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Abstract 
Biodiversity accumulates hierarchically by means of ecological and evolutionary processes and 
feedbacks. Reconciling the relative importance of these processes is hindered by current 
theory, which tends to focus on a single spatial, temporal or taxonomic scale. We introduce a 
mechanistic model of community assembly, rooted in classic island biogeography theory, which 
makes temporally explicit joint predictions across three biodiversity data axes: i) species 
richness and abundances; ii) population genetic diversities; and iii) trait variation in a 
phylogenetic context. We demonstrate that each data axis captures information at different 
timescales, and that integrating these axes enables discriminating among previously 
unidentifiable community assembly models. We combine our massive eco-evolutionary 
synthesis simulations (MESS) with supervised machine learning to fit the parameters of the 
model to real data and infer processes underlying how biodiversity accumulates, using 
communities of tropical trees, arthropods, and gastropods as case studies that span a range of 
spatial scales. 
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Introduction 
Biodiversity is structured hierarchically across spatial, temporal, and taxonomic scales (Leibold 
& Chase 2019). Fluctuations of species abundances within communities operate on ecological 
timescales, on the scale of handfuls or tens of generations. Population genetic variation, by 
contrast, accumulates and degrades over timescales of tens to tens of thousands of generations 
(Leffler ​et al.​ 2012), while phylogenetic and functional diversity accumulate even more slowly, 
on the order of thousands to millions of generations (Uyeda ​et al.​ 2011). Over time, various 
fields have emerged to investigate processes within individual levels of organization 
(macroecology, comparative population genetics, macroevolution), but only recently have 
inroads been made to combine theory across multiple scales of space and time into a general 
unified model (Vellend 2010, 2016). Complicating matters, there is little consensus over 
whether, and to what degree, ecological interactions contribute to the structuring of ecological 
communities (Rabosky & Hurlbert 2015; Harmon & Harrison 2015). Likewise, the relative 
contributions of colonization and ​in situ​ speciation to the composition of community structure 
remains an open question (Patiño ​et al.​ 2017). Feedbacks across biological levels of 
organization are well known, yet we continue to lack a model of community assembly that 
accounts for such feedbacks.  
 
Discovering universal rules that structure ecological communities is a challenging task given the 
difficulty of disentangling the relative influence of faster ecological mechanisms from slower 
evolutionary processes (Ricklefs 2004), yet a unification of theory across multiple scales will 
provide significant insight into the formation of biodiversity (McGill ​et al.​ 2019). Ecological 
models of community biodiversity inspired by the Equilibrium Theory of Island Biogeography 
(MacArthur & Wilson 1967) and the Neutral Theory of Biodiversity and Biogeography (Hubbell 
2001) have focused on predicting the shape of the local species abundance distribution (SAD). 
As central as the SAD is to macroecology and community ecology, it is often insufficient to 
distinguish among different models of community assembly, particularly at equilibrium ​(Chave ​et 
al.​ 2002; McGill ​et al.​ 2007, Haegeman & Etienne 2011)​. ​Progress has been made toward 
linking community ecology models with population genetics ​(Baselga ​et al.​ 2013; Baselga ​et al. 
2015; Vellend 2005)​, however, current theor​y either lacks an explicitly population genetic 
foundation (Vellend 2005), or considers genetic variation only of a focal species (e.g. Laroche ​et 
al.​ 2015). A great deal of work has been done to incorporate phylogenetic information with 
abundance data to make inferences about community assembly processes (Webb ​et al.​ 2002, 
Jabot & Chave 2009). While such approaches make useful predictions, they are predicated on 
assumptions of equilibrium within the local community, and also assume that the phylogeny is a 
reliable proxy for functional trait diversity (Cavender-Bares ​et al.​ 2009, Mayfield & Levine 2010). 
There have been other efforts to unify different time-scales with mechanistic eco-evolutionary 
models of assembly. For example ​Cabral ​et al.​ (2019)​ unify population-level and evolutionary 
timescales to investigate the dynamic relationship between community age, competition, and 
local richness. Likewise, ​Pontarp ​et al.​ (2019a)​ develop a trait-based, spatially explicit 
eco-evolutionary model to make inferences about prey and predator niche width with potentially 
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diverse data types. Incorporating temporal dynamics can help to distinguish among processes 
(Azaele ​et al.​ 2006; Chisholm & O’Dwyer 2014; Jabot ​et al.​ 2018; Kalyuzhny ​et al.​ 2015; Nee 
2005; Ricklefs 2006)​, yet current theory fails to generalize across levels of biological 
organization. Adding more axes of data to process-based models without increasing model 
complexity at the same rate is therefore a necessary advance to break this many-to-one 
mapping of hypotheses to observation ​(McGill ​et al.​ 2007; Leibold & Chase 2017)​. 
 
