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Additive Manufacturing (AM) is widely used to manufacture complex and personalized medical components. However, the generation and manually 

removing of support structures in the pre- and post-processing stages are still time-consuming and costly. To improve the automation of preparation 

while reducing support structure volume, post-processing time and cost, this paper proposes a bio-inspired generative design method, integrating 

parametric L systems, evolutionary optimization and an AM processing simulation model, to generate light-weight, easy-to-remove and heat-diffusion-

friendly biomimetic support structures. Dental components are modelled and manufactured for validating the proposed method. The results obtained 

are compared with that of existing commercial software tools. 

Design optimization, Additive manufacturing, Support structure 

1. Introduction 

Additive Manufacturing (AM) has become a competitive 

processing method in the manufacture of highly customized high-

value components with complex geometries for its non-linear 

relationship between cost and complexity [1]. However, ‘as-

printed’ is not the same as ‘as-designed’ since there are 

preparation tasks, e.g. building orientation determination and 

support structure design, along the digital chain to influence the 

feasibility, suitability and stability of AM [2, 3]. For the powder 

bed based metallic AM processes, such as Selective Laser Melting 

(SLM), the design of the support structure is critical since there is 

not only a need to sustain the overhanging areas and concave 

features in printing, but also a requirement of heat diffusion 

mediums to resist thermal distortion [4, 5]. In medical 

applications, components usually have thin-wall features with 

freeform shapes. Designing support structures for these 

components is challenging and removing these structures is often 

done manually because the components, e.g. dental parts, are 

fragile and it is hard to make specific fixtures for machining in the 

post-processing stage. In addition, the material use rate is very 

low, only about 30% as up to 50% of powders are wasted on 

support structures. Furthermore, the manual post-processing is 

more costly. Therefore, how to design an optimized support 

structure with reduced material use, easy-to-remove for post-

processing and friendly heat-diffusion properties to reduce the 

cost and improve printing quality becomes the core research 

question. However, existing solutions for support structure 

design have limitations for complex components in metallic AM. 

Hence, this paper proposes a new bio-inspired generative design 

method to grow optimal natural tree shape structures to offer 

supporting and heat-diffusion function in printing. 

2. Related work 

To generate support structures for a component with a fixed 

build orientation, there are two main steps: 1. Identify the 

support areas or points and 2. Generate a structure topology to 

connect the support points with the build base. Facet normal 

vectors or slice contours and AM manufacturing constraints, e.g. 

maximum lateral bridge length, maximum inclination angle, are 

used to identify support areas. To define the topology of support 

structures, direct projection-based methods, cellular structure 

filling and volumetric topology optimization methods are widely 

practiced. In projection generation methods, overhang areas are 

projected onto the building base and then linear thin walls with 

predefined cross-section profiles are generated along the 

projection rays. Many commercial AM preparation tools adopt 

this method because of easy manipulation. However, there is no 

optimization nor consideration of AM constraints. The 

printability of the support structure itself is not checked. For the 

cellular filling methods, predefined cellular lattice cells are used 

to replace solid walls in the projection-based method to form 

porous supports to reduce the volume of materials [6-8]. In 

addition, Dijkstra’s Algorithm [9] is applied to search for the 

shortest connection path for filling cellular units. Similar 

approaches are reported in [10, 11], where different search 

algorithms are used. The main problem of these methods is that 

there is no validation for the generated sparse lattice or tree 

shape structures. In [11], the floating tree branches in the 

demonstration example show the problem of non-self-support of 

the modified lattice grid. To avoid the limits of lattice filling, three 

new types of filling cell shapes, ‘Y’ ‘IY’ and ‘Pin’ shapes were 

investigated in [12]. The aim is to predefine printable unit shapes 

for filling to ensure the support quality.  However, the feasibility 

was only verified by a simple overhang plane example. Further 

validation is required for the case of complex components. To 

explore the potentials of tree shape, in [13, 14], supporting cone 

and modified local tree nodes generation rules were proposed to 

generate tree shape support structures. Searching algorithms are 

used to find for the minimum accumulative path length, and then 

variable strut diameters are assigned to different branch layers to 

guarantee sufficient support strength. However, these methods 

were only tested by a plastic AM process without considering 
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other metallic AM processing constraints. To further simplify the 

