
HAL Id: hal-02942343
https://hal.science/hal-02942343v1

Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering for Traceability Managing in System
Specifications

Manel Mezghani, Juyeon Kang Choi, Eun-Bee Kang, Florence Sèdes

To cite this version:
Manel Mezghani, Juyeon Kang Choi, Eun-Bee Kang, Florence Sèdes. Clustering for Traceability
Managing in System Specifications. 27th IEEE International Requirements Engineering conference
(RE 2019), Sep 2019, Jeju Island, South Korea. pp.257-264, �10.1109/RE.2019.00035�. �hal-02942343�

https://hal.science/hal-02942343v1
https://hal.archives-ouvertes.fr

Official URL

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26307

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Mezghani, Manel and Kang Choi, Juyeon and Kang,

Eun-Bee and Sèdes, Florence Clustering for Traceability Managing in

System Specifications. (2019) In: 27th IEEE International Requirements

Engineering conference (RE 2019), 23 September 2019 - 27 September 2019

(Jeju Island, Korea, Republic Of).

Clustering for traceability managing in system

specifications

Manel Mezghani

Semios for requirements

OneLight Studio

Toulouse, France

mezghani.manel@gmail.com

Juyeon Kang

Fortia Financial Solutions

Paris, France

juyeon.kang@fortia.fr

Eun-Bee Kang

Semios for requirements

OneLight Studio

Toulouse, France

e.kang@semiosapp.com

Florence Sèdes

IRIT, University of Toulouse

CNRS, INPT, UPS, UT1, UT2J,

France

florence.sedes@irit.fr

Abstract—System specifications are generally organized ac-
cording to several documents hierarchies levels linked in order to
represent the traceability information. Requirements engineering
experts verify manually the links between each specification
which allows to generate a traceability matrix. The purpose of
this paper is to automatize the generation of the traceability
matrix since it is a time consuming and costly task. We propose
an artificial intelligence based approach to deal with this problem
through a clustering approach. This latter is an unsupervised
algorithm that doesn’t need any prior knowledge on the language
neither the domain of the specifications. Our approach generates
duplicates and clusters containing linked requirements. We ex-
periment our approach in an aeronautic domain and a space
domain. We obtain better results for high level specifications
especially with a pre-processing.

Index Terms—Requirements engineering, traceability, cluster-
ing, System specifications documents, documents hierarchies

I. INTRODUCTION

System specifications are generally organized according to

several documents hierarchies. These hierarchies levels are

linked and represent the traceability information. This latter

is used for example in order to verify the coverage analysis,

to the reuse of product components and for project status

analysis.

In requirement engineering (RE) context, industrial require-

ments should be high quality documents. This means that they

should respect some properties that guarantee an obtaining of

the wanted final product. Several quality properties are defined

in the literature ([1] [2]). We are interested in ”linked Set”

defined in [1] as an ”explicit relationships should be defined

among individual requirements to show how the requirements

are related to form a complete system”.

Several definitions are proposed for traceability in require-

ment engineering context. Traceability is defined according to

[1] as: ”The degree to which can be established between two

or more products of the development process, especially prod-

ucts having a predecessor-successor or master-subordinate

relationship to one another; e.g., the degree to which the

requirements and design of a given system element match.

(IEEE Std 610.12-1990)”. According to [3], ”requirements

traceability refers to the ability to describe and follow the life

of a requirement, in both a forwards and backwards direction”.

Traceability is done through different specifications levels.

High-level specifications aim to understand the objectives,

goals, aims, aspirations, expectations and needs in order to

transform them into low-level specifications (i.e. components,

materials, etc.). Figure 1 gives some examples of different

specifications levels used in RE context.

In RE context, the costs to fix errors increase much more

after that the product is built than it would if the requirements

defects were discovered during the requirements writing phase

of a project [4] [5] [6]. That’s why, when writing or revising

a set of requirements, or any technical document, it is partic-

ularly challenging to make sure that texts are correctly and

completely linked for any domain actor. Manually identifying

linked requirements is an obviously time-consuming and costly

task. Also, it needs RE experts to establish link according

to their domain-based knowledge. We tackle this problem

in term of similarity between requirements from different

specifications levels.