The massive multi-dimensional datasets that continue to emerge from high-throughput 
biodiversity investigations applying community-wide surveying techniques such as eDNA 
(Deiner ​et al.​ 2017)​, metabarcoding (Andújar ​et al.​ 2018; Dopheide ​et al.​ 2019), and 
remote-sensing technologies that can directly infer trait data ​(Cavender-Bares ​et al.​ 2017)​, are 
therefore timely. However, the challenges associated with moving beyond descriptive 
approaches of interpretation and inference have limited broader understanding of processes 
generating biodiversity patterns (but see ​Bohan ​et al.​ 2017; Derocles ​et al.​ 2018)​. Historically 
there have been two general approaches to investigate the evolutionary and assembly 
processes underlying the patterns we observe in nature: 1) “process-first” approaches that use 
first principles to derive generative mechanisms to make predictions of a single data type under 
the assumptions of an idealized community ​(Gavrilets & Vose 2005 ​; Rosindell ​et al.​ 2012; 
Marquet ​et al.​ 2014); and 2) “pattern-first” approaches that reveal aggregate differences in 
macroecological patterns from real world systems across a range of spatial and temporal scales 
(Craven ​et al.​ 2019; Keil & Chase 2019; Ricklefs & Bermingham 2001; Rominger ​et al.​ 2016; 
Wagner ​et al.​ 2014)​. Recent advances in simulation-based inference under increasingly 
complex models provide a third option of unifying multiple processes and multiple data types 
across different scales (e.g. Overcast ​et al.​ 2019; Pontarp ​et al.​ 2019b). This unified model of 
community assembly, which accounts for fundamental processes underlying biodiversity across 
spatial and temporal scales, could be used to make predictions about multiple axes of 
biodiversity data that include species richness and abundances, distributions of species genetic 
diversities, and trait variation. Several studies have recently shown that such complex biological 
models and resultant high-dimensional data can be tractable within a machine learning 
framework ​(Schrider & Kern 2018; Sheehan & Song 2016)​, providing a robust inference 
procedure for simulation-based interrogation of empirical data. 
 
Here we introduce the Massive Eco-evolutionary Synthesis Simulations (MESS) model, building 
upon classic community ecology theory ​(Hubbell 2001; Leibold & Chase 2017; MacArthur & 
Wilson 1967; Vellend 2016)​ to produce a new mechanistic eco-evolutionary model of 
community assembly for making dynamic joint predictions of observed data. MESS integrates 
ecological models of community biodiversity, comparative population genetics, and community 
phylogenetics, with an explicit focus on incorporating microevolution and ecological interaction 
processes, which are often underrepresented in mechanistic models ​(Leidinger & Cabral 2017)​. 
MESS can simulate community assembly under an array of models across a continuum of 
evolutionary scenarios (niche versus neutral and evolved versus assembled). These simulations 
generate community-scale distributions of abundance, genetic variation, and trait values which 
are summarized using a novel combination of statistics that capture the variation within and 
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among these biodiversity data axes. We combine summary statistics from numerous simulations 
with supervised machine learning methods to test an array of competing models and to estimate 
model parameters relevant to understand complex histories of community assembly and 
evolution. We perform extensive simulation-based cross-validation analyses to explore precision 
and accuracy of model inference. Finally, we apply the model to four empirical datasets 
representing different taxonomic and spatial scales: two arthropod communities with varying 
dispersal capacity from Mascarene islands of different ages (Emerson ​et al.​ 2017; Kitson ​et al. 
2018); plot level sampling of Australian tropical forest trees ​(Rossetto ​et al.​ 2015)​; and 
archipelago-scale sampling of micro-endemic terrestrial gastropods from the Galapagos Islands 
(Kraemer ​et al.​ 2019; Triantis ​et al.​ 2016)​. Most empirical communities obtain approximately 
equilibrium structure, with varying degrees of inferred neutrality, however, the tree community 
was far from equilibrium, possibly because of higher rates of local turnover and stronger 
species-specific environmental filtering.  

Methods 

Metacommunity composition 
The MESS model comprises three components summarised in Figure 1. The metacommunity is             
modelled as a regional pool which is very large and fixed with respect to the timescale of the                  
assembly process in the local community. It consists of a global phylogeny relating all species,               
along with species abundances, and trait values evolved along the phylogeny. The global             
phylogeny is produced by simulating a constant birth-death process with fixed speciation ( )            λ  
and extinction ( ) parameters, until the desired number of species ( ) is reached (​TreeSim  λ · ε         SM     
v2.4; ​Stadler 2019)​. Next, we simulate a Brownian motion model of trait evolution on the               
phylogeny with a root value of 0 and a rate of σ ​2​M (​ape v5.3; ​Paradis ​et al. 2004)​. Traits evolve                    
following a Brownian motion process in the metacommunity, rather than an Ornstein–Uhlenbeck            
process ​(Butler & King 2004)​, because we assume species in the metacommunity are not              
exposed to constraints imposed by the local environmental conditions. Additionally, we do not             
model intraspecific trait variation, on the assumption that trait values represent the mean             
phenotype of each species. Finally, the species abundances are sampled from a log-series             
distribution parameterized by the total number of species ( ) and the total metacommunity        SM      
size ( ).JM   

