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Factor analysis of ancient population
genomic samples

Olivier Francois® 3™ & Flora Jay® 23™

The recent years have seen a growing number of studies investigating evolutionary questions
using ancient DNA. To address these questions, one of the most frequently-used method is
principal component analysis (PCA). When PCA is applied to temporal samples, the sample
dates are, however, ignored during analysis, leading to imperfect representations of samples
in PC plots. Here, we present a factor analysis (FA) method in which individual scores are
corrected for the effect of allele frequency drift over time. We obtained exact solutions for the
estimates of corrected factors, and we provided a fast algorithm for their computation. Using
computer simulations and ancient European samples, we compared geometric representa-
tions obtained from FA with PCA and with ancestry estimation programs. In admixture
analyses, FA estimates agreed with tree-based statistics, and they were more accurate than
those obtained from PCA projections and from ancestry estimation programs. A great
advantage of FA over existing approaches is to improve descriptive analyses of ancient DNA
samples without requiring inclusion of outgroup or present-day samples.
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emporal samples of DNA and ancient DNA have become

prominent tools in inferring past events in the history of

humans and other organisms!=>. In such studies, a central
question concerns the inference of ancestral relationships
between sampled populations®. Evolutionary biologists and
population geneticists have devised many methods for addressing
this question. To visualize ancestral relationships between sam-
pled populations, some representations are based on principal
component analysis (PCA), often by projecting ancient samples
on axes built from present-day samples, while other representa-
tions use admixture estimation programs and statistical measures
of treeness’~10, All those methods are strongly related to each
other!b12, In population genetics, PCA is usually performed by
finding the eigenvalues and eigenvectors, or axes, of the covar-
iance matrix of allele frequencies. The first axes indicate the
directions which account for most of the genetic variation.
Individual genotypes are then projected on the space spanned by
those axes, offering a visualization of samples in which relative
distances reflect ancestral relationships among samples!2. When
PCA is applied to analyze temporal samples, information on
sample dates is, however, omitted in the computation of eigen-
values and eigenvectors!314,

Previous studies have reported that differences in sample dates
could modify the principal axes of a PCA!>, creating spurious
sinusoidal shapes similar to those observed with geographic
samples'®. The combination of both time and spatial hetero-
geneity in sampling further complicate the interpretation of
patterns observed in PC plots. Local dispersal through time
causes ancient samples to be shrunk toward the center of the PC
plot and not to cluster with their present-day counterparts!”.
Similar distortions linked to gradients and longitudinal data occur
not only in population genetics, but in other applications, such as
multidimensional scaling and ordination analysis, where they are
called horseshoes or arches'®19. Alternative PCA methods that
combine ancient and modern individuals by projecting ancient
samples on present-day samples suffer from additional statistical
issues. PC projections exhibit a shrinkage bias toward the center
of the principal axes which also complicates the interpretation of
the data?0. Since biases could lead to incorrect estimates of
individual ancestries or misinterpreting the data, it is important
to correct principal components when temporally distinct sam-
ples are used in descriptive analyses. Corrections of sinusoidal
patterns arising in principal components have been proposed
when distortions are caused by spatial auto-correlation in geo-
graphic samples!®2!. Modified versions of the STRUCTURE
algorithm—which may be viewed as a constrained version of
PCA—were also developed to integrate corrections based on
spatial or temporal diffusion models’->2%23, but less efforts have
been devoted to correct PCA itself.

In recent studies of ancient DNA, ancestral relationships
between samples are most often inferred by using a combination
of methods including PC projections, ancestry estimation pro-
grams similar to STRUCTURE and F-statistics>324-27. In the last
approach, F-statistics are tree-based estimates of population
admixture proportions that rely on shared genetic drift between
sets of populations!>27. While F-statistics do not represent
individual samples in a reduced geometric space, those quantities
should correlate with distances between population centers in
ideal geometric representations. In this study, we provide evi-
dence that representations of ancient DNA samples based on PC
projections, STRUCTURE or PCA disagree with each other and
with F-statistics. We present a factor analysis (FA) that enables
geometric representations of ancient samples in better agreement
with F-statistics, and does not use reference populations such as
outgroup or present-day samples. We provide evidence that the
estimates of ancestry coefficients derived from those geometric

representations are more accurate than the coefficients obtained
from PC projections and from ancestry estimation programs. We
illustrate our method with several analyses of ancient DNA
samples from prehistoric European populations.

Results

Factor analysis. We developed a FA method for representing
ancestral relationships among samples collected at distinct time
points in the past. The objective of our approach was to propose a
factorial decomposition of a data matrix similar to a PCA, in
which individual scores are corrected for the effect of allele fre-
quency drift over time. The data, Y, were recorded in an nx p
matrix of genotypes, where 7 is the number of individual samples
and p is the number of markers measured as single nucleotide
polymorphisms (SNPs). More generally, the data matrix could
result from any preliminary operations, where, for example,
undesired effects of genomic coverage have been removed from
the observed genotypes (see “Methods” section). The data were
centered so that the mean value for each individual is null. Each
ancient sample was associated with a sampling date corre-
sponding to the age of the sample. The dates were transformed to
scale with the variance of allele frequencies, so that values closest
to zero represented the most ancient ages (see “Methods” sec-
tion). To incorporate correction for temporal drift, we modeled
the data matrix as Y = W + ZBT + ¢, the sum of a latent matrix,
W, plus correction factors and residual errors. In this model, the
residual errors, €, consist of n x p i.i.d. random variables having a
univariate Gaussian distribution, N(0, ¢2). The matrix of effect
sizes, B, is assumed to have an informative prior distribution, in
which all coefficients are ii.d. random variables with a Gaussian
distribution, N(0, «). The factors and their loadings are obtained
by singular value decomposition (SVD) of the latent matrix, W =
UVT, once W is estimated. The number of factors, K, can be set to
any number smaller than #n and p depending on how drastically
one wants to reduce the dimension of the data and approximate
the data matrix with the latent factors. This number can be set
greater or equal than the number of ancestral groups when this
number is known. In this case, the factors contained in the first
K—1 column vectors, u;, ..., ugx_;, of the matrix U reflect
ancestral relationships among samples in the data’.