We focus in this paper on how to generate automatically

linked requirements through different levels in order to guar-

antee the coherence of the linked set of specifications. Our

approach allows then to save time which contribute to reduce

the project cost. The two main scenarios that we can use

this method for are: 1. Test the quality of the generated links

after the generation of the traceability matrix (TM). In fact,

in order to control the completeness of the TM, it is useful to

compare the generated TM by experts with the generated TM

by our approach. 2. Our client has a lot of documents from

an archived project and he wants to generate automatically the

TM in order to avoid manual processing of this task. So, our

approach is useful for this task since it is less time-consuming.

The problems of traceability managing can be handled

according to different technologies. We focus on artificial

intelligence (AI) approaches and more precisely classification

approaches. Automatic classification of requirements is widely

studied in the literature using: convolutional neural networks

[7], naives bayes classifier [8], text classification algorithms

[9]. Data classification approaches could be data clustering

through algorithm such as k-means. This latter is studied in

different contexts due to its efficiency [10].

This paper is a continuity of our previous paper [11],

dealing with requirements quality in terms of redundancy and

inconsistency. So, the main contribution of this paper is to

adapt the use of k-means algorithm for a traceability managing

Fig. 1. An example of different specifications levels

in RE context. In fact, instead of applying k-means to a single

document, we will apply it to a couple of linked documents.

This paper is structured as follows: in section II, we present

related works on the traceability managing through artificial

intelligence approaches by focusing on the k-means tech-

nique. In section III, we present our traceability management

approach and we explain the validation approach used to

evaluate the relevance of our results. In section IV, we present

the datasets used to evaluate our approach and the results

obtained by applying our clustering approach. We highlight

also the impact of the pre-processing treatment on the results.

In section V, we discuss the associated results. In section VI,

we conclude and give some future research directions.

II. RELATED WORKS

In this section, we first present related works associated to

traceability tools used in specifications documents or technical

documents. Second, we present how traceability information

could be visualized. Finally, we focus on AI based approach

such as k-means for clustering and how we could exploit this

algorithm for a traceability purpose.

A. Traceability tools

Manual traceability. Traceability is realized by capturing

traces either entirely manual or tool supported, e.g. as spread-

sheet in Microsoft Excel. Traceability remains a challenge

since it is cumbersome, error-prone, and often leads to trace-

ability information that is of poor quality due to the very high

number of artifacts to be traced and the quantity of involved

development tools [12].

Tool-supported traceability. The following approaches ex-

ist to develop homogenized and aggregated information that

is distributed across a whole chain of development tools:

• Homogenization of the tool environment through an

ALM tool (Application Lifecycle Management). ALM

tool chains cover the whole life-cycle of a system and

manage all artifacts of the development process in a

holistic approach. The advantage of this approach is that

the homogenization of artifacts allows managing and

analyzing them easily with dedicated tools of the ALM

tool. The disadvantage is that it is necessary to implement

the whole ALM tool chain. If introduced, it is difficult to

replace specific tools in the tool chain.

• Homogenization of data through surrogate requirements.

Requirements management (RM) tools allow storing,

organizing, and managing all requirements of a system’s

specifications and typically arrange them in a speci-

fication tree that links each requirement to its parent

requirement in the higher specification. Commercial RM

tools with traceability support are, e.g., IBM Rational

RequisitePro, IBM DOORS and Visure Requirements.

Typical analysis functions based on recorded traceability

information are e.g., completeness checks, and assess-

ment of requirements deviations over all levels. The

disadvantage of this approach is that different adapters

or converters for the different artefact types are necessary

that need to have a consistent version and data format. In

contrast to ALM tools, this consistency must be carried

out oneself.

B. Visualization of traceability information

Visualization of traceability information aims to help the

users to describe and to track the relationships between

different software artifacts. Several techniques of traceability

exist and are used in different contexts. Common visualizations

for traceability information are matrices, graphs, lists, and

hyperlinks. We explain briefly each technique:

• Matrix: A traceability matrix (TM), usually in the form

of a table, is used to assist in determining the complete-

ness of a relationship by correlating any two documents

using a many-to-many relationship comparison [13]. It

is often used with high-level requirements and detailed

requirements of the product to the matching parts of high-

level design, detailed design, test plan, and test cases.