Local community dynamics 
The foundations of the community dynamics underlying MESS are based on the joint neutral              
model of abundance and genetic diversity described in Overcast ​et al. (2019). Briefly, we              
simulate an individual-based model of community assembly inspired by the ecological neutral            
theory of Hubbell (2001), with assembly in a local community proceeding by a process of birth,                
death, and colonization from the metacommunity (following Rosindell & Harmon 2013).           
Departing from the previous model, MESS local community dynamics can range from fully             
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neutral (species traits have no effect), to various degrees of non-neutrality determined by the              
magnitude that species traits influence individual death probability ( ) through competition or        δ     
environmental filtering. Following Ruffley ​et al. (2019), we based our environmental filtering and             
competition models on a functional relationship common in coevolutionary models which relates            
trait-based interactions with the probability of persistence in a community, scaled by the             
ecological strength ( ; Lande 1976; Nuismer & Harmon 2015; Andreazzi ​et al. 2017). The  sE             sE  
parameter determines either the strength of species-species competitive interactions or          
species-environment filtering interactions depending on whether a competition or filtering model           
is specified. Calculated death rates per species are normalised to provide a vector of death               
probabilities that weight the random sampling of which individual will die in each time step               
according to a multinomial distribution (see Supporting Methods).  
 
As a first approximation, we implement a point mutation speciation process (Hubbell 2001),             
although other modes could be incorporated in future versions of the model ​(Rosindell ​et al.               
2010; Haegeman & Etienne 2017)​. Speciation is implemented phenomenologically and takes           
place with probability upon each birth event. Upon each speciation event, the new individual   ν             
is assigned a unique species identity, and its prior species identity is recorded as the parental                
species for purposes of building the local phylogeny. The descendant species receives a trait              
value sampled from a normal distribution centered on the parent species’ trait value and with               
variance equal to σ ​2​M​/( + ), which is the expected variance of trait differences between   λ λ · ε           
parent and offspring species in the metacommunity. 

Population genetics component 
Following Overcast ​et al. (2019), the forward-time histories of colonization and abundance            
changes through time per species are used to parameterize backward-time coalescent models            
with immigration for each species (Kelleher ​et al. 2016) to generate sampled local nucleotide              
diversities (​π​; Nei & Li, 1979). For reasons of computational efficiency, and to achieve a realistic                
scale in terms of numbers of individual organisms, we use a scaling parameter ( ) to specify             α    
the number of individuals per deme, thus the total number of organisms in the local community                
is given by . This notion of demes, or ‘cohorts’, groups of individuals that perform the same   J · α               
actions at the same time, is conceptually similar to that of ​Harfoot et al. (2014 ​). We use the                  
forward-time frequency of colonization events (scaled to number of colonizations per           
generation) for each species to parameterize the migration probability in the coalescent of             
colonization/divergence with ongoing immigration. Given an observed dataset, coalescent         
simulations match the observed sample sizes of each species for which DNA sequence data              
was obtained with regards to numbers of individuals per species and length of sequence. 

Summary statistics 
We specify an hierarchical structure of summary statistics for each target data axis: species 
abundances, population genetic variation, and trait values. First, several relevant summary 
statistics are calculated per species, for each of the data axes. Next, each species-level statistic 
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is aggregated and community-scale summary statistics are calculated per axis of data, capturing 
information about the distribution of the statistic across the community. We include as 
summaries the first four moments of each community-wide distribution, as well as pairwise 
Spearman rank correlations among all data axes. For correlations involving the trait axis, we 
consider the absolute value of the difference between the species trait and the local trait mean 
as the trait variable. We also calculate the differences between regional and local values of trait 
mean and standard deviation ( and respectively). Additionally, we utilize a framework Δμ

trait  Δσ 
 

trait  

of generalized Hill numbers as community-scale summary statistics, to quantify the shape of 
each distribution ​(Chao ​et al.​ 2014; Gaggiotti ​et al.​ 2018)​. In order to distinguish between these 
diversity metrics when calculated on distributions of different data axes we will refer to the Hill 
number of order ​q​ for abundance data as ​q​D​, for genetic data as ​q​GD​, and for trait (functional) 
data as ​q​FD​. For simplicity, throughout the manuscript we will refer to Hill numbers calculated on 
distributions of each data axis as abundance, ​π​, and trait Hill numbers. 
 