We wused correction factors related to the covariance
function of the Brownian process (Fig. la-c). This notion
corresponds to the diffusion approximation of allele frequency
drift in a random mating population conditional on the non-
fixation of alleles in the population?®-30, and underlies the
development of several recent methods of ancestry estima-
tion®10:11.23 " According to Cavalli-Sforza and Edwards®,
the Brownian motion may be the simplest model in which the
allele frequencies are approximately Gaussian with variance
proportional to the time elapsed, while the mean remains
constant in the absence of selection. In this model, random drift
alone determines the variation in gene frequencies, and popula-
tion size and structure are taken to be constant. In our approach,
the correction factors, Z, were obtained after a spectral
decomposition of the Brownian covariance matrix, C, defined
as ¢; = min(t;, t;), for all pairs of individuals i and j and their
corresponding transformed time points ¢, t;. More specifically, we
computed Z = P+/A, where P is a unitary matrix of eigenvectors
of C and A is the diagonal matrix containing the eigenvalues of C
(see “Methods” section). According to the Karhunen-Loeve
theorem?!, the eigenvalues of C can be approximated as A; = n/(i

— 1/2)?72, and the correction factors as Z; ~ f,(t;)/A;/n where
f,(t) = V2sin((i — 1/2)nt), for all t in the interval [0, 1] and i in
1, ..., n. According to these results, the correction factors have
sinusoidal shapes, and the covariance model is consistent with the
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Fig. 1 Correcting arch and shrinkage effects. a-c Coalescent simulation of allele frequencies drifting through time in a random mating population. Samples
with ages ranging from O (present-day) to 4000 years (past) were simulated. a Covariance matrix for observed samples. In covariance matrices (a-c),
blue colors indicate lower covariance values whereas the yellow and gray colors indicate higher values. b FA and PC plots of individual samples (present-
day: gray color, past: dark blue color). ¢ Theoretical covariance matrix defined as the minimum of forward times for pairs of samples (Brownian model).
d FA and PC plots for a coalescent simulation of a two-population model (left: population 1, right: population 2, present-day: gray color, past: dark blue
color). e-f Factor analysis corrects for a shrinkage effect visible in projections of ancient samples (salmon and blue colors) onto PCs of present-day
admixed individuals (yellow color). Gray crosses represent population centers from which admixture estimates are computed.

arch effect observed in the principal components of the genetic
data.

Factor estimates. Statistical estimates of the factors, U, were
obtained by maximizing the posterior distribution in a Bayesian
framework. Setting the regularization parameter equal to the
noise-to-signal ratio or drift parameter, A =o%/a, the factors
corresponded to estimates in a latent factor regression model with
ridge penalty32-33. More precisely, an estimate of the latent matrix
W was computed as the best approximation of rank K of the
matrix Y for an appropriate matrix norm. The optimal solution
for W was computed from an exact formula, and the K factors
were obtained from the SVD of W (Supplementary Note 1, see
“Methods” section). For p much larger than n, the complexity of
the algorithm is of order O(npK). The running times for FA can
be understood from the description of the algorithm in Supple-
mentary Note 1, which requires one application of the SVD to
estimate the latent matrix. A second application of the SVD is

then needed to obtain the factors from the latent matrix. In
experiments using the SVD algorithm implemented in the base
library of the R programming language34, the running times for
FA were about twice the running times of a classical PCA.