According to [13], the advantage of traceability matrices

is that all links between artifacts are visible at a glance.

Filters help to reduce the amount of displayed informa-

tion. Traceability matrices are suitable for management

tasks. However, in industry, projects often consist of

thousands of artifacts: the tables could become very large

and confusing.

• Graph: In a traceability graph, artifacts are represented

as nodes connected by edges, if a trace link between

the artifacts exists. It allows getting an overview on the

links and then gives a high information comprehension

ratio. Navigating through the graph makes easy to identify

missing links [13].

• List: Represent traceability links in one entry. This entry

could include information concerning the source and

target artefact and attributes. They are especially suitable

when bulk operations for several different artifacts should

be executed. Filters and sorting mechanisms allow to

handle the displayed information. However, compared to

the visualizations described above lists are less suitable

to execute project management, development and testing

tasks [14].

• Hyperlinks: Hyperlinks connect linked artifacts and

allow jumping from a source artefact to a linked artefact.

This visualization is suitable if detailed information about

an artefact is needed as it allows navigation to artifacts

in their native environment. According to [14] using

hyperlinks solely has the disadvantage that a lot of

navigation effort is necessary to get an overview on the

link status as linked artifacts are not visualized compactly.

According to [14] ”traceability matrices and graphs are

most preferred in management tasks, while hyperlinks are

preferred in implementation and testing tasks. Traceability lists

seem to be the least attractive technique for most participants.

Graphs are preferred to navigate linked artifacts, while ma-

trices are appropriate for overview. Hyperlinks are regarded

to fit for fine-grained information.”. We focus in this paper

on analysing matrices, since they are useful for management

tasks.

C. Artificial intelligence for traceability

Artificial intelligence is a challenging approach to deal with

traceability problem. In fact, linked technical documents need

a certain domain expertise and knowledge to figure out which

requirement is linked to which other requirement. We focus

on link generation and we treat it as a similarity problem. In

fact, two linked specifications are somehow similar. In order to

group similar specifications, we can use a clustering approach.

The notion of a ”cluster” remain not clear, and that’s why there

are so many clustering algorithms. Each algorithm is based on

some characteristics that define the clusters model such as:

• Connectivity models: based on distance connectivity e.g.

hierarchical clustering.

• Centroid models: represents each cluster by a single mean

vector e.g. k-means algorithm.

• Distribution models: clusters are modeled using statistical

distributions, such as multivariate normal distributions

used by the expectation-maximization algorithm.

• Density models: for example, DBSCAN defines clusters

as connected dense regions in the data space.

• Subspace models: in bi-clustering (also known as co-

clustering or two-mode-clustering), clusters are modeled

with both cluster members and relevant attributes.

• Graph-based models: based on clique (a subset of nodes

in a graph) such that every two nodes in the subset are

connected by an edge can be considered as a prototypical

form of cluster.

• Neural models: the most well known unsupervised neural

network is the self-organizing map (SOP) and these

models can usually be characterized as similar to one

or more of the above models, and including subspace

models when neural networks implement a form of Prin-

cipal Component Analysis or Independent Component

Analysis.

For a traceability purpose, we use a centroid model which

is an unsupervised machine learning for clustering (k-means)

due to its popularity and the the rapidity especially for large

datasets. In fact, popularity is a good metric that reflect the

efficiency of this model. Rapidity is useful to treat large

specification document. The choice of k-means is also mo-

tivated by the fact that it is language independent since it is

statistical model. So, we can apply it on specification issued

from different languages.

K-means clustering aims to partition n observations (re-

quirements in our case) into k clusters in which each obser-

vation belongs to the cluster with the nearest mean, serving

as a prototype of the cluster. We presented in our previous

work [11] a detailed explanation of how k-means works from

a mathematical point of view.

III. TRACEABILITY APPROACH

As cited above, this approach is inspired from our previous

approach of clustering to detect redundancy and inconsistency

in industrial requirements [11]. We focus in this paper on

analyzing linked system specifications and how we can use

k-means algorithm in order to generate the appropriate links.