Model behavior 
We simulated communities under a range of parameter values to understand how different 
model processes affect the distributions of community-scale data, and whether the summary 
statistics capture information to discriminate among various alternative models. Given that the 
MESS model is dynamic in time, we controlled for this by running each simulation to the same 
fixed point in the assembly process. We quantified this point as the proportional approach to 
equilibrium (​Λ​) and fixed this parameter at 0.75. This value is measured as the fraction of 
information about the initial state of the local community which is no longer present in the 
current state (see Overcast ​et al.​ 2019 for a full treatment of this parameter​)​. We allowed  toν  
take one of three values corresponding to no-, low- and high-speciation (0, 5.10 ​-4​, and 5.10 ​-3 
respectively). We generated 10,000 simulations for each assembly model 
(neutral/filtering/competition) using fixed parameter values of intermediate magnitude (see Table 
S2 for simulation parameters). We also investigated how summary statistics of different 
assembly model types vary through time. To this end, we generated 10,000 simulations for each 
assembly model, sampling communities at different stages of the assembly process (​Λ​ ~ U[0,1]; 
see Table S3 for simulation parameters). These simulations used fixed parameters of 
intermediate magnitude, allowing only to vary taking one of three values as above.ν  

Machine learning inference and cross-validation 
The MESS package includes an automated multi-stage machine learning (ML) inference 
procedure, complete details of which are available in the supporting materials. Briefly, the 
MESS ML classification and regression procedures can be performed with a number of 
ensemble learning strategies including random forest ​(Breiman 2001)​ and gradient boosting 
(Friedman 2001)​. We quantify model uncertainty on parameter estimates as prediction intervals 
(PIs) using a quantile regression approach (Meinshausen 2006), and we implement posterior 
predictive simulations to assess the goodness of fit of the model to the observed data (Gelman 
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2003). Unless otherwise indicated, all ML algorithms are implemented in python using the 
architecture of ​scikit-learn​ (v0.20.3, ​Pedregosa ​et al.​ 2011)​.  
 
We explored the power, accuracy, and bias of the ML inference procedure to classify 
community assembly models and estimate parameters using simulation experiments and 
cross-validation (CV). To evaluate assembly model classification, we generated 10,000 
simulations per model class (i.e. neutral/filtering/competition) and fixed all MESS parameters at 
intermediate values, varying only the size of the local community (​J​) and the local speciation 
probability ( ) (see Table S4 for simulation parameters). To quantify the accuracy and bias ofv  
MESS parameter estimation utilizing an ML ensemble method regression framework, we 
generated 10,000 community simulations per assembly model class while varying several 
parameters of interest ( , ​J​, ​s ​E​, ​m ​, , and ) using log-uniform or uniform prior distributionsα v Λ  
(see Table S5 for parameters). ML estimator performance was then investigated using a K-fold 
CV procedure whereby simulations were split into training and testing sets, with the model being 
iteratively trained on each K-fold and performance being evaluated as minimized CV prediction 
error on the held out training set. Classifier model adequacy was quantified by the percent error 
rate of misclassification, and regression model accuracy was quantified by the explained 
variance and R​2​ (coefficient of determination) regression scores.  
 
Empirical examples 
As case studies, we selected four systems that occupy different spatial scales and likely occupy 
different locations on the continua of dispersal, speciation, ecological drift and non-neutrality. 
Each system has some combination of community-scale data available for two of the three axes 
which can be considered by the model. In this way we hope to demonstrate the power of MESS 
across taxonomic and spatial scales, using data availability scenarios that might be encountered 
by empirical biologists in the present or very near future. These systems are: 1) spiders from 
Réunion island with abundances collected from ten 50 m x 50 m plots and 1282 individuals 
sequenced for one ~500bp mtDNA region (COI; ​Emerson ​et al.​ 2017)​; 2) weevils from two 
Mascarene islands (Réunion and Mauritius) which have been densely sampled for abundance 
and sequenced for one mtDNA region (~600bp COI) at the community-scale ​(Kitson ​et al. 
2018)​; 3) three subtropical rain forest tree communities scored for multiple continuous traits and 
shotgun sequenced for whole cpDNA ​(Rossetto ​et al.​ 2015)​ and; 4) Galapagos snail 
communities collected from all major islands, sampled for one mtDNA region (~500bp COI; 
Kraemer et al.​ 2019)​ and scored for two continuous traits ​(Triantis ​et al.​ 2016)​. For each 
empirical dataset we conducted 10,000 simulations of each assembly model class and 
generated abundances, trait values, and genetic variation corresponding to genomic regions 
with identical numbers of base pairs under an infinite-sites model at a rate sufficient to generate 
diversity similar to the empirical data (see Supporting Methods for precise empirical data 
curation and simulation procedures). We then conducted a round of ML model selection, 
parameter estimation, and quantile regression to generate parameter estimates and PIs. Finally, 
we implemented posterior predictive simulations to assess goodness of fit of the selected model 
and parameters to each of the observed datasets. 
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Results 
Model behavior 
Simulations generated under different community assembly models produced markedly different 
distributions of community-scale data and summary statistics. First we considered one static 
point in time (at ​Λ​ = 0.75; Fig. 2). Neutral simulations generated communities with higher 
species richness, more even distributions of abundance as summarized by the normalized ​q​D 
values, and higher mean and standard deviation of ​π​ values. Filtering and competition models 
were largely indistinguishable in terms of abundance and genetic diversity, with distributions of 
species richness, and mean and standard deviation of the population genetic statistics broadly 
overlapping (Fig. 2). Distributions of statistics related to trait values showed more nuanced and 
variable behavior, obtaining characteristics that differ between the three models. There was little 
distinction between models in terms of distributions of difference in local and metacommunity 
mean trait values ( ), with the exception that filtering models produced more variable Δμ

trait  
results. However, distributions of local and metacommunity difference in trait standard deviation 
( ) varied considerably among models, with competition tending to yield negative values Δσ 