support generation, a bridge support structure design method 

was proposed in [15]. Manufacturability, e.g. lateral maximum 

bridge length is considered in the support design. But this method 

is still only used for the plastic AM process and the variation of 

strut diameters for different bridge layers has not been 

considered. To summarize, current methods have the following 

problems:  

a. Limited to non-metallic AM processes where the main 

constraints are geometry related. For metallic AM 

processes, very little research has been done.  

b. Not enough attention is paid to the manufacturability and 

stability of the support structure itself. In metallic AM, the 

support structure strength, heat diffusion performance and 

the deformation of the support structure caused by 

thermal stress should be considered. 

c. How to select the most suitable support points on the 

overhang areas is neither explained nor studied. 

d. Method validation is only based on relatively simple cases 

and very little numerical simulation is available. Complex 

demonstration examples at industrial level are missing. 

To solve these problems and meet the requirements of dental 

fabrication, this paper attempts to give a practical solution. The 

next section presents the proposed method. 

3. Bio-inspired generative design method 

In the preparation stage of AM, the determination of build 

orientation couples with the support structure design since it 

directly defines the solution space of the support structure design 

problem. For complex components, the coupled relationship 

makes the problem more complicated. To limit the scope of 

research, the proposed method starts from a Stereolithographic 

(STL) model with a predefined build orientation. Regarding the 

build orientation optimization for complex medical components, 

readers can find further details about an AI based solution in [16]. 

Figure 1 below describes the method workflow. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Workflow of the bio-inspired design & optimization method. 

 

3.1. Step 1: Identify support areas 

After importing an STL model with a predefined build 

orientation, overhang areas can be identified by using the angles 

between the facets of the normal vectors and the build direction, 

or calculated by using information from slicing contours. In this 

paper, information regarding normal vectors of facets is applied 

and the maximum inclination angle of printing is set at 45°. 

 

3.2. Step 2: Optimize support points 

As reviewed above, there is no investigation about how to 

identify the most suitable support points on the overhang areas. 

Actually, it is a key factor influencing the support structure design 

space and printing quality. Here, a re-projection optimization 

strategy is developed. At first, all the overhang areas are 

projected onto the build base, XOY plane. Then, the projected 2D 

area is decomposed into a set of squares/bounding boxes, whose 

sizes are calculated by the use of projection height, the density 

and distribution of the facet vertices, etc.  Within each square, a 

set of finite evenly distributed 2D points are generated. After that, 

an optimization algorithm is applied to translate and rotate the 

2D point grid to minimize the total number of grid points within 

the 2D projection area. Finally, these points within the area are 

re-projected onto the 3D overhang surfaces to form support 

points. It should be noted that the maximum distance between 2 

points in the grid should respect the maximum bridge printing 

length of AM capability in order to avoid any surface collapse in 

printing. In this example, the value is 1mm (it is possible to set 

different values in practice to meet the shape accuracy 

requirement and respect the AM process capability). Figure 2 

shows the optimization procedure via a mandible implant part. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. Workflow of the support point optimization: (a). oriented 

component; (b). identified overhang areas; (c). 2D projection of 

overhangs; (d). 2D point grid rotation searching; (e). minimum grid points 

within the 2D projection; (f). optimal support points (re-projected grid 

points onto the overhang areas). 

 

3.3. Step 3: Genetic algorithm for populating alternative solutions 

The core of generative design is to apply an evolutionary 

algorithm to populate alternative solutions in the design space. 

To build a single solution, the mathematical theory of L systems 

[17], which simulate the growing of plants, is adopted as the 

growing rule for tree structure development.  

 

 

 

 

 

 

 

 

 
Figure 3. (a). support points; (b). projection of support points; (c). 

decomposition of projection areas; (d). randomly generated tree roots; 

(e). randomly selected tree types for growing; (f). pruned trees. 

