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Abstract

Confronted with global changes and their potential impacts on biodiversity, an important question is to
understand the ecological and evolutionary determinants of species geographical distributions. In order to
understand how adaptation in heterogeneous environments constrains such distributions, we analyze how the
potential of adaptation along an environmental cline affects the geographical distribution and propagation
dynamics (invasion or extinction) of a single species. We re-analyse a model initially proposed by Kirkpatrick
and Barton using propagation speed to assess whether species distribution is spatially limited or not.

We found that for big adaptation potentials, the species invades space following Fisher’s model, whereas
for small adaptation potentials the propagation depends on the evolutionary challenge to overcome. We have
explicit approximations for the propagation speeds in both cases. We discuss the utility of these propagation
speeds as an eco-evolutionary index based on empirical studies.

Key words: local adaptation; partial differential equation model; quantitative genetics; linear gradient.

1. Introduction

In response to current climate changes, many species have been observed to shift their geographic distribution
(Parmesan and Yohe (2003)). Such changes in the spatial distribution of species may largely alter their co-
occurence, thereby affecting the structure of ecological networks (Tylianakis et al. (2008)), the functioning of
ecosystems and the services they provide. To better understand such consequences, we urgently need to predict
how species establish themselves along environmental gradients, but also to understand the mechanisms deter-
mining species distributions, so that we can forecast their future changes and thus adapt conservation policies.

To tackle this question, the most common approach relies on the development of niche-based species distri-
bution models (SDMs), which provide predictions of species distributions based on presence/absence data and
their association with a given set of environmental variables (refer to Guisan and Zimmermann (2000) for an
introduction to SDMs or to Guisan and Thuiller (2005) for a more recent review; see also Thuiller et al. (2003)
for a comparison of the performance of some SDMs). SDMs usually assume niche conservatism and range equi-
librium, thus failing to include local adaptation. On some occasions, niche models alone may fail to describe the
observed distribution of a species, especially in out-of-equilibrium cases such as species invasions. For instance,
Broennimann et al. (2007) document a case study in which an invasive species has a different niche in its in-
vasion range, although in this case data does not allow to determine if differences are adaptive (due to a shift
in fundamental niche) or ecological (due to another possible realized niche taking place). Understanding such
aspects would require the development of models which would simultaneously consider the niche model and a
mechanistic approach of eco-evolutionary dynamics (e.g., Bush et al. (2016)).

Although adaptation to local conditions should help a population expand its range, boundary populations
may be constrained in their adaptation due to the negative effect of gene flows from more central populations,
i.e. genetic swamping. For example, Sanford et al. (2006) and Dawson et al. (2010) observed high migration load
in boundary populations of a fiddler crab (Uca pugnax ) and a volcano barnacle species (Tetraclita rubescens),
respectively, while showing that individuals from the range limit are able to produce offsprings that would
survive past the limit. Adaptation may take place on relatively short timescales: Balanya (2006) has shown
that Drosophila subobscura at the leading edge of an ongoing invasion are able to adapt to local conditions while
establishing a cline of genetic characteristics linked to temperature adaptation, following climatic gradients. Rapid
adaptation and genetic swamping are quite general phenomena not restricted to species with short generation
time. High gene flow has for instance been suggested to occur in many tree species Kremer et al. (2012), with
potentially important effects on genetic variance at edge populations. Such evolutionary constraints may play a
critical role in the persistence of tree species and in the variations of their geographic distributions, affecting the
future of forest ecosystems under climate change scenarios. These studies underline the crucial need of including
local adaptation when studying species distributions, and even more so when the aim is to understand and
forecast future distributions under global change.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 27, 2019. ; https://doi.org/10.1101/529735doi: bioRxiv preprint 

https://doi.org/10.1101/529735
http://creativecommons.org/licenses/by-nc-nd/4.0/


One monospecific spatially structured model accounting for both local adaptation and migration was presented
by Kirkpatrick and Barton (1997). This model explains limited range distribution as an equilibrium between
migration and genetic load from maladapted populations. Since there are no known explicit solutions, this model
needs to be applied through numerical simulations.