 

trait  

(more variation locally than in the metacommunity), filtering producing positive values (less 
variation locally in the metacommunity), and neutral models producing values centered on zero. 
This pattern is borne out in Fig. 2, which illustrates the standard deviations of trait values 
increasing with competition, and decreasing with filtering, with respect to neutral models. The 
trait diversity values (​q​FD​) tended to be slightly higher for neutral models. 
 
Next, we investigated the temporal dynamics of MESS community histories (Fig. 3). Again, 
species richness in neutral models tended to exceed that of the non-neutral models throughout 
the entire community assembly process. In general, a low rate of local speciation produced a 
slight increase in richness and Hill numbers for neutral simulations, whereas a high rate 
produced dramatic increases in these metrics for all simulation scenarios. Between non-neutral 
models, richness and Hill numbers for competition were, on average, always greater than those 
of filtering models across all time points, with differences increasing with . For neutral models,v  
q​D​ tended to slowly increase monotonically through time, whereas ​q​GD​ initially increased quickly 
with community-scale genetic diversity accumulating more slowly in later stages of assembly. 
Increasing  increased the average maximum ​q​GD​ for non-neutral models, but in thesev  
simulations this maximum value tended to saturate very early, with little change through time. 
q​FD​ demonstrated a more dynamic temporal trajectory. Broadly, the relationships among the 
trait Hill numbers mirrored those of the abundance and ​π ​Hill numbers, with neutral models 
obtaining the highest, filtering the lowest, and competition somewhat intermediate values, and a 
trend of increasing values through time. However, one key difference in ​q​FD​ is that early-stage 
communities display relatively high values, with values decreasing as Λ increases from 0 to 
~0.2, and then showing an increasing trend as Λ proceeds from 0.2 to 1. 
 
Model selection ML cross-validation 
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ML model classification prediction error reached a minimum value with ​J​ of 1000 for all model 
classes and all evaluated feature sets (Fig. 4; mean error rate 0.16). Prediction error was slightly 
higher for small ​J​ (mean error rate 0.19), and did not improve dramatically when increasing ​J 
from 1000 to 2000 (mean change in error rate -0.02). Neutral simulations were more accurately 
classified than non-neutral simulations across all feature sets and  values (mean error ratev  
0.05 and 0.18 respectively). ML classifiers trained using summary statistics from all data axes 
were most accurate; however, including trait information along with just one other data axis 
(either ​π​ or abundance) produced classification error rates close to models trained on the full 
suite of summary statistics. ML classifiers trained using only summary statistics related to 
abundance and ​π ​produced accurate classification of neutral simulations (mean error rate 0.05), 
but failed to distinguish between the two non-neutral models (error rate > 0.4). Importantly, in 
this condition the predicted model class for non-neutral simulations was overwhelmingly the 
alternative non-neutral model and rarely the neutral model. For example, simulations under a 
competition model were misclassified as filtering (0.35) with a much higher rate than neutral 
(0.08).  
 
Parameter estimation ML cross-validation 
Cross-validation explained variance and R​2​ regression scores for model parameter ( , ​J​, ​s ​E​, ​s ​C​,α  
m​, , and ) estimation were broadly congruent and positive in almost all cases, indicating thatv Λ  
the simulated and estimated parameter values were correlated (in some cases highly so). For 
neutral simulations ​Λ​ had the highest R​2​ (0.963) and ​s​E​ the lowest (​-0.037), with most 
parameters having moderate R​2​ values (e.g.  = ​0.567; ​m = ​0.685; Fig. 5). The small R​2​ for ​s ​Eα  
is expected given that neutral simulations should have no information about strength of 
environmental interactions. Estimates of small to moderate values of ​m​ and  were accurate,v  
but larger values tended to be underestimated. ML parameter estimation for simulations of 
filtering and competition models obtained improved accuracy to estimate ​s​E​ (​R​2 ​= 0.146 and ​R​2 ​= 
0.287, respectively); however, ​R​2​ values for other parameters were reduced with respect to the 
neutral simulations (Figs. S1 & S2). Both non-neutral models produced diffuse estimates of α  
(​R​2 ​= 0.205 and ​R​2 ​= 0.258) and ​J​ (​R​2 ​= 0.398 and ​R​2 ​= 0.448). The most significant difference 
between the non-neutral models concerned estimates of ​Λ​. Under competition scenarios, ​Λ 
estimates were precise but upwardly biased between ​Λ ​= 0 and 0.5, with increasing variance 
between ​Λ​ = 0.75 and 1. Under filtering scenarios, ​Λ​ estimates were only accurate for values 
close to ​Λ​ = 0.5, with decreasing accuracy as ​Λ​ moved away from this​ value in either direction. 
 
