also varies between 0 and 1
(see Supplementary Fig. 4b). However, becausertbasure depends on the count window,

we used the current correlati@gi, to refer to stimulus correlation in the main text.

I.om(t) andl;,q . (t) were realizations of a Gaussian (Ornstein-Uhlekjoroise process and

were generated using:

I(tny1) = 1(tn) €™/ + 01— e728/7 - £(ty)
[7]

wherel(t,) = 0 is the initial conditiong = 24 pA is the standard deviation= 50 ms is the
correlation time and(t,,) is a random variable drawn from the standard nbdistribution

of zero mean and unity variance.

During data collection, the stimuli (with specifiedi, andCgim) Were delivered 5-6 times if
subthreshold potentials were recorded in wholesgwlde and 10-30 times if spikes were

recorded in cell-attached mode. At least 5 s sgpdreach stimulation.
Data Analyses

As observed in othein vitro studies in culturdd or in slice&®, spontaneous network-wide
bursts occurred. Spontaneous, correlated burste laéso been observeih vivo ?>?
indicating that they are not artefacts of theiitro preparation. Under the conditions of the
experiments, these bursts were infrequent (~1-3t®iminute) and were readily identified
based on their long duratiok (L sec) high frequency spikes or depolarizatiod, lanthe fact

that they were observed simultaneously in all #e&rding electrodes. These events were



excluded from the analysis as they representedferatit activity regim& of debated origin
(e.g. ref*>9. The theoretical implications of these bursts la@yond the scope of the paper

and are currently under active investigation.

Analysis of spike data

The spike rate was defined as the number of splkeded by the stimulation period. To
estimate spike correlation, spikes were first bthag¢dt = 1 ms. The firing rate;*(t) of
neuroni for the nh realization © € {1.. Nyiq1s}) Was computed by convolving the spike
count with a Gaussian kernel of widttt =50 ms. The average firing rafgt) over the
various trials of the same stimulation protocol wdadined as7;(t) = (r{*(t)),, where(-),,

denotes average over trials.

The spike correlation coefficient between neuramd neuron was estimated as the Pearson
coefficient betwee; (t) and#;(t) during the stimulation period. The spike countd-&actor
was calculated as the variance of spike count %#9@ms time window (or other lengths;
Supplementary Fig. 8) divided by the mean. Thiangily was computed across trials before
being averaged over time. Very low firing neurdrste < 0.1 Hz) were excluded of this

analysis.

Analysis of membrane potential data

The membrane potenti® of neuroni for the rih realization f € {1.. Ny.i415}) IS denoted as:
V*(t). We define signal as the average respdiée over the various trials of the same

stimulation protocol:

V() = (V"))
[8]

The average depolarization (or hyperpolarizatioay wefined as the difference between the
mean membrane potential during external stimulatiod its value at rest (Figs. 4c, 4f, 4h,
Supplementary Figs. 9, 11, and 12). The standaxdation during evoked activity was
measured as the standard deviation of the membpatential computed during the
stimulation period (Figs. 4d, 41, 4h, Supplementaigs. 9, 11, and 12). This value was then

averaged across trials.



We calculated the zero-lag correlation coefficibatween membrane potentials of neurons
recorded simultaneously (Figs. 5b-d, 6¢-d, Suppidarg Fig. 12). We defined the signal
correlation as the correlation between the membpatentialsl;(t) of neuron 1 and neuron 2
averaged over trials as:

signal __ ((Vl(t) - I71) ) (VZ (t) - r72)>t

17
V1,V2 (5= e
O'V10'V2

[9]
Whereﬁ = (V;(t)), is the average over time.

Additionally, we defined here the noise responseeafroni as the deviation of a given trial

from the mean response:

Vr?oise,i(t) = Vin(t) - (Vin(t)>n
[10]

Similarly, the noise correlation between neurom@sd neuron 2 is defined by the following:

moise _ (<( r?oise,l(t) - Vr?oise,l) ) ( r?oise,l(t) - Vr?oise,z))t

ViV ™
Oyn Oyn
\/ Vnoise,l Vnoise,z

n
[11]
Noise correlation was thus computed for each aémal then averaged across trials.

Statistical analysis

Data collection and analysis were not performeddoto the conditions of the experiments.
No randomization method was used to collect datirandata point or animal were excluded.
All the data were shown as mean + SEM., unlesgdtatherwise. Two group comparisons
were performed using either paired or unpaired swiled Mann-Whitney-test. Firing rates

which had a long tail distribution were first logahsformed before being compared. A
generalized linear regression model with Bonferrcmirection was performed when more
than two groups were compared. The variances leetgeups were assumed to be different.

No statistical methods were used to pre-determangpte sizes.

Data availability




The data that support the findings of this study available from the corresponding author

upon request.

Code availability

Data acquisition (Labview) and analysis (LabviewMatlab) software used in this paper are

described in the Methods and will be available upszjuest.
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