The main steps of our approach are shown in Figure 2. The

novelty of this approach compared to our previous work [11]

is that we analyse two related documents instead of one. Given

an industrial specification, we extract first the requirement

files from each specification1 containing only requirements to

analyze using a predefined function in SEMIOS for Require-

ments2 software. We merge each specification with its linked

upper-level specification and analyse them as one file. Second,

1Note that we analyse only textual specification (.txt, .doc, .docx)
2http://www.semiosapp.com/

we detect only duplicates requirements belonging to distinct

documents. Third, we apply a k-means clustering algorithm on

the non duplicated requirements. Last, we merge duplicated

requirements and clusters results in order to obtain our final

results. We detail and explain these steps in the sections below.

We explain also in this section, the validation approach in

order to evaluate the obtained results.

A. Requirements extraction : SEMIOS for Requirements

SEMIOS for Requirements is a proofreader tool for specifi-

cations from the conception phase. The core of the semantic

engine of this tool is based on NLP techniques and works

directly with RE domains tools like IBM DOORS, IBM

Doors Next Generation, MS Word, MS excel, etc. It aims

to control specifications quality and reduce management cost.

Requirements extraction is based on a predefined regular

expression (i.e. a pattern) and/or a predefined Microsoft Word

Style. This allows us to detect the beginning and the end of

each requirement. The traceability approach that we propose in

this work will allow us to add a new functionality to SEMIOS

for Requirements.

B. Duplicates detection

Duplicates are easily detectable through a simple com-

parison of two requirements. However, their impact is very

important. In fact, detecting and then discarding duplicates

from the requirements set in the next step (clustering) will

help us to detect only related information. Also, detecting

duplicates (belonging to different documents) is essential to

build the traceability matrix since two requirements could be

linked in the TM. So, instead of doing it manually (by the

RE engineers), this step is automatically done via a string

matching. This detection contribute to have part of the results

in the TM.

C. K-means algorithm

Since the k-means algorithm already detailed and explained

in our previous work [11], we present in this paper only how

we use it in a multi-document context.

K-means aims to group/cluster requirements according to

their similarity. K-means is an unsupervised machine learning

approach, which means that we don’t need any labeled data

to perform clustering. This is very useful in RE context,

since we can apply it to different domains without any prior

knowledge. Also, k-means is a statistical model and then

language independent. Our approach is a generic approach

which deals with any domain and any language.

In our work, k-means is used to group ”similar” require-

ments issued from different specifications. To do that, we

merge each two specifications from different levels together

and we apply k-means (according to some predefined criteria

already discussed in our previous work [11]). Once we have

the clustering results, we discard clusters with only one

requirement (since there is no link). Also we discard clusters

with requirements belonging to the same document (we are

interested to find the relation between specifications from

different requirements). As a final result, we will have only

clusters that reflect linked data from distinct documents.

In order to illustrate the results of the k-means algorithm,

we give an example of clustering results. Let’s assume that we

have a list of 8 requirements extracted from two specifications

as follows :

- From document 1:

1) When PACK shut off sequence is activated, the APU flow
demand shall be forced to 0%.

2) During ACU starting sequence, on APU, the APU Flow
demand shall be driven to 100%

3) The Flow Control Valve (FCV) shall be a pneumatically
actuated, electrically controlled, butterfly valve.

4) The maximum external leakage, valve open or closed, shall be
less than 2 g/s under 2.5 bar gauge upstream pressure at room
temperature, sea level.

- From document 2:

1) When the Flow Control Sequence is ”CLOSING” AND APU
activation is ”active”, the APU flow demand shall be forced
to 0%.

2) When the Flow Control Sequence is ”STARTING” AND APU
activation is ”active”, the APU flow demand shall be set to
100%

3) The FCV shall be a pneumatically actuated, electrically con-
trolled butterfly valve.

4) The external leakage of the TAPRV actuator, in open position,
shall not exceed 2 g/s with upstream butterfly pressure of 4.1
barg at 20C and sea level.

K-means algorithm will cluster this list into a set of k fixed

number of clusters. Let’s assume that k=4, the result of the

algorithm will be as follows:

• Cluster 1:

1) When PACK shut off sequence is activated, the APU flow
demand shall be forced to 0%.

2) When the Flow Control Sequence is ”CLOSING” AND
APU activation is ”active”, the APU flow demand shall
be forced to 0%.