Empirical examples 
The ML classification procedure identified the neutral model as the most probable for all three 
Mascarene arthropod communities (Fig. 6a), with considerable support for neutrality of the 
Reunion spider community (predicted class probability 0.939), and more equivocal class 
probabilities for Mauritius and Réunion weevil communities (0.566 and 0.53, respectively). The 
most important features for classification were ​1​D​, standard deviation and mean of π, ​2​D​, and ​4​D 
(accounting for 44% of relative importance of all retained features). 
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The ML classification procedure identified environmental filtering as the most probable model for 
all tree and snail communities, with highest support for the snails (mean predicted class 
probability 0.698), and weaker support for the trees (mean probability 0.440). Combining filtering 
and competition predicted class probabilities indicated the average probability of non-neutrality 
for the trees was 0.633, and for the snails was 0.865. Feature importance values for 
classification using axes of trait and genetic data were broadly diffuse across the retained 
summary statistics, with  accounting for 11% of relative importance of all retained features,Δσ 

 

trait  

and the remainder accounting for 5% or less. 
 
The ML regression procedure for parameter estimation indicated that the selected empirical 
datasets occupied a broad swath of parameter space (Fig. 6b; Table S6). Empirical PIs were 
quite varied, with some parameter estimate PIs spanning the width of the prior, while the PI of 
other parameters were narrow, a result which is consistent with CV results. The tree 
communities had small α estimates with narrow PIs (mean α = 1423; 1019-2481 95% PI), when 
compared to the arthropod and snail communities, which had larger α estimates (e.g. Mauritius 
weevil α = 7107; 3497-9831 95% PI). ML estimates of ​Λ were more varied, with the weevil and 
spider communities approaching or reaching Λ = 1, snail communities having more intermediate 
Λ, and tree communities having the lowest values (< 0.4 in all cases). Estimates of ​m​ and ​ν 
displayed an idiosyncratic pattern, with spider and snail communities having low estimated 
values for both, weevils having high estimated values for both, and trees having high ​ν ​and low 
m​ estimates. Consistent with the CV experiments, ecological strength ( ​s​E​ ) was the most 
difficult parameter to estimate, in the sense that all estimates were close to the mean of the 
prior, and PIs spanned the majority of the prior range. Posterior predictive simulations indicated 
a good fit of the estimated parameters to all empirical datasets (Fig. S3). 
 

Discussion 

We have described an individual-based mechanistic model of community assembly, the MESS 
model, which unifies the key processes underlying the dynamics of local accumulation of 
biodiversity across multiple timescales: dispersal, stochastic drift, deterministic 
competition/filtering, and speciation ​(Vellend 2010, 2016)​. The MESS model integrates these 
processes in an hierarchical framework to make multi-dimensional predictions using summary 
statistics that capture information both within and among the various axes of data. Simulation 
experiments show that neutral models have elevated ​S​, ​q​D​, ​q​FD​, and ​q​GD​ compared to filtering 
and competition models across all except the earliest time points (Fig. 3). This is a direct result 
of the ecological equivalence of individuals in neutral models generating communities with lower 
species dominance. In a similar fashion, for non-neutral models, species that are more fit 
survive preferentially and increase in abundance, reducing evenness in the community and 
causing ​1​D​ to plateau at a low level, though it should be noted MESS does not implement 
negative density dependence and this is an avenue for future research. Increased speciation 
rate has little impact on ​1​D​ in the neutral case because ecological equivalence confers no cost 
or benefit to offspring species, whereas in non-neutral models new species inherit ancestral trait 
values with small perturbation. In these conditions increasing speciation rate increasingly favors 
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the evolution and accumulation of small clades of species that have ecological advantage, 
causing a concurrent reduction in ​1​D​.  
 
Overall, we find that any two of the three data axes are sufficient to accurately identify the 
relative strength of neutral versus non-neutral processes in local community assembly, and that 
including trait information allows discrimination between which of the non-neutral processes are 
more important in driving the local patterns of biodiversity (Fig. 4). These results should be 
robust to values of ​s​E​ that generate moderate to strong non-neutrality (i.e. s​E​ ≥ 1), with a 
corresponding increase in misclassification rate as ​s​E​ approaches 0. More generally, using any 
two data axes always resulted in improved classification accuracy when compared to using a 
single axis alone. Furthermore, our results highlight the flexibility of MESS to mask unobserved 
summary statistics such that inference can be made from a wide variety of high-throughput 
biodiversity surveys across different spatial scales and data availabilities. 
 