In the present work, we take another look at the model by Kirkpatrick and Barton (1997) to study how
adaptation alters the propagation and distribution of a single species in a linearly varying environment. Our
goal is to better understand the propagation dynamics according to adaptation potential for a single species
and to derive useful approximations for limit-adaptation cases. We address the question of how adaptation
potential affects the geographical dynamics of a single species by providing approximations of species propagation
speed under extreme scenarios (very low or very high adaptation potential) and using extensive simulations to
understand intermediate scenarios. We link the local adaption and limits to range size to the variation in
propagation speeds.

2. Kirkpatrick and Barton’s model for a single species’ range evolution
along a linear gradient

The one-species model proposed by Kirkpatrick and Barton (1997) is a spatially explicit model in heterogeneous
space accounting simultaneously for migration effects and adaptation. It assumes individuals are characterized
by a phenotypic trait and that heterogeneity in space is given by a continuous cline of the optimal value for this
phenotype. Individuals whose phenotype deviates from this optimum will suffer a fitness penalty. Although this
model assumes that the environmental cline remains fixed in time, it provides a framework to study, for example,
the effects of climate change on species distributions (see e.g. Norberg et al. (2012)), as it can easily be modified
to include a time-varying environment. It is also suitable to study invasion scenarios, linking the characteristics
of the environment and those of the introduced population.

The model assumes infinite one-dimensional linear space and considers local population density n(t, x), i.e. the
density of individuals at location x at time t ≥ 0, and the mean phenotypic value of this population, z̄(t, x), at this
time and this location. The environmental cline is modeled through the optimal phenotype function θ(x) = Bx
meaning the optimal value varies linearly through space. After a renormalization of the original variables and
parameters in the full system (see Kirkpatrick and Barton (1997) for details), the equations governing density
and phenotype dynamics are given by

∂n

∂t
=
∂2n

∂x2
+ n

(
1− n− 1

2
(z̄ −Bx)

2

)
, (1a)
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∂x2
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∂ log n

∂x

∂z̄

∂x
−A (z̄ −Bx) , (1b)

where A is a measure of adaptation potential of the species (A is proportional to genetic variance) and B is the
rate of change of the optimal phenotype through space, also considered to be a measure of spatial heterogeneity.

System (1) describes the eco-evolutionary dynamics of the species under local adaptation and spatial diffusion.
The first term of Equation (1a) models the dispersal of the population through a diffusion process. The second
term contains the local ecological dynamics, corresponding to the logistic model and a penalizing term that
captures local maladaptation. The first term of equation (1b) models the diffusion of genes that is linked to
the diffusion of individuals, while the second term corrects for asymetries in gene flows (gene flow being more
important from large populations to small populations than the other way round). The third term corresponds
to the effects of local adaptation due to directional selection, driving the mean phenotype value z̄ toward the
local optimum Bx at a rate A.

Migration and adaptation potential A have antagonistic effects, whose results vary depending on the spatial
heterogeneity B. Depending on A and B, the population may survive in a limited space (for intermediate values
of A and B), may invade the whole space (when adaptation is larger than a certain critical value, allowing the
population to surmount spatial heterogeneity) or may become extinct (when adaptation is too small with respect
to spatial heterogeneity; (Kirkpatrick and Barton (1997))). This result can be partially re-stated in terms of
propagation speeds (Fisher (1937)), which answer at the same time the question of geographical dynamics of the
population: if we consider as initial condition a geographical frontier, i.e., the initial condition is n(0, x) = 1 for
x ≤ 0 and 0 otherwise, with the species being perfectly locally adapted (z̄(0, x) = Bx) wherever it is present
(n(0, x) = 1), then the solutions behave like propagating fronts with a characteristic speed. For Kirkpatrick and
Barton’s one-species model, the direction and magnitude of the advancing front depend on the parameters A and
B. Positive speeds mean the front moves towards positive values of x so that the species progressively invade
(hereafter invasion fronts). On the contrary, negative values mean that the species distribution retracts (either
to a limited range or toward the extinction of the species, hereafter extinction fronts). We dub cKB (A,B) the
speed of the solution of system (1) for parameters A and B.
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In terms of propagation speeds, species whose borders correspond to invasion fronts are able to continuously
adapt to new environments and thus will always be able to invade the whole space. On the contrary, negative
speed fronts only mean maladapted gene flow is stronger than adaptation, causing local extinctions that can lead
to two outcomes: either the population becomes extinct, or two fronts from different directions collide canceling
out maladaptations in the center and allowing the species to survive in a limited space. We cannot distinguish
between these two last outcomes based on speed alone, another demographic criterion is needed to do so. Refer
to Figure 1 for a clearer link between propagation speeds and spatial distribution.