• Cluster 2:

1) During ACU starting sequence, on APU, the APU Flow
demand shall be driven to 100%

2) When the Flow Control Sequence is ”STARTING” AND
APU activation is ”active”, the APU flow demand shall
be set to 100%

• Cluster 3:

1) The Flow Control Valve (FCV) shall be a pneumatically
actuated, electrically controlled, butterfly valve.

2) The FCV shall be a pneumatically actuated, electrically
controlled butterfly valve.

• Cluster 4:

1) The maximum external leakage, valve open or closed,
shall be less than 2 g/s under 2.5 bar gauge upstream
pressure at room temperature, sea level.

2) The external leakage of the TAPRV actuator, in open
position, shall not exceed 2 g/s with upstream butterfly
pressure of 4.1 barg at 20C and sea level.

The algorithm clusters the requirements according to their

similarities. So, each cluster contains the most similar re-

quirements. A cluster may contain one or more requirements

depending on the dataset. We have shown in this example only

the case of 2 requirements per cluster.

Fig. 2. Traceability approach overview

D. Validation approach

Since the proposed approach is based on an unsupervised

machine learning algorithm, we do not have any labeled data

to validate our results. So, we will use the traceability matrix

already given by RE engineers, as a ground truth in order

to validate our results. In fact, considering two specifications

from different levels, we can compare our clustering results

according to the information provided by this matrix. This

process is explained in figure 3.

We evaluate our approach according to the precision of

the clusters (how precise/accurate our model is out of those

predicted positive, how many of them are actual positive).

IV. EXPERIMENTATION RESULTS

In this section, we present in section IV-A the datasets used

in the experiment. In section IV-B, we present the result of

our approach. In section IV-C, we present the results obtained

with pre-processing step.

A. Datasets

In order to test our approach, we extracted a list of re-

quirements from 2 industrial datasets (written in English). For

confidentiality issues, we are not allowed to reveal the identity

of the companies. These datasets contain different levels of

specifications. We present characteristics of these datasets as

follows:

• Dataset1: Belongs to the space domain. It contains two

levels of specification. Level L0 is the highest level

(client specification) and contains 762 distinct require-

ments. Level L1 is the second level and contains 521

distinct requirement. In this dataset, we will analyse one

traceability matrix (between L0 and L1). In this latter,

each requirement is related to only one other requirement.

• Dataset2: Belongs to the aeronautic domain. It contains

five levels of specifications, 14 specifications documents

and 15 relations between specifications. We present

Figure 4 in order to understand the different existing

links. The specifications in each level that we will

analyse are mentioned with the associated number of

requirements as follows:

- Level 0: L0 (190), L10 (559),

- Level 1: L11 (203), L12 (561), L13 (538), L14 (288),

- Level 2: L20 (50), L21 (1586), L22 (163), L23 (51),

L24 (72),

- Level 3: L30 (40), L31 (34), L32 (43).

For each corpus, we have the upper (linking the high

level specification with a lower level specification) and the

lower (linking the low level specification with a higher level

specification) traceability matrix. This matrix may contain two

relations type: 1) one to one relation type (each requirement

is related to only one requirement) for example, Dataset1; 2)

one to many relation type (each requirement is related to one

or many requirements) for example, Dataset2.

B. Results of our approach

We have tested our approach on each dataset presented in

section IV-A. We remind that our purpose is to generate the

traceability matrix automatically. We calculate the number of

relevant clusters (they contain linked requirements grouped

into clusters) according to a given traceability matrix generated

by the RE expert. We present the results associated to the

precision (P.) in Table I. The results are obtained with value

of k equal to the total number of requirements - 20%. For

example, if we have 100 requirements, k is equal to 80.

We will generate 80 clusters and we will write only clusters

with a number of requirements more than 1 and also with

requirements belonging to distinct specifications.

In Table I, we calculate two precision values: 1. the pre-

cision of the written clusters that reflects the percentage of

relevant clusters found in the clustering results, 2. the precision

according to the traceability matrix (TM) that reflects the

percentage of relevant clusters found comparing to those in

the TM.

We highlight that there are many requirements which con-

tain only the word ”Deleted”. These requirements are written

in the duplicates part. Since they are not related to other re-

quirements, we discard these requirements from our precision

calculation.