The empirical communities we chose to evaluate represent both a variety of available data 
axes, and a range of perceived dispersal limitation, with Galapagos snails being the most 
dispersal-limited, the Australian trees being least limited, and the Mascarene spiders and 
weevils somewhat intermediate. The results from the Reunion spider community (classified as 
neutral with Λ approaching 1, ​m​ high and ​v​ low) are consistent with a late-stage community that 
is structured primarily by colonization and ecological drift ​(Barabás ​et al.​ 2013; Vergnon ​et al. 
2012)​. Both weevil communities had similarly high estimates of Λ, but higher estimated ​v​, and 
less clear support for classification as neutrally evolving. The snail communities were classified 
as being structured by environmental filtering, with low estimated ​m​ aligning with expectations of 
low dispersal. However, the low estimates of ​v​ and ​s​E​ are somewhat surprising, given their 
documented pattern of single-island endemism ​(Parent & Crespi 2006)​. In this case, unmodeled 
habitat heterogeneity, which is known to be an important predictor of snail diversity ​(Parent & 
Crespi 2006)​, could artificially deflate estimates of ​v​ and ​s​E​ by integrating over unaccounted for 
local heterogeneity in species trait-environment relationships. Finally, because the Australian 
tree communities are plot-level samples from smaller scales representing semi-isolated habitat 
patches and not true insular systems we expect their parameter estimates to deviate from those 
of true island assemblages. This is in agreement with the finding that these tree communities 
are all far from equilibrium ​(Rossetto ​et al.​ 2015)​. Specifically, our approach estimates that the 
system is characterized by moderate ​m,​ and high ​v​ and ​s​E​ ​estimates which indicate that local 
turnover, in the context of a selective environment, is important and ongoing. Additionally, 
considering the fit of the tree data to a smaller α, the sample abundance in the scaled model 
and the (unobserved) 'true' abundance that better reflects the effective population size are more 
similar for trees than for the other datasets. 
 
Future perspectives 
 
As a first approximation of the feedbacks between processes operating at different timescales 
MESS makes several simplifying assumptions which can be treated as targets for future model 
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improvement. Non-neutral dynamics could incorporate multivariate trait evolution, allow for 
filtering and competition processes within the same model, and/or allow for mutualistic rather 
than simply competitive interactions. Modelling more realistic metacommunity processes and 
patterns, and including more sophisticated measures of diversity such as temporal correlations 
and environmental matching would allow for expanding beyond the simple local/regional 
dichotomy. One caveat is that deviations from panmictic population structure will distort model 
selection and parameter estimation during MESS inference. For example, cryptic population 
structure will reduce ​S​ and inflate metrics of genetic diversity, which could bias MESS inference 
to prefer non-neutral models, within which these features are common hallmarks. Another 
special consideration is the variance in the rate at which Λ changes with respect to time as 
measured in generations. Specifically, the neutral approach to equilibrium is much slower (with 
respect to numbers of generations) than either of the non-neutral models, potentially 
confounding comparisons between models at fixed values of Λ. This also highlights the need for 
a more robust measure of equilibrium, which can account for processes across timescales. 
 
Another approximation is the use of the rescaled Wright-Fisher coalescent process to generate 
the community-wide population genetic predictions of the forward-time Moran birth/death 
process. Yet future advances could make use of the powerful new tree-sequence recording 
(Kelleher ​et al.​ 2018; Haller & Messer 2019)​ to more accurately and flexibly match the full 
demographic and abundance history of each species with its respective underlying population 
genetic history. Although here we modeled a single locus per species to match the barcode and 
metabarcode data that are emerging from high-throughput ecological sampling efforts, 
implementing tree-sequence recording methods could also allow for flexible downstream 
options to incorporate spatial information associated with genetic geo-reference databases 
(Lawrence ​et al.​ 2019 ​).  
 
Conclusion 
The MESS model unifies the study of biodiversity by linking ecological and evolutionary theory 
across three disparate timescales within an individual-based, mechanistic framework. The 
model generates explicit temporal predictions of community-scale data across these three 
diversity axes (species richness and abundance, population genetic diversity, and trait 
variation), spanning equilibrium and non-equilibrium conditions, and allowing for stochasticity 
along a continuum of scenarios ranging from pure ecological neutrality, to strong ecological 
interactions and/or environmental filtering. To complement the MESS model simulations, our 
implementation includes an extensive suite of ML tools for performing model selection and 
parameter estimation from observed data, and plotting routines for visualizing and evaluating 
results. This unified mechanistic model provides a general framework for hypothesis testing and 
biodiversity data synthesis, enabling the generation of multi-dimensional forecasts and test 
parameterized hypotheses about the historical and future processes driving biodiversity patterns 
from small-scale intensively sampled plots, to islands ​sensu lato​, to regional and sub-continental 
scales. With our approach we were able to identify whether real communities were near 
equilibrium or not, and the eco-evolutionary processes underlying those dynamics. For example, 
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despite the near-equilibrium state of both spider and beetle communities on islands, we 
discovered that the approach to these equilibria were different, with spider communities 
assembling largely by immigration, compared to the more prominent role of speciation in weevil 
communities. This confirms suspected, but as of yet untested, hypotheses from other island 
arthropod systems (Rominger ​et al.​ 2016) that can only now be rigorously evaluated. We were 
also able to pinpoint the mechanistic causes (turnover and environmental filtering) of 
non-equilibrium in the tree communities. Finally, our analysis of Galapagos snails highlight 
areas for future improvement in modeling more fine scale environmental heterogeneity and its 
impact on filtering and speciation. 
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Figures 