Examples of distortions due to genetic drift. To provide
examples of distortion arising in PCA due to uncorrected tem-
poral drift, we performed simulations of a coalescent model for
forty-one samples with ages ranging from 0 to 4000 generations
in a random mating population with effective size N, = 10,000
(Fig. la-b). The patterns observed in the sample covariance
matrix were highly similar to those observed in the theoretical
covariance model corresponding to a Brownian process (Fig. 1a,
¢). Both in the Brownian model and in the empirical matrix, pairs
of samples that included the most ancient samples had the
smallest covariance values. The PC plots of individual samples
exhibited sinusoidal patterns, in which the most ancient and
recent samples were placed at both extremes of a horseshoe.
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Correcting for temporal drift, the FA plot displayed a single
cluster grouping all samples without any apparent temporal
structure among samples (Fig. 1b), showing that the distortion
due to genetic drift was correctly removed in an FA using a
Brownian covariance model. In a second series of experiments,
we simulated models of divergence between two populations
(Fig. 1d). In a PCA of simulated samples, PC1 reflected the level
of divergence between populations while PC2 represented tem-
poral drift (Fig. 1d). Correcting for drift, the FA plot exhibited
two clusters without any apparent structure within each group
(Fig. 1d). In a hundred simulations of this scenario, the Davies-
Bouldin clustering index reached higher values in the FA plots
than in the PC plots, meaning that the clusters better separated
the two populations in FA plots than in PC plots (Supplementary
Fig. 1c, “Methods” section). In generative model simulations,
factor 1 in FA better explained the hidden factor than did the first
PC in PCA (Supplementary Fig. 1d). In a third series of experi-
ments, we considered two-way admixture models in which a
population split occurred 1300 generations ago. The two diver-
gent populations came into contact 500 generations ago, giving
rise to descendants having 75% ancestry in the first ancestral
population and 25% ancestry in the second ancestral population.
Using coalescent simulations, one hundred present-day indivi-
duals were sampled from the admixed population, and fifty
individuals were sampled from each ancestral population before
the admixture event (1000 generations ago). Artificial genotypes
were also simulated according to the generative model to mimic
levels of admixture observed in coalescent models (see “Methods”
section). The objective of those experiments was to compare the
results of PC projections of ancient samples onto the present-day
population with those obtained with FA correcting for drift.
Typical plots for PC projections exhibited a shrinkage effect in
which the projected samples were shifted toward zero, closer to
the admixed population than expected (Fig. le, f, Supplementary
Fig. 2). The shrinkage effect was more pronounced in coalescent
simulations than in generative model simulations (Supplementary
Fig. 2). Correction for temporal drift in FA did not exhibit such
an undesired effect (Fig. 1f). In the FA plot, the locations of
centers of ancestral clusters reflected admixture levels more pre-
cisely than in PC plots, and the factor scores had a smaller var-
iance than the PC scores (Supplementary Fig. 2). Both for
generative and for coalescent simulations, mean squared errors of
admixture proportion estimates computed on the first axis were
higher in PC projections than in FA plots Those results showed
that correcting for genetic drift in FA improved the representa-
tion of admixed individuals and their source populations com-
pared with projections on PCs.

Comparisons with other methods. Using two-way admixture
models, we compared ancestry estimates obtained from FA with
those from PC projections on the present-day samples, with
estimates from the program gqpAdm2® and with estimates from
the STRUCTURE model®2?4, implemented with sparse non-
negative matrix factorization?®. Here gpAdm was considered to
be the state-of-the-art method for estimating admixture coeffi-
cients from ancient DNA samples?’. Based on connections
between population genetic models and matrix factoriza-
tion”-12:25, we performed simulations of ancestral and admixed
genotypes using factor models. The generative mechanism was
similar to the simulation of multilocus genotypes in STRUC-
TURE, which is based on a matrix of individual mixture coeffi-
cients multiplied by a matrix of allelic frequencies in source
populations®?>. By replacing allelic frequencies with Gaussian
variables and using a probit link function, our generative
mechanism had the advantage of providing a ground truth both

for factors and for admixture coefficients, while remaining
interpretable in terms of population genetics.

When considering a relatively high level of divergence
between ancestral populations, the FA estimates were precise
and relatively insensitive to the drift value, similarly to the
estimates provided by gpAdm (Fig. 2, Fs = 25%). Both FA and
gpAdm estimates were biased in low admixture scenarios, with
a lower bias for FA (Fig. 2a). The estimates computed from PC
projections and from STRUCTURE exhibited higher statistical
errors (Fig. 2d). The lower performances were explained by
higher variance in estimates based on PCA (Fig. 2b), and by
temporal distortions arising in STRUCTURE estimates (Fig. 2c).
Considering a lower level of divergence between ancestral
populations did not change the ranking of method perfor-
mances (Supplementary Fig. 3, Fsr=5%). For weak drift,
estimates from PC projections exhibited less bias than the
gpAdm estimates while keeping similar levels of statistical error
(Supplementary Fig. 3b, bias for PCA: 2.3%, bias for gpAdm:
4.9%, t= 4.02, P=10"%. STRUCTURE did not detect
admixture in the case of high genetic drift (Supplementary
Fig. 3c). We eventually performed simulations for which
summary statistics were close to those observed in European
Bronze Age populations (Supplementary Fig. 4). In all methods,
statistical errors tended to decrease, but estimates from FA and
gpAdm were still more accurate than those computed with PC
projections and STRUCTURE. Overall the results suggested
that the geometric representations of samples provided by FA
were accurate and consistent with estimates derived from tree-
based approaches. Representations based on PC projections and
STRUCTURE were less accurate due to a larger variance and
because temporal distortions affect STRUCTURE in a way
similar to PCA.

Analysis of ancient European data. We used our approach to
analyze a merged data set consisting of 143,081 SNP genotypes
for 521 present-day European individuals and 704 ancient sam-
ples from Eurasia?~43>-41, The samples had ages less than 14,000
years cal BP, and were chosen for their higher level of genomic
coverage (Supplementary Fig. 5). Prior to analysis with FA and
PCA, genotypes were corrected for the effect of coverage (see
“Methods” section). We first computed principal components on
the present-day samples, mainly from Great Britain, Italy, Spain,
Finland and Russia (Supplementary Data 1 for a list of sample
IDs)4%41. Following the classical approach, we projected the
ancient samples on the first two PCs of the present-day samples
(Supplementary Fig. 6). Next, we performed FA with temporal
correction for present-day and ancient samples (Supplementary
Fig. 7), choosing the drift parameter so that the scores of present-
day individuals on factor 1 correlate with their scores on the first
principal component (Pearson’s squared correlation p?=0.91,
P <1019, F-test with 1 and 519 df). For this value of A, we
reanalyzed the ancient samples independently of present-day
populations with FA (Fig. 3A). The FA plot revealed a pattern in
which most ancient samples were represented as mixtures of
three ancestral populations, put at the vertices of a triangle. Factor
1 separated hunter-gatherers from Serbia and Scandinavia from
early farmers from Anatolia, while factor 2 corresponded to
genetic contributions from the Pontic steppe (Yamnaya culture).
In PC projections, the status of the Yamnaya samples as repre-
senting one of the three ancestral populations was less clear than
in the FA plot (Supplementary Fig. 6). In the FA of all samples,
present-day individuals from Great Britain and Finland
were closer to the Yamnaya than individuals from Italy and
Iberia (Supplementary Fig. 7). For several geographic regions,
including Great Britain, Germany, Czech Republic and Hungary,
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discontinuities in Yamnaya ancestry were reflected in factor
2 (Fig. 3b-e). These discontinuities supported the hypothesis of a
sudden change in the European gene pool, with a strong genetic
input from the Pontic steppe around 4500 years ago®*. Genetic
discontinuities in Anatolian ancestry were symmetrically reflected
in factor 1, which also supported a resurgence of hunter-gatherer
ancestry in late neolithic samples from Germany, Czech Republic
and Hungary? (Supplementary Fig. 8).