 

Figure 3 shows the main steps of a tree structure generation: 1. 

Determine the underneath space of the support area; 2. 

Randomly select tree type shapes in a data base and plant tree 

roots randomly within the decomposed 2D projection areas with 

random rotation angles around the build orientation, and then 

grow the trees with L-system rules to intersect with the 3D 

overhang areas; 3. Connect support points with tree branch nodes 

and find the shortest path of each; 4. Finally, select the shortest 

connections and remove the invalid L-system edges (not in the 

connection path) to obtain pruned trees. The branch shape and 

size are controlled by section profile and size level ratio. Different 

layers of branches can have different diameters or even diverse 

section profiles. These values are calculated according to the 

requirements of support strength and thermal distortion control. 

To generate valid trees to satisfy the printability and ensure self-

support, a set of predefined qualified basic tree shapes, validated 

(by both numerical and physical experiments) for self-support 

and shape accuracy, are stored in a database as inputs of the tree 

population algorithm. This is to ensure that each of the populated 



alternative solutions is valid. Figure 4 shows the L-system theory 

and some predefined tree types. By adding extra operating 

parameters, translation and rotation, to 2D L-systems, 3D tree 

structures can be generated. To populate alternative tree 

structures, a genetic algorithm (GA) is developed to operate these 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. (a). L-system for growing simulation of natural trees; (b). 

predefined valid basic tree shapes; (c). L-system parameters. 
 

3.4. Step 4: GA-based multi-objective optimization 

Theoretically, the solution space of this design problem is 

infinite since the space under the overhang areas is continuous 

and infinite topology shapes can be defined as support structures. 

Hence, to search for the optimal solution with multi-objective 

consideration, an evolutionary algorithm is a practical tool.  This 

method adopts NSGA-II for searching. Two objective functions are 

defined to minimize the support volume and support collisions, 

and five variables, among which the initial position and initial 

orientation represent the tree root position and the tree rotation 

angle around the build direction on the XOY plane respectively, 

are set for populating the alternatives. Figure 5 presents the GA 

parameters and its encoding. The final output of this step is a 

Pareto front with a set of finite non-dominated solutions for 

further decision making. 

 

 

 

 

 

 
Figure 5. Optimization problem description and GA encoding. 

 

3.5. Step 5: Processing simulation for validation and selection 

Even though the trees are generated by using validated basic 

tree types with self-support capability, it is still necessary to 

predict temperature evolution and deformation of support 

structures themselves since they are pruned and will directly 

influence shape accuracy, when catching floating volumes during 

printing, and the final distortion caused by residual stress. Hence, 

to further evaluate the Pareto solutions, a processing simulation 

model is applied to simulate the printing procedure of support 

structures by using a super-layer strategy. Heat transfer 

simulation is the focus for evaluation. In this simulation model, 

the non-exposed powder is considered for heat diffusion 

throughout the support branches. To distinguish the different 

material domains, two interfaces between support and non-

exposed powder and between powder bed and gas are tracked by 

the level-set method, in which the interface for the deposited 

layer (between powder bed and gas,  ψt) is updated by the 

deposited thickness ∆zl through ψ(t+∆t)=ψt-∆zl. The linear diffusion 

equation is used to improve computation efficiency for heat 

transfer analysis. Finally, the best heat transfer support structure 

in the Pareto solution with the minimum deformation, especially 

with the minimum branch tip translations, is identified as the best 

solution. More detailed information of this numerical model is 

referred to [18]. 

3.6. Step 6: Post-Processing the optimal solution 

Once a final solution or a subset of Pareto solutions is selected, 

it is still necessary to do some post-processing. At first, there is a 

need to check the collision places (Figure 6a) when the minimum 

value of the second objective function is not zero. To avoid 

surface repair after printing, the branches intersecting with 

convex features of overhang areas can be further broken into sub-

branches or move slightly to avoid contact. Then, to enable easy 

removing, the tips of the branches are modified as cone shapes to 

connect with the support points (Figure 6b).  

 

 

 

 

 

 
Figure 6. Collision cases and cone tips. 

