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harmonic (around 2f0) images. These methods include pulse inver-

sion or phase cancellation, or post processing approaches like system

identification or linear filtering in the case of low overlap between

the spectra of the two images. Compared to fundamental US im-

ages, harmonic images have better spatial resolution and contrast,

but suffer from higher attenuation and lower signal to noise ratio.

Specifically, the spatial resolution, contrast and signal to noise

ratio of US images are affected by the limited bandwidth of the

imaging transducer. In addition, US images are characterized by

the so-called speckle, a granular pattern, which impacts on the im-

age quality in terms of contrast and resolution. To overcome these

limitations, a very rich literature exists, including post processing

techniques based on image deconvolution. Such approaches con-

sider, under the first order Born approximation, that beamformed

radiofrequency (RF) images can be modelled as the 2D convolution

between the tissue reflectivity function (TRF) and the point spread

function (PSF). In practice, the PSF is unknown and can be pre-

estimated from the data using methods such as minimum phase [1]

or homomorphic filtering [2]. The latter works in the cepstrum do-

main, where the PSF presents a smooth behavior in contrast to the

TRF that can be considered as noise. Parametric approaches have

also been proposed to estimate the PSF, such as the parametric hy-

brid inverse filtering proposed in [3] or the Bayesian method in [4].

This work mainly proposes two contributions: 1) to take advan-

tage of both fundamental and harmonic images in the TRF restora-

tion process and 2) to propose a blind algorithm to jointly estimate

the TRF and the phase of the PSF.

2. PROBLEM STATEMENT

2.1. US image formation model

Different models have been proposed in the literature to link RF im-

ages to TRF, by modelling the US propagation in the tissues [5].

These models use the first Born approximation that ignores multiple

scattering [6] ans consider a spatially varying PSF [7]. The latter

is generally further simplified in US image restoration algorithms

to a 2D convolution between the TRF and a spatially invariant PSF,

by restricting the deconvolution to image segments. Note that these

convolution models are used in many US simulators [8, 9]. Interest-

ingly, this convolution model was shown to also accurately describe

the nonlinear propagation of US images in the context of low non lin-

earity, which is the case of THI [10]. Based on these existing studies,

the image formation models used in this work for fundamental and
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ABSTRACT

Restoring the tissue reflectivity function (TRF) from ultrasound (US) 
images is an extensively explored research field. It is well-known 
that human tissues and contrast agents have a non-linear behavior 
when interacting with US waves. In this work, we investigate this 
non-linearity and the interest of including harmonic US images in 
the TRF restoration process. Therefore, we introduce a new US im-

age restoration method taking advantage of the fundamental and har-

monic components of the observed radiofrequency (RF) image. The 
depth information contained in the fundamental component and the 
good resolution of the harmonic image are combined to create an 
image with better properties than the fundamental and harmonic im-

ages considered separately. Under the hypothesis of weak scattering, 
the RF image is modeled as the 2D convolution between the TRF and 
the system point spread function (PSF). An inverse problem is for-

mulated based on this model able to jointly estimate the TRF and the 
PSF. The interest of the proposed blind deconvolution algorithm is 
shown through an in vivo result and compared to a conventional US 
restoration method.

Index Terms— ultrasound imaging, harmonic ultrasound imag-
ing, blind deconvolution, image restoration.

1. INTRODUCTION

Ultrasound (US) imaging is one of the main medical imaging modal-

ities due to its abilities to non-invasively reveal anatomy and in-

spect the movement of organs and blood flow in real time with non-

ionizing radiations, low cost, ease of use, and high frame rates. To 
obtain a US image, an electrical pulse, with central frequency f0, 
is sent to the piezoelectric elements forming the US probe, pushing 
them to vibrate and thus to emit US waves. In US imaging, the inter-

action between the incident waves and the medium is nonlinear. The 
nonlinear behavior of the medium creates a distortion of the prop-

agating waves. As a consequence of this distortion, new harmonic 
frequencies appear in the spectrum of received echoes. In practice, 
the study of these harmonics generally stops at the first harmonic 
(2f0) mainly because of the limited bandwidth of the transducers 
and of frequency dependent attenuation which is higher for higher 
harmonics. While contrast agents are used in clinics to increase tis-

sue nonlinearity, several works showed that some tissues can cause 
sufficient distortion by themselves to generate harmonics, resulting 
into the so called tissue harmonic imaging (THI). Several methods 
have been already proposed to separate fundamental (around f0) and



harmonic images are defined as

yf = Hfr + nf (1)

yh = WHhr + nh (2)

where yf and yh ∈ R
N are the observed fundamental and harmonic

RF images, r ∈ R
N is the TRF to be estimated and nf and nh

∈ R
N are additive white Gaussian noises. Hf and Hh ∈ R

N×N

are block circulant with circulant blocks matrices accounting for the

fundamental and harmonic system PSFs, denoted in the following by

hf and hh and N is the number of samples. Due to the high atten-

uation of the harmonic image with depth, we consider in the second

model a diagonal matrix W ∈ R
N×N whose diagonal elements ac-

count for the level of attenuation at each depth.