Analysis of samples from Bronze Age England. To focus on a
specific geographic region, we reanalyzed 34 samples from Bronze
Age (BA) England and 28 samples from Neolithic (N) England
and Scotland, using Anatolia (N), Samara (Yamnaya) and Serbia
(HG) as proxies for ancestral populations (Fig. 4). The PCA of BA
England, Yamnaya and Anatolian samples exhibited a horseshoe
pattern, complicating the evaluation of the relative inputs from
Yamnaya and early farmers to BA England samples (Fig. 4a). In
an FA correcting for drift, the BA samples aligned with their
assumed ancestral groups (Fig. 4b), allowing us to estimate an
ancestry coefficient for each BA individual. The estimated values
agreed with the admixture proportions computed by the program
gpAdm, using Yamnaya Samara and Anatolia (N) as ancestors,
Yoruba, EHG and WHG as outgroups (gsteppe = 53%, Fig. 4c).
Considering a three-way admixture scenario, we included Serbia
HG samples in the FA. For this analysis, the relative contribution
of each gene pool to the other samples was measured by their
coordinates in the triangle formed by the source populations
(Fig. 4d). The ancestry proportions reflected in the FA plot were
equal to (11%, 40%, 49%) from Serbia HG, Anatolia and Yam-
naya, respectively, comparable to the values (8%, 47%, 45%)
estimated by gpAdm. The samples from Neolithic Great Britain
did not exhibit any shared ancestry with the Yamnaya source
population, in agreement with negative values computed by
gpAdm.

Two-way analysis by regions. To extend our focus on geographic
regions, we considered FA of multiple populations from Bronze
Age Germany and Czech Republic (66 samples), prehistoric and
early Middle-Ages Scandinavia (28 samples)38, Bronze Age and
Roman Italy (17 samples)?®. To compare with the results for
Great Britain, we re-analyzed the samples from this region
(66 samples). A two-source model of ancestry was assumed in
each region, and the drift parameter was chosen to remove
temporal effects from factor 2 (Supplementary Fig. 9). In samples
from Great Britain, BA individuals shared closer relationships
with samples from the Srubnaya culture than with samples from
the Yamnaya culture (Fig. 5a). Samples from Neolithic Great
Britain were close to Anatolian early farmers, with a relative
position on the first factor suggesting a contribution from an
unmeasured source of ancestry. In Germany and Czech Republic,
Bell Beaker individuals exhibited levels of Steppe ancestry similar
to those observed in Bell Beaker individuals from England
(Fig. 5b). Samples from the Corded Ware culture and from
the early Bronze Age were closer to the Yamnaya group than were
the Bell Beaker samples. In Scandinavia, factor 1 represented the
genetic ancestry of samples relative to early farmers and eastern
hunter-gatherers from Latvia (Fig. 5c¢). The Yamnaya steppe
samples were represented as a mixture of early farmers (55%) and
eastern hunter-gatherers (45%), consistent with the admixture
proportions from gpAdm (58% and 42% for the respective con-
tributions of early farmers and Latvian HG). Like modern Finns
(Supplementary Fig. 7), Swedish Vikings were closely related to
the Yamnaya samples. In contrast, Swedish HG from Motala were
closely related to the Latvian HG samples. In Italy, Langobard
samples had levels of steppe ancestry similar to Bell Beakers,
and those levels were lower than those observed in northern and
central European populations (Fig. 5d).

Comparative analyses of European samples. To provide a
comprehensive comparison of geometric representations and

6 | (2020)11:4661 | https://doi.org/10.1038/s41467-020-18335-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a Great britain b Germany/Czech R.
15
2 20 1
10 & " %
GredBritain (N Srubnaya 3 2EBA
o g _|Greatbritain (N) * 104 Bell beaker (BA)
g ® * 9 s .
|5} * * * * * *
£ o f * L) * 0 - S 1 * s - ¥
P x *% o * ¥ A % » o
» ¥ B * ¥ & Corded ware = *,
-5 - * ¥ < * a »
'y -10
* England (BA) Yamnaya * °
_10 - Anatolia (N) Anatolia (N) Yamnaya
T T T T T T T T T T T
-40 -20 0 20 40 60 -40 -20 0 20 40
Factor 1 Factor 1
c Scandinavia d Italy/Langobard
15 1 Anatolia (n) Yamnaya Latvia (HG) 15 © Iceman Bell beaker
10 * A & 10 .
* *
5 - :} ¥ *0 5 *xx* **35
cﬁ * a *St ™3 *‘*j )
S 0 :g’* * * 0 X *~~ *
o * *g ¥
o * 5 *
w -5 *** < 59« Langobard * %
104 * -10-4 *
~15 Sweden ¥ » Sweden -5 *
vikings motala (HG Anatolia (N) Yamnaya
-20 T ? B T T T ( I) 20 T T T T T
-60 -40 -20 O 20 40 60 80 -20 0 20 40 60
Factor 1 Factor 1