 

As shown in the workflow (Figure 1), two design iteration loops 

are set for searching and tuning to optimize the support 

structure. The six steps are designed specifically to reply to the 

open questions at the end of Section 2. 

4. Case study 

In this section, a real dental component (Figure 7a) of a patient 

is selected for method validation. The component is also tested by 

three other popular industrial support generation tools for 

comparison. 

 

 

 

 

 

 

 

 

 
Figure 7. (a). STL model of the dental component; (b). grid points 

within 2D projection area; (c). support points on the overhang areas; (d). 

an alternative tree support structure for the dental component. 

 

According to the method workflow, the first step is to calculate 

the overhangs and then optimize the support points for the 

component. Figure 7b and 7c show the results. Once the support 

points are obtained, L-system rules can be embedded into the GA 

algorithm for growing trees. GA operations on the five variables 

can populate a large number of alternative trees. In this case, the 

4 basic tree types in Figure 4b are used. After that, the two 

objective functions drive the GA to search for non-dominated 

solutions. The output of this step is a Pareto front (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Figure 8. 5 non-dominated solutions on the Pareto front. 

 

A processing simulation is then applied to further evaluate the 

Pareto solutions in order to locate the optimal one with minimum 

thermal distortion. A simulation example is presented in Figure 9, 

where, after the dwell time, the temperature values of the entire 

tree are close to room temperature (20°C), and a very small 

temperature gradient is found in the tree structure. This implies a 

very small distortion could happen to this tree.  
 

 

 

 

 

 

 

 

 

 

 
Figure 9. (a). tree structure growing simulation model; (b). 

temperature distribution in printing after dwell time (growing height of 

12.6mm); (c). temperature distribution at the end of printing after dwell 

time (growing height of 25.5mm). 
 

After the post-processing of the support structures, two of them 

are selected for physical experiment validation and comparison. A 

Ti-6Al-4V material and a Profeta SLM medical fabrication 

machine with existing working parameter setting are used for a 

comparison experiment. Figure 10 and Table 1 show the printing 

results with that of three other tools for comparison. Since 

support volume and the number of support/contact points 

directly determine the post-processing time and cost, Table 1 

only gives a quantitative comparison of support volume while 

others are done qualitatively. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Comparison of preparation and printing results. 

 

Table 1 Printing result and comparison of four methods 

Solution 1# 2# E-stage Profeta Meshmixer 

Vs(g) 2.06 1.99 3.29 6.93 2.16 

Ns Less  Less  Most Medium Most 

Ra Best Best  Worse  Worse  Worst 

Pt less less more more most 

Vs: support volume; Ns: number of support/contact points; Ra: surface 

roughness; Pt: post-processing time. Note: component volume is 3.34 g. 

 

In the comparison, observations are found such as: a. the tree 

structures can well support the complex overhang areas without 

any collapse; b. Shape accuracy is very good since the printed 

part can be directly inserted into the assembly model without any 

adaptation; c. Support points are greatly reduced as compared 

with others, which means the post-processing time spent on 

removing support and repairing the contact surface areas on the 

components can be greatly reduced; d. The support volume has 

been greatly reduced too. Even though the solution of Meshmixer 

can also reduce many support materials, it has a very bad surface 

roughness and an extra difficulty for repairing the contact areas 

due to too many support points. In addition, its shape accuracy is 

not acceptable since it is hard to assemble. Generally, the 

proposed approach performs the best out of the four methods. 

5. Conclusion 

The proposed method can save more than 40% of support 

material and reduce much post-processing time.  It has the 

potential to replace current support design tools for dental AM 

and can also be adopted for other industrial applications using 

SLM. In addition, the designed support structures are parametric 

and easy to control and adapt. However, the main challenge of the 

method is the computation cost of the numerical simulation. That 

is why it is only used to evaluate the limited Pareto solutions but 

not directly embedded into the GA iteration loop to evaluate large 

number of intermediate alternative solutions. Cost-effective AM 

processing simulation models and tools are still in urgent need. 
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