3. Explicit approximation of propagation speeds under various adap-
tation scenarios

We investigate the variation of propagation speeds for different values of parameters A and B, with a focus on the
two limit cases of infinitely strong adaptation and very weak adaptation potentials. Even though it is unlikely
species adapt infinitely fast, the variation in propagation speeds between these two limit cases can tell us when
a finite adaptation is strong enough so that it is qualitatively infinite.

One first important result is that when adaptation goes to infinity, A → ∞, the system (1) becomes the
Fisher-KPP equation (after Fisher (1937) and Kolmogorov et al. (1937), see the Appendix A.1 for details), given
by

∂n

∂t
=
∂2n

∂x2
+ n (1− n) (2)

in its non-dimensional form (refer to the appendix for details on this infinite adaptation limit). Its solutions
are traveling fronts with a minimal admissible speed of cF = 2 (or, in its dimensional form, c∗F = 2

√
rδ with r

corresponding to the intrinsic growth rate of the population and δ a measure of its dispersal), so that for infinite
adaptation potential invasion speed is finite and constant. Equation (2) has an infinity of solutions for different
front speeds c ≥ cF , but cF is the smallest one and the only one with biological meaning.

We can draw two other important conclusions thanks to equation (2). First, in an ecological context, the
Fisher-KPP equation can only model propagation of species whose adaptation is so fast that they are continuously
well-adapted everywhere, since the equation is the same as the system (1) neglecting maladaptation (and all the
terms involving the phenotypic trait). Second, invasion speeds for the one-species model given by system (1) will
always be lower than cF = 2, since growth rate in the Fisher-KPP model is always larger than the one of the
KB model, because maladaptation effects can only decrease population fitness (having thus a negative effect on
speed). This means that the maximum speed of range expansion is only constrained by the species growth rate
and dispersal ability (since it is c∗F = 2

√
rδ in its dimensional form).

At the other extreme of the adaptation gradient, the limit of small adaptations A → 0 needs to be studied
more carefully. For A = 0, we would have a non-adapting species which cannot invade environments it is not
suited to. We consider the term D = B√

2A
which we dub the evolutionary challenge, since it embodies the

spatial heterogeneity to overcome for a given adaptation potential (measured not directly as A, but as
√

2A).
We consider species with decreasing adaptation potentials while keeping a constant evolutionary challenge (i.e.
A→ 0 with D constant). This provides a way to study a small adaptation potential while scaling the environment
accordingly. This small adaptation limit has already been studied by Mirrahimi and Raoul (2013) and there is
an explicit expression for the propagation speed for such low adaptation scenarios, given by:

cD =

√
A

20

7

(
2

D
− 9D

)
+ 3

√(
2

D
− 9D

)2

+ 40

 , (3)

or c∗D = cD
√
rδ in its dimensional form.

Note that this expression is decreasing in D, meaning that for larger evolutionary challenges the invasion
speed will be smaller (refer to Figure 2). Also, invasion speed depends on the spatial heterogeneity (i.e., B)
only through D. The value Dcrit = 2

3 gives an invasion speed of 0, which means that for very small adaptation
potentials, when the challenge is larger than Dcrit the species goes extinct, while when the challenge is smaller
they are able to invade at a speed c∗D. Notice how c∗D is proportional to

√
rδ, as is Fisher-KPP’s speed, corrected

by a factor cD that depends on the adaptation potential
√
A and challenge D, which corresponds to a loss in

invasion efficiency due to maladaptation effects.