Fig. 5 Factor analysis by regions. Multi-population FA in four regions of Europe. a Bronze Age and Neolithic Great Britain, continued from Fig. 3, b Bronze
Age Germany and Czech Republic (star: Corded Ware, triangle: EBA), ¢ Prehistoric and early Middle-Ages Scandinavia (triangles represent Swedish HG
from Motala), d Bronze Age and Roman lItaly. HG: Hunter-Gatherers, N: Neolithic, BA: Bronze Age.

methods of analysis, we evaluated admixture coefficients for 22
ancient populations with four approaches. We compared ancestry
coefficients computed from FA with admixture proportions
computed by gpAdm, PC projections and STRUCTURE. In FA,
PC projections and STRUCTURE, individual admixture estimates
were averaged across individuals in population samples. Here
ancestry coefficients computed from FA and PCA were used to
decide whether or not the methods correctly represented ances-
tral relationships in geometric space.

In two-way admixture analyses, the estimates of FA and
gpAdm strongly agreed with each other (Supplementary Fig. 10,
Supplementary Fig. 11), providing evidence that positions on
factor 1 corresponded with steppe ancestry. In FA, the proportion
of variance explained by temporal distortions was non-negligible
(mean: 17.7%, SD: 7.4%, Supplementary Table 1). Population
samples from the Bell Beaker culture shared similar contributions
from the Yamnaya gene pool in FA and in gpAdm, supporting a
rapid spread of this culture during BA (Supplementary Fig. 12).
Differences between FA and gpAdm were nevertheless observed
for Corded Ware samples from Germany and Czech Republic
which shared similar levels of steppe ancestries in FA (around
73-74%) and had different ancestries in gpAdm (87% and 55%).
Samples from the neolithic period had no steppe component in
FA, whereas gpAdm estimates were substantially larger than zero
for some samples (England N, Scotland N, Germany LBK,
Supplementary Fig. 10). Estimates from STRUCTURE correlated
with those from gpAdm, but they exhibited a systematic bias
toward higher proportions of Yamnaya ancestry. This bias could
be explained by sensitivity to distortions similar to those observed
in PCA (Supplementary Fig. 11). Estimates obtained from PC
projections exhibited higher variance than those obtained from
FA, and they were close to those computed with STRUCTURE
(Supplementary Fig. 13).

In three-way analyses, ancestries were strongly correlated in FA
and gpAdm, both for Yamnaya and for Anatolian sources (Fig. 6,

Figs. S14-S16). FA provided slightly higher values of steppe
ancestry and lower values of Anatolian ancestry compared to
gpAdm. The main differences between gpAdm and FA estimates
concerned HG ancestry. Estimates of HG ancestry were
consistent across samples for FA and for STRUCTURE, whereas
they were variable across Corded Ware, Langobard, and early
neolithic samples for gpAdm (Fig. 6, Supplementary Fig. 14).
While STRUCTURE coefficients correlated with FA estimates,
STRUCTURE over-evaluated Yamnaya ancestry in all samples
(Supplementary Fig. 14). PC projections on present-day samples
led to Anatolian ancestry similar to other programs, but failed to
correctly represent the relative contributions of Yamnaya and HG
to the samples, likely because the PC plots exhibited over-
dispersion of samples along the Yamnaya - HG axis (Fig. 6, Figs.
S14-S15). The over-dispersion phenomenon could explain the
larger variance of ancestry estimates obtained from PC plots.

In conclusion, we introduced a FA method for describing
ancestral relationships among DNA samples collected at distinct
time points in the past. Using the Brownian model of allele
frequency drift, we compared the results of FA with those of
frequently-used methods, PCA, STRUCTURE, and F-statistics.
The results suggested that the geometric representations of
samples provided in FA plots were accurate, and the distances
between samples agreed with ancestry estimates derived from F-
statistics. Representations based on PC projections were less
accurate than FA due to large variance along some axes.
Temporal distortions affected STRUCTURE in a way similar to
PCA, and correcting for drift revealed hidden population
structure better than did PCA or current ancestry estimation
approaches.

In a re-analysis of a merged data set of ancient DNA filtering
out SNPs with high levels of missing data and genomes of low
coverage, we implemented correction for temporal drift to
describe ancestry in samples from ancient Europeans and
Eurasians. After correction, the patterns observed in FA plots
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Fig. 6 Three-way admixture coefficients for 22 ancient population samples. Ancestry coefficients computed using Anatolia (N), Yamnaya Samara, and
Serbia Iron Gates (HG) as ancestral populations. FA: factor analysis with A =0.05, gpAdm: using Yoruba, Russia Sidelkino (EHG), France-Ranchot (WHG),
Aleut and Altaian samples as outgroups, STRUCTURE: implemented with sparse non-negative matrix factorization, PC projections: computed with present-day
European samples from the 1000 Genomes Project. HG: Hunter-Gatherer, N: Neolithic, BA: Bronze Age, CA: Copper Age, C: Chalcolithic, E: Early, M: Middle.

provided a better representation of samples than those observed
in projections of ancient samples on axes built on present-day
European genomes. The FA supported the hypothesis that a
major change in genetic mixture of individuals occurred in Great
Britain and in continental populations around 4500 years BP%.
Our analysis provided a geometric representation of samples
consistent with the proportions of steppe, early farmer and
hunter-gatherer ancestries estimated with F-statistics. Those
results contrasted with PCA results which were obscured by
statistical errors. They also differed with admixture estimates
obtained with STRUCTURE which led to a systematic bias
toward steppe ancestry in European samples. For all ancient
European populations, FA provided admixture estimates that
generally agreed with F-statistics, and were more accurate for
small or large coefficients. Including corrections for temporal
drift resulted in an algorithm with a computational cost similar to
a PCA. A useful and important feature of our approach is to avoid
supervised analyses in which present-day populations may be
over-represented, or for which specific outgroup populations
must be considered. The unsupervised approach based on FA

revealed details of population structure masked in PC projections,
and was generally more accurate than other methods of inference
of population structure for ancient samples.