Fig. 3. Traceability validation overview

TABLE I
RESULTS OF THE TRACEABILITY APPROACH ACCORDING TO K-MEANS ALGORITHM

Analysed spec. nb. req. nb. dup nb. analysed
req

K value nb. linked
req in TM

nb. written
clusters

P. of clusters P. % to the TM

Dataset1: LO-L1 1283 257 1026 820 367 88 84% 75.88%

Dataset2: LO-L10 749 282 467 373 33 5 20% 15%

Dataset2: LO-L12 751 246 505 404 32 5 40% 12.5%

Dataset2: LO-L13 728 97 631 504 62 8 12.5% 4.88%

Dataset2: LO-L14 478 9 469 375 5 4 0% 40%

Dataset2: LO-L1 2339 641 1698 1358 73 5 40% 13.69%

Dataset2: L11-L20 252 71 182 145 23 8 50% 21.74%

Dataset2: L11-L21 1789 89 1700 1360 29 0 0% 13,79%

Dataset2: L12-L21 2147 265 1882 1505 71 0 0% 5.6%

Dataset2: L13-L21 2124 116 2008 1606 115 0 0% 2.61%

Dataset2: L14-L21 1874 31 1843 1474 84 1 0% 5.95%

Dataset2: L13-L22 701 133 568 454 40 5 71.42% 30.25%

Dataset2: L13-L23 588 95 493 394 21 0 0% 0%

Dataset2: L13-L24 610 96 514 411 19 0 0% 0%

Dataset2: L13-

(L21+L22+L23+L24)

2409 157 2252 1801 80 1 100% 18.75%

Dataset2: L30-L22 203 33 170 136 40 2 100% 15%

Dataset2: L31-L22 197 34 163 130 15 0 0% 33.33%

Dataset2: L32-L22 206 33 173 138 39 2 100% 15.38%

Dataset2: L32-L30 83 0 83 66 2 14 14.28% 100%

Dataset2: L22-
(L30+L31+L32)

280 35 245 196 34 2 100% 23.52%

Fig. 4. Dataset2 : levels and links

According to the results shown in Table I, we obtain good

results for Dataset1. This is explained by the fact that: 1) we

have one requirement linked to only one other requirement, 2)

a lot of requirements are written in similar syntax, and 3) the

requirements are written with a few acronyms, abbreviations

and technical terms. The characteristic of this dataset is

suitable for our approach.

According to the results shown in Table I, we detail the

results for Dataset2:

- For the results between the level L0 an L1, the precision

of the clusters and the precision according to the TM do

not exceed 40%. L0 is the highest level of the hierarchy and

represent the client specification. It is then written with long

phrases and with details associated to the client need. L1 is

the lower level of L0. So, it contains more technical terms, it

is more precise and more concise than L1. Our approach can

partially handle these characteristics.

- For the results between the level L1 and L2, the precision

of the clusters is 0% except for the L13-L23 (71.42%) and

L13-(L21+L22+L23+L24) (100%). These two levels contain

a lot of technical and domain related terms. The requirements

aren’t written as long phrases, but as short ones. Also, the

links between the requirements need an expert’s knowledge to

be established.

- For Dataset2: L32-L30, the number of written clusters is

higher than the number of linked requirements in the matrix.

The majority of the written clusters are very similar in terms

of syntax, however they are not stated as linked in the matrix.

For example, this cluster is stated as linked in the clustering

results but does not figure in the matrix:

• Operational Shocks and Crash Safety, XX 7, category B

• Operational shocks and crash safety XX 7 B

- For the results between the level L2 and L3, they are

better than the results between L1 and L2. In fact, in L3 we

found technical terms but used in long phrases and a few

formulas and symbols.

Concerning the number of written clusters in Dataset1 and

Dataset2, we can see that our approach detect few clusters

comparing to the linked requirements in the TM. However, in

Dataset1, we can notice that we have a lot of written clusters.

Our approach is then more suitable for one to one relation

type than one to many relation type.

The overall of the experiments shows that this clustering

approach provide better results for high level requirements

which are written with few technical terms, acronyms, ab-

breviations, formulas and symbols. Requirements that need an

expert knowledge are not well detected.