4. Relating propagation speeds to adaptation regimes

A natural question is then how these extreme scenarios relate to Kirkpatrick and Barton’s one-species model in
terms of propagation speeds, which provides a method to concretely determine what strong and weak adaptations
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Figure 1: Panels showing the relation between a propagation wave and the respective population density distribu-
tion. In every panel, color blue indicates the initial condition, color red indicates an intermediate value (t = 20)
and color yellow a long time (t = 50) distribution. The panels on the left column feature the dynamics of a
boundary, whereas the panels on the right column feature the dynamic of an initially limited-range population
distribution, with the same parameters (A,B) for each row. The first two rows show that a negative propagation
speed may drive a population towards extinction (first row) or to a limited range distribution (second row). The
third row shows that a positive propagation speed leads to an unlimited range distribution.
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Figure 2: Propagation speed cD as a function of the environmental challenge D, as defined by formula (3).
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Figure 3: Approximated speeds for Kirkpatrick and Barton’s one-species model along with several important
lines showing some regime changes in the original system (1). The color gradient shows the speed value for
different (A,B) parameters (see color legend on the right-hand side of the plot). The thick red line shows the
regime change between extinction and limited ranges, as approximated by Kirkpatrick and Barton (1997). The
thick blue line corresponds to the regime change between limited and unlimited range, which is also the zero-
level line for the invasion speed (also in Kirkpatrick and Barton (1997), Figure 2). The blue hatched area is the
zone in the parameter space where the difference between propagation speed in Kirkpatrick and Barton’s model
and Fisher-KPP’s model is at most 0.1, marking the strong adaptation regime; the red hatched area is where
propagation speed in Kirkpatrick and Barton’s model is well approximated (i.e. the difference is at most 0.1) by
the formula by Mirrahimi and Raoul (2013), i.e., given by (3), marking the weak adaptation regime.

mean. To understand this, we numerically approximate the solution of the one-species model for a variety of
parameter pairs (A and B) and compare the results to those given by the extreme adaptation limits (Figure 3.
Refer to the Appendix A.2 for details on the numerical scheme).

First, note that propagation speed is increasing as a function of A and decreasing as a function of B, which is
intuitive since larger adaptation potential and smaller spatial heterogeneity imply species will invade more easily.

The blue hatched area in Figure 3 shows where the difference between the one-species model speed cKB

and Fisher-KPP’s model speed cF is at most 0.1. In this sense we can say that the blue dotted line marks the
limit between strong and intermediate adaptation potential. A simple linear regression lets us approximate this
region analytically by the inequality A ≥ 100.65B. In other words, whenever adaptation potential surpasses the
critical value Acrit = 100.65B maladaptation effects are negligible, and species invade at a maximal speed, well
approximated by the Fisher-KPP model.

The red hatched area in figure 3 marks where the speed in the one-species model is close to the small
adaptation limit speed given by (3) (i.e. the difference between the propagation speed and the speed given by
this formula is at most 0.1), so that in this zone adaptation is weak; thus the red dotted lines establish the limit
between weak and intermediate adaptation potential.

The thick blue line corresponds to the zero-speed line, marking the division between positive and negative
speeds. In other words, this line corresponds to the limit between unlimited and limited range which was studied
in Kirkpatrick and Barton (1997).

Interestingly, this leaves only a small zone of parameter space that cannot be explicitly approximated. Prop-
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agation speeds then need to be assessed numerically since we do not have explicit formulae for them. This
parameter space corresponds to the area outside the extinction regime (below the thick red line) that is not
hatched, which we dub the intermediate adaptation potential zone. We also decided not to consider the speeds
in the extinction zone since behavior in this zone is not very interesting, although we were able to measure
corresponding extinction speeds.

We can find an explicit approximation for this line (by fitting a two-degree polynomial on the level-line, using
MATLAB’s methods) which is given by:

log10Bcrit = 0.085(log10A)2 + 0.707 log10A+ 0.125. (4)

This means that for a given level of adaptation A, the population can only invade the whole space if the
heterogeneity is smaller than Bcrit, otherwise it will suffer local extinctions, being restricted to a limited range or
disappearing altogether. Solving the equation for A, we can interpret this result the other way round: for a given
level of spatial heterogeneity B, the population will be able to invade only if its adaptation level is greater than
the solution A∗. Unfortunately, the method we used does not provide us with an explanation or an intuition as
to why the regime change occurs on this line, but it is nevertheless an improvement of the condition found by
Kirkpatrick and Barton (1997), Bcrit =

√
2A, or equivalently,

log10Bcrit = log10A+ 0.150515. (5)

5. Discussion

Our model highlights how species adaptation can affect species extinctions and their geographical distributions.
In this single-species model, explicit propagation speed and conditions of extinction can be obtained for most
of the parameter space. These approximations highlight how different mechanisms act when considering low- vs
high-adaptation potential.