Methods

Details on factor analysis. Let Y be an 7 x p matrix of genotypic data, where # is the
number of individual samples and p is the number of markers, typically represented as
SNPs. We suppose that the data are centered, so that the mean value for each sample is
null. We also suppose that each sample, i, is associated with a sampling date, ¢;
corresponding to the age of the sample. In our model, the date #; corresponds to the
most ancient sample while ¢, corresponds to the most recent sample, and the dates were
transformed to fall the unit interval 0<#; <. <t,<1 as follows. Let a; be the age of
sample i, for example measured in years cal BP. First, the transformation converts ages
into forward values by setting s; = 1 — (a; — mina;)/(max a; — min a;). Then, it
computes the variance of each row of Y as v;=var[Y;], and sets

t; = minv; + s;(maxv; — minv;). With this transformation, the sample times vary
within the range of allele frequency variances.

Our FA model takes the following form, Y = UVT 4 ¢, where U is an nx K
matrix of scores, and VT'is a K x p matrix of loadings. To incorporate correction for
temporal drift, we model the error term, €, as a multidimensional Gaussian
distribution with mean 0 and covariance matrix «C + 62, where 1/ is a scale
parameter for temporal drift, 02 is the variance of residual errors, and I is the 11 x 1
identity matrix. In this model, a key parameter is the ratio A = 0%/, which
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measures the relative importance of temporal drift—influenced by effective
population size and divergence or admixture times—with respect to the residual
variance o>—reflecting model approximation and sampling error.

To model the effect of temporal drift, we assumed that the n X n covariance
matrix C is given by the Brownian process, ¢; = min(t;, t;) for all pairs of samples
i,jin 1, ..., n*2%3, As a consequence of this definition, the variance in allele
frequencies is proportional to time. To compute the factor matrix, U, we turned to
an equivalent formulation of the factor model as

Y=W+ZB" ¢, (1)

where the residual noise is now described by €’ ~ N(0, ¢*I). The above formula

introduces correction factors, Z, that are computed after a spectral decomposition
of the covariance matrix Z = Py/A, where P is a unitary matrix of eigenvectors,

and A is the diagonal matrix containing the eigenvalues of C. In our FA algorithm,
the correction factors were computed with a standard linear algebra library in R

(Supplementary Note 1).

The FA model considers an n x p matrix of effect sizes, B, with coefficients
defined as i.i.d. random variables with Gaussian prior distribution, N(0, «). The
latent matrix, W, representing the data matrix after its correction for temporal
drift, has an uninformative prior distribution. Statistical estimates for the matrices
W and B are obtained by maximizing a posterior distribution in this Bayesian
framework. This approach amounts to finding the minimum of the following loss
function

1 1
L(W.B) = || Y =W = ZBT|; + 50| BJ* , @

where A = 6%/a. The estimate of W represents the best approximation of rank K of
the matrix Y, with respect to the following matrix norm

I¥IE = Tr(Y"AY) | ()

with A =PD,PT and D, is a diagonal matrix with coefficients

D, (i,i) = .. (4)

IE R
Following®, the optimal solution is equal to W = PD; /*svd, (,/D;P'Y). The K
corrected factors forming U and their associated loadings, V, can then be obtained
from the SVD of the matrix W. The complexity of the algorithm is of the same
order as the SVD algorithm, O(npK), and allows fast implementations on standard
computers. Because FA is defined as an unsupervised regression model, the
limitations of FA in terms of sample size are similar to those of linear regression
models, ANOVA models or PCA. For the choice of the number of factors, we used
K =2 factors in two-way admixture analyses and K= 3 factors in three-way
admixture analyses. For the choice of the drift parameter, we chose the largest value
of A that removed the effect of time in the Kth factor, where K was the number of
putative ancestral populations (Supplementary Fig. 9).

Evidence of distortions in PCA. We used the computer program msprime version
0.7.6 for Linux to simulate samples for individuals at distinct time points in the
past in neutral and divergence coalescent simulations*4. Firstly, a single population
of N, = 10,000 individuals was simulated during 4000 generations. An individual
was sampled every 100 generations, resulting in 41 samples with ages ranging
between 0 (present-day) and 4000 generations. A total of around 9000 SNPs were
simulated for each individual. Secondly, a divergence model was considered in
which an ancestral population of effective size N, = 10,000 split into two sister
populations of equal sizes 1500 generations ago. Twenty-four individuals with ages
ranging from 0 to 1000 generations were sampled every 100 generations, and
around 8800 SNPs were simulated for each individual. One hundred replicates
were created for the divergence scenario. For each replicate, we computed the
Davies-Bouldin index evaluating the degree of clustering in multidimensional
data®>. Corrections for temporal drift in allele frequency were expected to provide
values closer to one than those computed from uncorrected components.