2.2. Problem reformulation

The objective of this paper is to solve a blind restoration problem

to estimate jointly the PSFs hf and hh and the TRF r from the

observed RF images yf and yh. Specifically, we express the joint

blind deconvolution problem as the minimization of the following

function

min
r,hf ,hh

1

2
‖yf −Hfr‖

2

2 +
1

2
‖yh −WHhr‖

2

2 + µg(r) (3)

where the first two terms represent the fundamental and harmon-

ics image data fidelity terms, g(r) is a regularization term and µ
a hyper-parameter controlling the weight of this regularization with

respect to the two data fidelity terms. In this work, we consider a

Laplacian prior distribution for the TRF, leading to an ℓ1-norm reg-

ularization in the function to minimize as in [11, 12].

3. OPTIMIZATION ALGORITHM

To solve the non convex optimization problem in (3), we propose in

this work an alternating minimization method that estimates sequen-

tially the PSFs and the TRF. To ensure the convergence towards a

reliable solution, we use two constraints on the PSFs. Specifically,

the magnitude of the Fourier transform of hf and hh are supposed

known. These magnitudes can be pre-estimated from the fundamen-

tal and harmonic RF images by homomorphic filtering [2, 13]. Tak-

ing into account these two constraints, the problem in (3) can be

written as

min
r,hf ,hh

1

2
‖yf −Hfr‖

2

2 +
1

2
‖yh −WHhr‖

2

2 + µ‖r‖1

s.t. |F(hf )| = ĥf , |F(hh)| = ĥh (4)

where F(.) is the 2D Fourier transform operator and ĥf and ĥh are

the Fourier transform magnitudes of the PSFs, which are estimated

by applying homomorphic filtering to yf and yh. The proposed

optimization algorithm alternates between three steps that are sum-

marized below

r
∗ ∈ min

r

1

2
‖yf −H∗

fr‖
2

2 +
1

2
‖yh −WH∗

hr‖
2

2 + µ‖r‖1 (5)

h
∗

f ∈ min
Hf

1

2
‖yf −Hfr

∗‖22 s.t. |F(hf )| = ĥf (6)

h
∗

h ∈ min
Hh

1

2
‖yh −WHhr

∗‖22 s.t. |F(hh)| = ĥh. (7)

3.1. TRF estimation

In order to minimize (5), we propose to use an alternating direction

method of multipliers (ADMM) [14, 15]. ADMM has been exten-

sively used in the area of convex programming and can be summa-

rized as follows

min
u,v

f1(u) + f2(v)

s.t. Au+Bv = c (8)

where f1 and f2 are closed convex functions and A,B, u,v and

c are matrices and vectors of correct sizes. In order to adapt our

problem to the ADMM framework, we rewrite (5) as follows [16]

min
u,v

1

2
‖yf −Hfu‖

2

2 +
1

2
‖yh −Wz‖22 + µ‖w‖1 (9)

where z = Hhr,w = u = r and v =

[
w

z

]
. The reformu-

lated problem can fit the ADMM framework by choosing f1(u) =

1

2
‖yf −Hfu‖

2

2, f2(v) =
1

2
‖yh −Wz‖22 + µ‖w‖1, A =

[
IN
Hh

]
,

B =

[
−IN 0
0 −IN

]
and c = 0N . By attaching the Lagragian multi-

plier λ = (λT
1 ,λ

T
2 )

T ∈ R
2N to the linear constraint, the augmented

Lagrangian (AL) can be expressed as

LA(u,v,λ) = f1(u) + f2(v) +
β

2
‖Au+Bv

k +
λk

β
‖22. (10)

ADMM consists of iteratively minimizing the AL with respect

to u, v followed by the update of the Lagrangian multiplier λ. Thus,

the minimization of (10) can be performed using the following steps

Step 1: Update u using an analytical solution in the Fourier domain

[17].

u
k+1 ∈ argmin

u

1

2
‖yf −Hfu‖

2

2 +
β

2
‖Au+Bv

k +
λk

β
‖22 (11)

Step 2.1: Update w using the soft thresholding operator associated

with the ℓ1-norm [18]

w
k+1 ∈ argmin

w
µ‖w‖1 +

β

2
‖uk+1 −w +

λk
1

β
‖22 (12)

Step 2.2: Update z using an analytical solution [17].

z
k+1 ∈ argmin

w

1

2
‖yh−Wz‖22+

β

2
‖Hhu

k+1−z+
λk

2

β
‖22 (13)

Step 3: Update the Lagrangian multiplier λ as

λ
k+1 = λ

k + β(Au
k+1 +Bv

k+1). (14)