The single-species adaptation model by Kirkpatrick and Barton (1997) shows various interesting behaviors.
Even though there are no known explicit solutions to this system of equations, we were able to relate this model
to other works, thereby providing explicit propagation speeds for most of the parameter space (refer to Figure
3 and its legend for details). Although the purpose of Kirkpatrick and Barton’s one-species model was not to
study invasion processes, the usual approach to understand similar models is through the analysis of the speed
of propagating fronts (as done in the first articles Fisher (1937) and Kolmogorov et al. (1937) or in literature
in general, Skellam (1991), Shigesada and Kawasaki (1997)). This corresponds to the speed of ongoing local
invasions (positive speed fronts) or local extinctions (negative speed fronts), which is the approach we took
here. The original study by Kirkpatrick and Barton (1997) focused on the antagonistic effects of gene flow in
a heterogeneous environment to understand the conditions under which a population has a finite geographical
range. In order to comment on their results, it is helpful to recall the definitions of their compound parameters:
the adaptation potential A = G/(2Vsr

∗) is the additive genetic variance of the population G divided by the
basic population growth rate r∗ and the strength of stabilizing selection (a smaller value of Vs meaning stronger
selection); and the spatial heterogeneity B = bσ/(r∗

√
2Vs) is proportional to the environmental gradient b and

the dispersal rate σ (which makes sense since the more an individual disperses, the more the environment will be
different proportionally to b). Although the approach developed by Kirkpatrick and Barton (1997) provided an
efficient way to understand the determinants of range boundaries, it only deals with a small part of the parameter
space (refer to Figure 3). Our results indicate that interesting conclusions, mostly about adaptation potential,
can be obtained by looking at propagation speeds in the whole parameter range for A and B. Besides, the speeds
of advancement or retraction of these models is interesting because it gives a way to roughly predict the future
repartition of the modeled species (i.e. extinction/retraction or expansion of its range).

Our analysis revealed that adaptation potential, measured through parameter A, has a strictly positive effect
on invasion speed. This speed is always smaller than that of Fisher’s model (Fisher (1937)), which neglects spatial
heterogeneity. Thus, adaptation potential not only dictates whether a species can establish itself over space in
a limited or unlimited manner, but it also helps overcome spatial heterogeneity, as shown by its invasion speed.
For very strong adaptation potentials, the effects of spatial heterogeneity become negligible, with invasion speed
being nearly equal to that of Fisher’s model. This is what we called the “strong adaptation zone” in Figure 3.
For small adaptation potentials, the explicit approximation suggests that invasion speed critically depends on the
evolutionary challenge D = B/

√
2A (equation (3)). This means that the fate of species with small adaptation

potential depends not so much on their adaptation capabilities, but rather on the spatial gradient to overcome
given their evolutionary potential. The more challenging an environment is, the slower the invasion speed will
be. Some case studies suggest that such constraints do act in nature. Consider for instance the reinvasion of
its historic range by the California sea otter (Enhydra lutris) and the invasion of the sugar cane toad (Rhinella
marina) in Australia. In the first case, Lubina and Levin (1988) showed important differences in expansion
speeds at the north and south limits of the otters’ ranges possibly due to important environmental differences. In
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the second case, Urban et al. (2008) show that the invasion speed for the cane toad is not constant in time, and
that periods of acceleration or decrease may be linked to changes in the environmental clines being invaded. In
both cases, it is safe to suppose that the adaptation potential of the species is small, since both invasions started
with only a few individuals.

Excluding the zone in Figure 3 where the species becomes extinct, the two approximations we used provide
good descriptions of speeds in most of the parameter space. Having covered the infinite- and small-adaptation
limits, only speeds in intermediate regimes remain to be studied. The explicit expressions for speeds we found
make our model highly applicable. These explicit propagation speeds are also interesting because they let us
determine where the limit between limited and unlimited range occurs. This limit matches the 0-speed iso-
cline, corresponding to the zones where either increasing spatial heterogeneity or decreasing adaptation potential
lead to species extinction. Limited ranges occur when two extinction fronts from opposite directions meet and
maladaptation manages to cancel out in the middle, which is possible before population decreases critically if
selection is not too strong. This is another motivation to study the intermediate-adaptation regimes more in
depth.