Evidence of shrinkage in PC projections. Coalescent simulations of admixture
models were considered in which an ancestral population of effective size N, =
10,000 split into two sister populations of equal sizes 1300 generations ago. The
ancestral populations came into contact 800 generations later, and this event gave
rise to an admixed population. Individuals in the admixed population shared 75%
of their ancestry with the first ancestral population, and 25% of their ancestry with
the second ancestral population. One hundred individuals were sampled from the
present-day admixed population. Fifty individuals were sampled from each
ancestral population, one thousand generations ago. A total of around 9600 SNPs
were simulated for each individual. One hundred replicate data sets were created
for this scenario. To evaluate the statistical errors of admixture estimates, we
computed mean squared errors (MSE) both for PC projections and for FA.

Ancestry estimates from FA and PCA. In two-way admixture models, estimates
of ancestry coefficients were computed based on the relative positions of cluster

means along the first axis, u. For estimating individual admixture estimates from
two source populations a and b, the centers of each source population, c,, c, were

first estimated, and the ancestry coefficient from source a was computed of each
individual i from its first factor coordinate, u;, as qn; = (¢, — u;)/(c, — c,). The
ancestry coefficients were then constrained to take their values between 0 and 1 by
truncation, and averaged over admixed individuals to provide a population esti-
mate. Mean squared errors for estimates obtained from FA and from projections
on present-day PCs were then computed. With more than two source populations,
ancestry estimates were evaluated by computing the coordinates of each sample in
the coordinate system formed by the sources. The coordinates are non-negative
numbers when the target samples lie inside the convex set formed by the ancestral
population centers. Negative coordinates are indicative of no contribution from the
corresponding source.

Generative model simulations. We generated genotypes for ancestral and
admixed individuals by using factor models with a probit link function. Factor
models are generative models close to PCA and STRUCTURE?®2>, While matrix
factorization methods underlie inference in STRUCTURE and PCA, these methods
can also be used to generate new data. Considering two ancestral populations, the
relative distance between population centers on the first factor axis was propor-
tional to the square root of the divergence time!2. Samples from the admixed
population were generated at distance between the population centers proportional
to the ancestry shared with each source. The generative model incorporated a time
frame for simulating samples at distinct time points based on Eq. (1). In those
simulations, the timing of the admixture event and the effective population sizes
were reflected into the drift coefficient, A (or equivalently, ). As with coalescent
simulations, a first scenario considered a divergence model in which two popula-
tions evolved without gene flow. In this case, the populations clustered separately
along the first factor. The samples were taken at random time points in the past. A
second scenario considered an admixture model in which two populations diverged
in the distant past and an admixture event occurred recently. Half of the samples
were ancient, taken from the ancestral populations at random time points in the
past, and the other half of the samples were collected from the admixed population
in present time. The number of samples, n, was equal to 200, and the number of
markers was kept to p = 5000. We performed 100 simulations for each scenario.

For the divergence model, the factor matrix U contained K= 3 factors,
simulated as Gaussian random variables. The standard deviation for the first factor,
s1, measuring the divergence between the two ancestral populations, was varied in
the range (2,10), which corresponded to an Fgr in the range (0.02, 0.25). Factors 2
and 3 had lower standard deviations than factor 1, respectively equal to s, = 1.5
and s; = 0.5. The A parameter, reflecting the amount of temporal drift, was chosen
in the range [1071, 1079] representing weak to strong drift intensities. Loadings
were simulated as standard Gaussian random variables, and the residual variance
was 2= 1.

For the admixture model, the two ancestral populations were positioned with a
distance separating their centers varied in the interval [10, 12], corresponding to an
Fsr around 25%. Factors 2 and 3 had standard deviations equal to s, = 1.2 and s3 =
1. Admixed individuals were positioned so that the center of the admixed
population was at relative distance a from ancestral population 1, and 1 — a from
ancestral population 2, where a represents the ancestry contribution of population
1 to present-day samples. The ancestry coefficients ranged between a =0.2 and
a = 0.4. The A parameter was set to A = 5.10~2 (strong drift effect). The number of
samples was set to n = 200, and the number of markers was kept to p = 5000. The
loadings were simulated as independent Gaussian random variables, N(0,0.2), and
the residual error was set to 0=0.1.

Benchmarking representations by comparing ancestry estimates. We used
population ancestry estimates obtained with the method described above to verify
that the relative distances between samples in FA plots accurately reflected
ancestral relationships, and to evaluate whether the geometric representations were
consistent with ancestry estimates provided by other methods. In these plots,
distances between ancestral populations and their descendant populations should
reflect the amount of ancestry contributed by each gene pool. In our experiments,
we compared ancestry estimates obtained from FA with estimates obtained with
the program gpAdm?827, with STRUCTURE estimates obtained with the snmf
function from R package LEA 2.4%%, and with estimates from PC projections on
admixed samples. Ancestry analyses using gpAdm were realized in the R package
admixr (version 0.7.1), which calls the ADMIXTOOLS program (version 6.0 for
macOSX and Linux)®%’. The gpAdm estimates are based on models of population
genealogies and account for temporal drift by computing branch length correla-
tions. The snmf algorithm implements an accelerated version of the ADMIX-
TURE program with accuracy similar to ADMIXTUREZ2426, The principle of the
snmf algorithm relies on sparse non-negative matrix factorization, and is rooted in
the equivalence between PCA and STRUCTURE.