In order to improve the efficiency of our approach in the

lowest levels, we proceed to a pre-processing step explained

in the next section.

C. Results of our approach: with technical terms detection

and syntactic pre-processing

Since the lowest levels of a specification contain more

technical terms, we should take them into consideration in

our analysis. So, before applying the k-means algorithm, we

proceed to a pre-processing as follows:

• Technical terms detection: according to postags patterns

defined by RE experts (already detailed in our previous

works [11]). For example, the detected technical terms

are water extractor temperature, system operating range

conditions, General Technical Specification and Power

Input. These terms are stated in our analysis as one

word instead of several words. This allows us to give

more weight to each group of technical terms instead of

considering each one as a single piece of data.

• Syntactic pre-porcessing: lemmatization and stemming

are text normalization techniques in the field of Natural

Language Processing that are used to prepare text, words,

and documents for further processing. Stemming and

lemmatization helps us to achieve the root forms.

In Table II, we present the obtained results by applying this

pre-processing step.

These results show a significant improvement in terms of

the numbers of written clusters. Also, we can notice a better

precision value of the written clusters and the precision accord-

ing to the TM in most of the levels. technical terms detection

and syntactic pre-processing homogenize better requirements

making clustering more efficient.

V. DISCUSSION

As discussed previously, the level of the specifications

impact the precision results of our approach.

We compare the precision of the generated clusters with and

without the pre-processing step in Figure 5. We can notice that

the pre-processing is useful for the high level since we obtain

better results. Precision without pre-processing is better for the

lowest level. This is explained by the fact that we have more

written clusters with the pre-processing, so the precision may

decrease if these clusters aren’t relevant.

In Figure 6, we compare the precision of the clusters

comparing to the TM with and without the pre-processing

step. We can notice that the pre-processing barely improved

the results for the whole levels. These minimal differences

between the two curves are explained by the fact that the TM

is generated by experts and then we need more than just a

pre-processing step to achieve better results.

Fig. 5. Comparison of the precision values of the generated clusters with and
without the pre-processing step

Fig. 6. Comparison of the precision values of the clusters in the TM with
and without the pre-processing step

Taking into consideration technical terms and syntactic

improve the average precision of our approach: from 36.61%

to 45.20% for the average precision of the written clusters and

from 22.39% to 27.45% for the average precision related to the

TM. The detection of technical terms is pattern-based multi-

word detection so it is domain independent. So, we can use

this pre-processing on different specifications from different

domains.

Our approach could be integrated in current traceability

management systems. In fact, practitioners could use our

approach in order to generate the TM or a part of it. It could

TABLE II
RESULTS OF THE TRACEABILITY APPROACH ACCORDING TO K-MEANS ALGORITHM: WITH TECHNICAL TERMS AND SYNTACTIC PRE-PROCESSING

Analysed spec. nb. req. nb. dup nb. analysed
req

K value nb. linked
req in TM

nb. written
clusters

P. of clusters P. % to the TM

Dataset1: LO-L1 1283 257 1026 820 367 90 83.33% 94.55%

Dataset2: LO-L10 749 282 467 373 33 10 60% 21.21%

Dataset2: LO-L12 751 246 505 404 32 7 57.14% 18.75%

Dataset2: LO-L13 728 97 631 504 62 8 12.5% 4.88%

Dataset2: LO-L14 478 9 469 375 5 4 0% 40%

Dataset2: LO-L1 2339 641 1698 1358 73 12 58.33% 20.54%

Dataset2: L11-L20 252 71 182 145 23 12 50% 30.43%

Dataset2: L11-L21 1789 89 1700 1360 29 4 25% 17,24%

Dataset2: L12-L21 2147 265 1882 1505 71 6 66.66% 11.26%

Dataset2: L13-L21 2124 116 2008 1606 115 7 57% 6.08%

Dataset2: L14-L21 1874 31 1843 1474 84 3 66.66% 8.33%

Dataset2: L13-L22 701 133 568 454 40 13 61.53% 40%

Dataset2: L13-L23 588 95 493 394 21 3 15% 9.52%

Dataset2: L13-L24 610 96 514 411 19 4 50% 10.52%

Dataset2: L13-

(L21+L22+L23+L24)

2409 157 2252 1801 80 4 50% 20%

Dataset2: L30-L22 203 33 170 136 40 4 50% 15%

Dataset2: L31-L22 197 34 163 130 15 0 0% 33.33%

Dataset2: L32-L22 206 33 173 138 39 5 60% 17.94%

Dataset2: L32-L30 83 0 83 66 2 14 14.28% 100%

Dataset2: L22-

(L30+L31+L32)
280 35 245 196 34 6 66.66% 29.41%

be also used in order to check the relevance of an existent

TM.