We can draw two other important conclusions from this analysis: knowing a species adaptation potential A and
the rate of change of its optimal phenotype over space, B, we can determine whether the species is going to invade
space or not and at what speed. As a corollary, knowing the speed of advancement of a species and estimating
the degree of spatial heterogeneity B can give an indirect assessment of the species adaptation potential A, which
is directly related to its genetic variance. In other words, invasion speed can be used as an eco-evolutionary index
allowing us to draw conclusions on genetic characteristics of a population. For instance, the previously cited cases
of the sea otter and the cane toad (Lubina and Levin (1988) and Urban et al. (2008), respectively) are ideal cases
to which our framework could be applied, for example to determine whether adaptation potential is the same
along the different environments, which would explain the difference in invasion speeds only as a consequence
of changing environments (i.e., different spatial heterogeneities B) and not due to genetic characteristics of the
species in question.

The idea of using ecological emergent properties of a system to approximate evolutionary quantities echoes
some approaches from evolutionary demography. In Hiltunen et al. (2014), prey evolution affects the phase
diagram of consumer-resource oscillations. The authors propose, based on cycle observations alone, to compute
an Evolutionary Dynamics Index quantifying ongoing prey evolution. In our case, having sufficient knowledge of
the slope of the optimal niche (B) and of adaptation potential (A) lets us draw predictions on spatial dynamics.
In Yoshida et al. (2003) it is also possible to infer characteristics of the population genetics based on the nature
of the observed predator-prey cycles.

It would be valuable to use the explicit formula we provide to compare invasion speeds with those observed in
nature. Such a work has already been done for numerical approximations of Kirkpatrick and Barton’s one-species
model. Garćıa-Ramos and Rodŕıguez (2002) explored evolutionary speeds given by this model and compared
them to the observed speeds for the expansion of the muskrat (Ondatra zibethicus) in Europe. They found
empirical expansion speeds to be within the range predicted by the model. However, discrepancies have also
been shown between observed expansion speeds and those predicted by the Fisher model (equation (2)), as
remarked in Grosholz (1996), with speeds being either under- or overestimated. While these discrepancies may
be due to an incorrect estimation of ecological parameters, we suggest other possibilities, such as limits due to
lagging species adaptation or variation in species interactions.

In order to focus on the role of adaptation, we took a simple approach to ecological dynamics, relying on a
simple logistic growth. In the context of species invasion, however, densities are low at the front, so that Allee
effects may be commonly encountered. Petrovskii et al. (2002, 2005) showed that for a population model with
Allee effects, it is not always possible to observe traveling waves and that various modes of propagation and
persistence may be found (for example, patchy invasion). Burton et al. (2010) and Bénichou et al. (2012) also
show that expanding fronts usually select for dispersive traits, so that invasion speeds are usually larger than
predicted by constant diffusion models.

Changes in species distributions are nowadays commonplace, as species track changes in their environment
and due to the accumulation of invasive species transported by human activities. Our results highlight how geo-
graphical shifts may rely on different mechanisms when species adaptation happens slowly or fast. Understanding
the future of diversity depends on the development of models of co-evolving ecological networks in heterogeneous
space, and the gathering of empirical data documenting simultaneously changes in species trait and distribution.

A. Appendices

A.1. Infinite adaptation case

We can show that when adaptation potential is high, i.e. when A → ∞, then the solution of the KB equations
(system (1)) converges to the solution of the Fisher-KPP equation (equation (2)). This may seem intuitive, since
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population density is penalized by the maladaptation term 1
2 (z −Bx)

2
, and when population adapts rapidly,

this term should become negligible.
We propose that, for fixed values of the cline steepness B, when A→∞ then the population density for the

KB equations, nA,B , tends to the solution of the Fisher-KPP equations nF . We may write this as n∞,B = nF .
We propose the change of variables w = z −Bx so that equations (1a) and (1b) are rewritten as

∂tn = ∂2xxn+ n(1− n)− 1

2
nw2 (6a)