We performed generative simulations of samples with admixture from two
sources, including ancient samples from each source. We varied the level of
divergence between the sources, measured by Fsr, the level of admixture in modern
samples, and the drift coefficient. We sampled around 9k SNPs for n =200
individuals, including 100 admixed samples and 50 samples from each ancestral
source. Two levels of divergence between ancestral populations were considered,
corresponding to an Fgp = 5% and an Fgp =~ 25%. The admixture coefficient was
varied in the range [0.05, 0.5]. The drift coefficient, A, took three values equal to
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A=(5x1072 1.5x 1072, 5x 103) for the higher level of divergence, and to
A=(10"1, 5% 1072, 1072) for the lower level of divergence. Those values were
referred to as weak, medium, and strong drift in each case. Statistical errors were
computed with respect to a ground truth estimate of the admixture coefficient
obtained from the exact representation of the samples in the two axes created by
the generative model. Estimates from STRUCTURE (snmf) and from PC
projections were expected to be close to gpAdm estimates when the amount of drift
is small, for example, for recent admixture in large sized populations, and less
accurate otherwise due to variance caused by shrinkage and to bias caused by
temporal distortions.

Ancient human DNA samples. A merged data set consisting of genotypes for 5081
ancient and present-day individuals compiled from published papers was down-
loaded from David Reich’s lab repository (reich.hms.harvard.edu). The down-
loaded data matrix contained up to 1.23 million positions in the genome.
Considering age defined as average of 95.4% date with range in cal BP computed as
1950 CE, Eurasian samples with age less than 13,980 years were retained. The data
matrix was filtered out for samples having a minimum coverage of 0.25x. The
resulting ancient samples had a median coverage of 2.17x (mean of 2.88x) and a
maximum of 25.32x. Genomic positions with less than 34% of missing genotypes
were analyzed. Missing genotypes were imputed by using a matrix completion
algorithm based on sparse non-negative matrix factorization?S.

Prior to PC and FA analysis, we adjusted the centered matrix of genotypes for
coverage by performing a regression analysis of the form Y;; = a;coverage; + ?ij + e
This regression analysis assumed that lower coverage values could correlate with
particular population samples. Corrections were performed by fitting a latent factor
mixed model with ten latent factors and coverage as a primary variable (R package
Ifmm version 1.033). In subsequent analyses, the genotype matrix was replaced by the
latent matrix, (i/ij), adjusted in the regression model. After filtering individuals and
genotypes, the resulting data contained 143,081 genotypes for 521 present-day
European individuals from the 1k Genomes project and 704 ancient Eurasian samples
from previous studies**! Sample IDs and associated metadata were included in
Supplementary Data 1. The most important contributions to the samples included in
our data set were (1) 201 ancient individuals in ref. 4, (2) 144 ancient individuals in
ref. 37, (3) 79 ancient individuals in ref. 3 (38 same samples in ref. 2), (4) 56 ancient
individuals in ref. 36, and (5) 50 ancient individuals in ref. 38.

In applying FA to the merged data, the drift parameter was chosen in order to
remove the effect of time on the Kth factor, where K is the number of ancestral
groups considered. The STRUCTURE model was implemented with snmf using a
regularization parameter a = 1, 00026, Present-day samples for PC projections
included populations from The 1000 Genomes project, mainly from Great Britain,
Italy, Spain, Finland and Russia including Siberia (Supplementary File 1). Two-way
admixture models were implemented in the program gpAdm by using samples
from Anatolia (N) and Russia (Yamnaya, Samara) as ancestral groups, and Yoruba
(YRI), Russia Sidelkino (EHG), and France-Ranchot (WHG) samples as outgroups.
Three-way admixture models were implemented in the program gpAdm by using
samples from Anatolia (N), Russia (Yamnaya, Samara) and Serbia (Iron Gates,
HG) as ancestral groups, and Yoruba (YRI), Altaian, Aleut, Eskimo Chaplin, Russia
Sidelkino (EHG), France-Ranchot (WHG) samples as outgroups. Regarding sample
ages, we verified the robustness of our analyses to uncertainty in sample ages, by
replicating analyses with random ages drawn from reported confidence intervals.
The confidence intervals spanned approximately 400 years, and the ages were
randomly drawn around the central estimate with a standard deviation of 100
years. We created 100 replicates for each data set in two-way admixture analyses of
European populations. Sampling individual ages from their confidence intervals
biased the admixture coefficients toward intermediate values (50% Yamnaya-50%
Anatolia). The bias was around 1%, and it remained moderate for all studied
populations. The projections of individuals on factor 1 were highly stable (S.D.
ranged between 0 and 1.3%), and the squared correlation of the replicated factor 1
with the factor obtained using the central estimate was around 99.9%. These results
showed that, for ancient European samples, FA results were robust to moderate
levels of uncertainty in sample date estimates (Supplementary Table 2). Analyses
were performed using R 3.6.3 for OS X 10.11, and R 3.6.4 for Linux%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data were extracted from a public data set consisting of genotypes for 5081 ancient and
present-day individuals compiled from published papers and available from David
Reich’s lab repository (February 2019, v.37.2): reich.hms.harvard.edu. All data have
already been published, and have permissions appropriate for fully public data release.
The IDs of samples included in our study were provided in Supplementary Data 1, and
the corresponding DOIs were referenced from the database.

Code availability
The methods described in this manuscript were implemented in the R package tfa
available at: bcm-uga.github.io/tfa/ under a GNU General Public License v3.0. A user

guide and a tutorial are available at: bcm-uga.github.io/tfa/articles/tfa-vignette.html.
Computer codes for simulation and data analyses were made available from a GitHub
repository github.com/francoio/Francois_and_Jay_2020 under a GNU General Public
License v3.0.
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