VI. CONCLUSION

In this paper, we have proposed a clustering-based approach

for traceability management. We have analysed specifications

from different levels. Our approach provides better results

when the requirements are written in natural language (i.e.

high level specifications). The pre-processing step improved

the precision results for the whole levels. This approach is

language independent since k-means is a statistic algorithm,

and domain independent since technical terms detection is

pattern-based multi-word detection.

The main difficulty associated to RE context, is the expert

knowledge that couldn’t be totally managed by our approach.

In order to have a better knowledge of the domain, we plan

to capture the context of each specification through a neural

network approach, before applying our clustering algorithm.

However, we need a lot of data to train an efficient model. We

plan to observe how the K-means algorithm performs when

applied to a data set where other AI traceability techniques

are applied.

ACKNOWLEDGEMENTS

We would like to thank Audrey Speronel from ”OneLight

Studio” for her contribution in our experiments.

REFERENCES

[1] IEEE, “IEEE guide for developing system requirements specifications,”
IEEE Std 1233, 1998 Edition, 1998.

[2] R. INCOSE, “Guide for writing requirements,” Version 2. Prepared by:

Requirements Working Group, 2015.
[3] O. C. Z. Gotel and A. C. W. Finkelstein, “An analysis of the requirements

traceability problem,” 1994, pp. 94–101.

[4] R. L. Glas, Facts and Fallacies of Software Engineering. Addison-
Wesley Professional, 2002.

[5] B. D. B. H. R. L. Jonette M. Stecklein, Jim Dabney and G. Moroney,
“Error cost escalation through the project life cycle,” in Proceedings of

the 14th Annual International Symposium, Toulouse, France, 2004.
[6] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal, “Detecting

defects in software requirements specification,” Alexandria Engineering

Journal, vol. 53, no. 3, pp. 513 – 527, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1110016814000568

[7] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on convolutional neural networks,” in 2016 IEEE 24th Interna-

tional Requirements Engineering Conference Workshops (REW), Sept
2016, pp. 39–45.

[8] E. Knauss, D. Damian, G. Poo-Caamao, and J. Cleland-Huang, “De-
tecting and classifying patterns of requirements clarifications,” in 2012

20th IEEE International Requirements Engineering Conference (RE),
Sept 2012, pp. 251–260.

[9] D. Ott, Automatic Requirement Categorization of Large Natural

Language Specifications at Mercedes-Benz for Review Improvements.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 50–64.
[Online]. Available: https://doi.org/10.1007/978-3-642-37422-7 4

[10] A. K. Jain, “Data clustering: 50 years beyond k-means,”
Pattern Recognition Letters, vol. 31, no. 8, pp. 651 –
666, 2010, award winning papers from the 19th International
Conference on Pattern Recognition (ICPR). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865509002323

[11] M. Mezghani, J. Kang, and F. Sèdes, “Industrial requirements
classification for redundancy and inconsistency detection in SEMIOS,”
in 26th IEEE International Requirements Engineering Conference, RE

2018, Banff, AB, Canada, August 20-24, 2018, 2018, pp. 297–303.
[Online]. Available: https://doi.org/10.1109/RE.2018.00037

[12] A. Kannenberg and H. Saiedian, “Why software requirements traceabil-
ity remains a challenge,” The Journal of Defense Software Engineering,
vol. 22, pp. 14–19, 07 2009.

[13] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder,
Traceability Fundamentals. London: Springer London, 2012, pp. 3–22.
[Online]. Available: https://doi.org/10.1007/978-1-4471-2239-5 1

[14] Y. Li and W. Maalej, “Which traceability visualization is suitable
in this context? a comparative study,” in Requirements Engineering:

Foundation for Software Quality, B. Regnell and D. Damian, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 194–210.