∂tw = ∂2xxw + 2∂x lnn (∂xw +B)−Aw. (6b)

If we take equation (6b), multiply by w and integrate over x, we obtain (thanks to the integration by parts
formula)

∂t

∫
w2 = −

∫
(∂xw)

2
+ 2

∫
w∂x lnn (∂xw +B)−A

∫
w2. (7)

We wish to find estimates for the second term in the right hand side of this equation. We will assume that
∂x lnn is uniformly bounded over A, i.e., for fixed valued of B, |∂x lnn(t, x)| ≤ C for every (t, x) with C a
constant that does not depend on A.∫

w∂x lnn (∂xw +B) =

∫
w∂x lnn∂xw︸ ︷︷ ︸

I1

+B

∫
w∂x lnn︸ ︷︷ ︸

I2

We can bound the first integral since

|I1| ≤
∫
|∂x lnn| |w∂xw| ≤ C

(∫
w2

) 1
2
(∫

(∂xw)
2

) 1
2

,

and thanks to Young’s inequality we can take some ε > 0 so that

|I1| ≤
C

2

(
ε−1

∫
w2 + ε

∫
(∂xw)

2

)
.

We need additional assumptions to obtain similar bounds on the integral I2. For example:

1. If additionally ∂x lnn(t, ·) ∈ L2(R) for every A and the L2 norms are uniformly bounded over A, say∫
(∂x lnn)

2 ≤ C1 and C1 does not depend on A,

|I2| ≤
∫ ∫

|w∂x lnn| ≤ 1

2

(∫
w2 +

∫
(∂x lnn)

2

)
≤ C1

2
+

1

2

∫
w2,

where we used Young’s inequality.

2. If additionally ∂x lnn(t, ·) ∈ L1(R) with a uniform bound over A, then we can use Hölder’s inequality in
the following way

|I2| ≤
∫
|w∂x lnn| =

∫
|∂x lnn|

1
2 |∂x lnn|

1
2 w ≤

(∫
|∂x lnn|

) 1
2
(∫
|∂x lnn|w2

) 1
2

≤
√
CC1

(∫
w2

) 1
2

≤ CC1

2
+

1

2

∫
w2.

3. If we do not make additional assumptions on ∂x lnn but we suppose for example that we can control the
L1 norm of w by its L2 norm, and the bound is uniform over A, we have

|I2| ≤
∫
|w∂x lnn| ≤ C

∫
|w| ≤ CCw

(∫
w2

) 1
2

≤ CCw

2
+

1

2

∫
w2.

In any case, we found a bound of the form |I2| ≤ C3 + 1
2

∫
w2, with C3 not depending on A.

Replacing the previously found bounds on expression (7) we find that

∂t

∫
w2 ≤ −

∫
(∂xw)

2
+
C

2

(
ε−1

∫
w2 + ε

∫
(∂xw)

2

)
+BC3 +

B

2

∫
w2 −A

∫
w2

=

(
Cε

2
− 1

)∫
(∂xw)

2
+

(
C

2ε
+
B

2
−A

)∫
w2 +BC3

≤
(
C

2ε
+
B

2
−A

)∫
w2 +BC3,
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which is true for ε small enough (for example, 0 < ε ≤ C−1). Defining C4 = C
2ε + B

2 , this implies that∫
w(t, x)2dx ≤

∫
w(0, x)2dx e(C4−A)t − BC3

C4 −A

(
1− e(C4−A)t

)
which tends to 0 for every t when A tends to ∞. This implies in turn that w(t, x) −−−−→

A→∞
0.

We conclude that for any value of B, the function w(t, x) tends to 0 when A tends to infinity. This implies
that, in the limit, the population density n∞,B satisfies the Fisher-KPP equation, so n∞,B = nF . In other words,
the Fisher-KPP equation can be seen as a case of the KB equations when population adaptation potential is
infinitely high.

A.2. Numerical schemes

We present here the discretization we used to approximate the propagation speed in Kikpatrick and Barton’s
model. Since it is already cumbersome to analyze it for the one-species model, for the two species model we only
present the used scheme and describe briefly the problems we encountered.