 
Figure 1: Conceptual diagram illustrating the three primary components of MESS 
The metacommunity component (red) encompasses of a global phylogeny relating all species, 
along with species abundances and trait values evolved along the phylogeny. The local 
community component (black) involves a forward-time process during which a local community 
assembles by birth, death, immigration, and local speciation. The population genetic component 
(blue) generates backward-time coalescent simulations per species which are parameterized 
contingent on the abundance history and colonization time generated by the forward-time 
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component to approximate the accumulation of genetic diversity. Each box illustrates a 
sub-component of the model, and indicates the parameter(s) which determine the behavior of 
each sub-component. Arrows between sub-components indicate information flow through the 
process.  
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Figure 2: Effect of varying speciation rate and community assembly model on summary 
statistics 
Species richness, rank abundance, rank genetic diversity, and rank distributions for 1000 
simulations generated under neutral (orange), competition (dark blue) and filtering (aqua) 
scenarios with time fixed at 500 generations. From bottom to top, rows of panels correspond to 
simulations with high (  = 0.005), low (  = 0.0005) and no (  = 0) speciation. In the left columnν ν ν  
of panels kernel density plots indicate the distribution of richness across simulations. In the rank 
plots (center two columns of panels), thick lines indicate average rank values and shaded areas 
show plus and minus one standard deviation. The right column of panels shows kernel density 
plots of zero-centered trait distributions. 
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Figure 3: Community summary statistics through time for neutral and non-neutral models 
This plot depicts the temporal change in select summary statistics for the three focal community 
assembly models at three different speciation rates: No, Low, and High corresponding to  = 0,ν  
0.0005, 0.005, respectively. Community assembly models depicted are neutral (orange), filtering 
(aqua), and competition (dark blue). Each subpanel shows the resultant summary statistic for 
1000 simulations equally spaced through time for each model class. Simulated values are 
depicted as points, and a least squares polynomial is fit to better illustrate the trajectory. The far 
left column of panels illustrate species richness on the y-axes (S). The y-axes of the remaining 
columns illustrate the Hill number of order 1 for abundance, genetic diversity, and trait values, 
respectively.  
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Figure 4: Machine learning classification error rates and confusion matrices 
The top row shows random-forest misclassification error rates given different combinations of 
available data axes for varying sizes of local communities (J). Data axes used for each suite of 
simulations are indicated along the top of the figure. The x-axis indicates increasing sizes of J, 
from 500-10,000 in regular intervals. The y-axis indicates probability of assembly model 
misclassification, averaged over 1000 simulations per model class for each J (i.e. lower values 
indicate more accurate classification). In the figure, orange shows neutral simulations, aqua 
shows filtering, and dark blue shows competition. Solid lines indicate precision and dashed lines 
indicate recall. The bottom row shows confusion matrices depicting detailed model 
misclassification rates for data availability scenarios given J values between 9000 and 10,000. 
In these figures, values on the diagonals indicate the proportion of accurately classified 
simulations for each model class. Off-diagonal values indicate misclassified simulations. 
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Figure 5: Machine learning cross-validation parameter estimation 
1000 parameter estimation cross-validation (CV) replicates using neutral community assembly 
model simulations and summary statistics from all data axes. True parameter values are on the 
x-axes and the corresponding point estimates are on the y-axes. A parameter that is well 
estimated will have CV results that fall on or around the identity line (depicted in red). Note that 
ecological strength (​s​E​) has no impact on neutral simulations, which produces the poor CV 
performance in estimating this parameter. 
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Figure 6: MESS empirical analysis 
Empirical classification and parameter estimation of five local communities including snails, 
tropical trees, and island arthropods. Panel A) depicts machine learning classification 
probabilities for each empirical community for three focal community assembly models. The 
proportion of color within each bar represents the proportional predicted model class for 
neutrality (orange), environmental filtering (aqua), and competition (dark blue). Panel B) depicts 
pairwise estimates of five different model parameters under the best classified model for each 
local community dataset. The value along each parameter axis is indicated by the position of the 
representative icon. Parameters depicted include number of individuals per deme (α), ecological 
strength (​s​E​), migration rate (​m​), local speciation probability (ν), and fraction of equilibrium (Λ). 
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