3.2. PSF estimation

The mimization problems in (6) and (7) aim at estimating the phases

of the PSFs. To solve them, we use an algorithm that was recently

proposed in [19], inspired from [20]. The convolution equations in

(6) and (7) can be expressed as a spatial convolution between the

zero padded PSFs hx ∈ R
N1,N2 (for x ∈ {h, f}), with the TRF

map r ∈ R
N1,N2 where N = N1 × N2. Using Paserval theorem



(6) and (7) can be expressed as

min
Hf

1

2
‖Yf −Hf . R‖22 s.t. |Hf | = ĥf (15)

min
Hh

1

2
‖Yh −Hh . R‖22 s.t. |Hh| = ĥh (16)

where (.) denotes element wise multiplication, R = F(r∗), Hx =
F(hx), Yf = F(yf ) and Yh = F(W−1yh). Using Hx =

ĥx . ej∠Hx = ĥx . Ux, the previous equations can be rewritten as

follows

min
Uf

1

2
‖Yf − (R . ĥf ) . Uf‖

2

2 (17)

min
Uh

1

2
‖Yh − (R . ĥh) . Uh‖

2

2 (18)

Note that the minimizations in (17) and (18) are conducted with re-

spect to the phase vectors Uf and Uh. This reformulation shows that

the PSF estimation problems are reduced to estimating the optimal

phase of all-pass filters Uf and Uh. The reader may refer to [19] for

details about the algorithm able to solve the two problems above.

4. RESTORATION RESULTS

4.1. In vivo data

The data used in this work was acquired with the research scanner

ULA-OP 256 (Departement of Information Engineering, University

of Florence, Italy) connected to the wide band 192-element linear

array probe LA533 (Esaote S.p.A., Florence, Italy), with a 110 %
bandwidth centered at 8MHz and a 245 µm pitch [21]. In trans-

mission (TX), the beam was focused at 33 mm depth and apodized

with a Hanning window. The TX signal was a 10-cycle sine burst

at 5MHz with Hanning tapering and peak amplitude of 90 Vpp.

384 RF lines were classically beamformed, resulting into RF im-

ages of size 384 × 4480 pixels. The sampling frequency was set

at 78.125MHz. The acquisition was done in vivo by scanning the

carotid artery and jugular vein of a young healthy volunteer.

4.2. Quantitative metrics and comparison approach

In order to assess quantitatively the results, this paper considers two

metrics referred to as resolution gain (RG) and contrast-to-noise ra-

tio (CNR). The RG is the ratio of the normalized autocorrelation

(higher than 3 dB) of the original RF US image to the normalized

autocorrelation (higher than 3 dB) of the restored TRF. An improve-

ment in the resolution of the restored TRF corresponds to an RG

higher than 1. To assess the improvement in contrast, we consider

the CNR between two regions, e.g., the red and blue regions in

Fig.1(e).

The results obtained using the proposed algorithm were compared to

a conventional deconvolution algorithm using the fundamental RF

image only. This classical method (referred to as LASSO) estimates

the TRF by solving the following optimization problem

min
r,Hf

1

2
‖yf −Hfr‖

2

2 + µ‖r‖1. (19)

Note that the matrix W needed within the proposed restoration

method, accounting for harmonic attenuation, was estimated from

the original images before filtering by computing the ratio between

the energy of the fundamental and the harmonic. These energies are

estimated using the spectra of yf and yh within an axial moving

block all along the image.

4.3. Results

The native fundamental and harmonic images, as well as the restored

images, are displayed in Fig.1. Note that all the images are shown

in B-mode. The corresponding quantitative metrics are shown in

Table 1. The restoration of the fundamental image using LASSO

presents a good resolution compared to the native fundamental im-

age. However, the proposed solution presents an improvement in

resolution compared to all the other images, including the one ob-

tained by LASSO and the native harmonic image. In particular, the

jugular vein and the carotid artery are better defined on the image

restored with the proposed algorithm. Specifically, the proposed

method shows a good resolution thanks to the harmonic image, and

provides a non-attenuated restored image at high depth thanks to the

fundamental image. The quantitative metrics in Table 1 highlight

the improvement in CNR and in RG compared to fundamental and

harmonic images, as well as to the LASSO solution.

Fig. 2 shows the estimated PSFs obtained with the proposed al-

gorithm, by comparison to the pre-estimated PSFs with zero phase

using homomorphic filtering. The proposed blind deconvolution ap-

proach is able to estimate the unknown phases of the PSFs, which is

very promising. Note that the execution time of the proposed method

is 130 seconds when using standard 3.6GHz Intel Core i7 with a

straightforward MATLAB implementation without GPU.

LASSO Proposed method

CNR 5.84 12.620

RG/Fundamental 2.448 3

RG/Harmonic 1.48 1.857

Table 1. Quantitative results corresponding to the selected regions (in red)

of images in Figs. 1(c), (d).

5. CONCLUSION

This work showed the interest of combining harmonic and funda-

mental images for the blind restoration of the TRF in US imaging.

Taking into account the attenuation in depth of harmonic images and

the low resolution of fundamental images, the proposed method pro-

vides images with relatively low attenuation effect, better contrast,

and with better spatial resolution than the native images. Future

work will be devoted to explore a spatially variant deconvolution

algorithm and to take into account two different TRFs for the funda-

mental and harmonic image models.
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mental PSF hf , (c) Zero phase harmonic PSF ĥh, (d) Estimated
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