As usual for a finite differences scheme, we consider a discretization of a finite time interval [0, T ] and a time
step ∆t, giving a time mesh t = 0, t1 = ∆t, etc., with the general formula tk = k∆t, k ≥ 0; we also consider an
one-dimensional space interval [−L,L] and a fixed spatial step ∆x so that we have mesh points x` = −L+ `∆x,
` ≥ 0.

When considering an explicit time-forward scheme, we find the system

nk+1,` − nk,`
∆t

=
nk,`+1 − 2nk,` + nk,`−1

∆x2
+ nk,`

(
1− nk,` −

1

2
(z̄k,` −Bx`)2

)
(8a)

zk+1,` − zk,`
∆t

=
z̄k,`+1 − 2z̄k,` + z̄k,`−1

∆x2
− 2

1

nk,` + ε

nk,`+1 − nk,`−1
2∆x

z̄k,`+1 − z̄k,`−1
2∆x

−A (z̄k,` −Bx`) . (8b)

Notice that the solution for nk+1,` in terms of the nk,· is almost a convex combination of these terms, explicitly

nk+1,` =
∆t

∆x2
(nk,`+1 + nk,`−1) +

[
1− 2∆t

∆x2
+ ∆t

(
1− nk,` −

1

2
(z̄k,` −Bx`)2

)]
nk,`, (9)

for it to be a (sub-)convex combination of the solution at different points of the mesh at the instant tk, we need
the coefficients to be greater than zero and for their sum to be at most 1. Supposing that any desirable solution
satisfies 0 ≤ nk,` ≤ 1 for any k, ` ≥ 0, the first condition is verified to be true if

2∆t

∆x2
+

∆t

2
(z̄k,` −Bx`)2 ≤ 1 for every k, ` ≥ 0. (10)

It is difficult to predict the values of z̄k,` since it is ill-defined whenever n = 0 and simulations show instabilities
when the nk,` are close to zero and the mesh is not well chosen, however, the well working cases show that at
the front tip there is an almost constant distance between z̄k,` and the optimal phenotype Bx`. Since in some
simulations we imposed z̄0,` = 0 everywhere, and that locally this distance tends to decrease when z̄k,` is too far
from the optimum, then |zk,` −Bx`| cannot be bigger than BL for a sufficiently big spatial window [−L,L]. We
find thus that if the condition

2∆t

∆x2
+

∆t

2
B2L2 ≤ 1, or equivalently, ∆t ≤ 1

2∆x−2 + 1
2B

2L2
(11)

is met, then the stability condition (10) is valid.
Notice that when ∆x−2 is big enough compared to B2L2 then condition (11) is just the usual CFL-condition

for the stability of explicit finite differences schemes for reaction-diffusion equations. However if B and L are
bigger, this stability condition becomes highly restrictive. This actually made explicit schemes of this kind
unpractical for our study.

We proposed our own non-linear implicit scheme for Kirkpatrick and Barton’s equations given, in the same
presented mesh, by the following equations:

nk+1,` − nk,`
∆t

=
nk+1,`+1 − 2nk+1,` + nk+1,`−1

∆x2
+ nk+1,`

(
1− nk,` −

1

2
(z̄k,` −Bx`)2

)
, (12a)

zk+1,` − zk,`
∆t

=
z̄k+1,`+1 − 2z̄k+1,` + z̄k+1,`−1

∆x2

− 2
1

nk+1,` + ε

nk+1,`+1 − nk+1,`−1

2∆x

z̄k+1,`+1 − z̄k+1,`−1

2∆x
−A (z̄k+1,` −Bx`) . (12b)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 27, 2019. ; https://doi.org/10.1101/529735doi: bioRxiv preprint 

https://doi.org/10.1101/529735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Notice that, for each time point tk+1, equation (12a) is linear on the vector nk+1,· given that the values nk,`
and z̄k,` are known for each ` ≥ 0 and thus it may be solved by matrix inversion techniques, with coefficients
depending on the solution at previous time step tk. Once the vector nk+1,· is known, the equation for the vector
z̄k,· is just a linear one (with time-varying coefficients) that can also be solved with matrix inversion techniques.

Although we did not study the stability of the finite differences scheme (12), it behaved well for reasonable
mesh parameters, and we were thus able to approximate the propagation speeds for a large family of (A,B)
values.
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