N
N

N

HAL

open science

Capacitated Vehicle Routing Problem under Deadlines
Florent Dubois, Paul Renaud-Goud, Patricia Stolf

» To cite this version:

Florent Dubois, Paul Renaud-Goud, Patricia Stolf.
Deadlines. International Conference on Information and Communication Technologies for Disaster
Management (ICT-DM 2019), Dec 2019, Paris, France. pp.1-8, 10.1109/ICT-DM47966.2019.9033000 .

hal-02942308

HAL Id: hal-02942308
https://hal.science/hal-02942308
Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Capacitated Vehicle Routing Problem under


https://hal.science/hal-02942308
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26356

Official URL
https://doi.org/10.1109/ICT-DM47966.2019.9033000

To cite this version: Dubois, Florent and Renaud-Goud, Paul
and Stolf, Patricia Capacitated Vehicle Routing Problem under
Deadlines. (2020) In: International Conference on Information
and Communication Technologies for Disaster Management
(ICT-DM 2019), 18 December 2019 - 20 December 2019 (Paris,
France).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr




Capacitated Vehicle Routing Problem
under Deadlines

Florent Dubois University of Toulouse
IRIT
Toulouse, France
florent.dubois @irit.fr
Paul Renaud-Goud University of Toulouse
IRIT
Toulouse, France
paul.renaud.goud @irit.fr
Patricia Stolf University of Toulouse
IRIT
Toulouse, France
patricia.stolf @irit.fr

Abstract—Fast floods are usually not predictable and lead to
lot of damages. In the context of a fast flood, the rescue teams
need to elaborate the most efficient plan to save people in the
impacted area, “as fast as possible”. Based on discussions with
firefighters, the problem is formalized as a Capacitated Vehicle
Routing Problem under Deadlines. We introduce tour planning
which allows to plan vehicle trajectory for several travels through
the rescue center to put casualties into safety. We model the
“as fast as possible” requirement through two elements: (i) a
deadline, i.e. the time before which someone has to get rescued,
is associated with every demand, (ii) the objective function to
minimize is the Flow-time, i.e. the sum over each victim of the
period during which it was not into safety. We created a set of
various graphs in order to evaluate our results varying size of the
problem, temporal constraint parameter and capacity constraint
parameter in order to observe the evolution of the model towards
different kinds of problems. We express the problem as a MILP,
which provides the optimal solution on reasonable instance size
problems thanks to MILP solvers. Since finding the optimal
solution in real-time will not be possible with MILP solver, we also
propose and compare different heuristics algorithms. The results
show that the heuristics results are close to the optimal solution
given by the resolution using Linear programming formulation
on small instances. The Best Flow-time Insertion algorithm shows
better results than the other heuristics developed in this article
for every problem size and it is the closest from optimal results
for small size problems.

Index Terms—Routing, Flooding, Capacitated, Deadlines

I. INTRODUCTION

This article takes place in the context of the E-flooding ANR
project which gathers multiple expertise in different domains
around fast flooding problems. The goal of this project is to
a give both a short and long term response to the flood. This
article is a presentation of the model for the short term problem
and its resolution. Flooding is a vast area of study in the Crisis
Management domain because it results in important damages

The work presented in this paper has been funded by the ANR in the
context of the project i-Nondations (e-Flooding), ANR-17-CE39-0011

to infrastructures and danger for people. When some of the
flooding can be predicted using meteorology’s predictions, a
certain category of floods called fast floods are not predictable
and are characterized by a very quick increase of the water
level in the affected area. In order to give the best response to
that specific kind of crisis we need to optimize the rescue
vehicles that will intervene at every point of the affected
region where people need to be saved. To do so we need
to solve an optimization problem known in the literature as
Vehicle Routing Problem. The main issue of this problem is
the impossibility to make plans or anticipate any actions so
we need a real-time support decision tool for the rescue teams.
Such problems are known as Dynamic VRP. The dynamism
in this article is treated as a multi-period static problem which
means we execute our model offline knowing the demands for
the time-window and then repeat the process for next windows
with new demands.

One of the main difference between our problem and
widespread VRP is that unlike most of them, we are dealing
with human lives and not merchandises. So where most of the
existing VRP consider Time Windows for action to be made,
we will consider Deadlines in the literal meaning which is the
first contribution to the complexity of our model. Deadlines
in this article are used as constraints where violation is not
possible. In the opposite, in the literature the notion of time
windows only implies a penalty on the objective function if
not respected. In our problem, each demand has a release date
which corresponds to the moment when a victim calls the
rescue teams.

In addition to this hard constraint characterized by life or death
stakes, we add soft constraints whom purpose is to improve
rescue teams effectiveness. To do so we define the Flow-time
as the time between the reception of a demand (made by the
victims) and its treatment by the rescue teams. This leads to
write an objective function to minimize the sum of Flow-times,
weighted by their priority, for all demands. Furthermore we are
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looking for global optimal solution to our problem but in the
knowledge of the experience’s feedback from the firefighters
we are associated with on E-Flooding project, we know that in
real case situation, the crisis cannot be solved by a single tour
of the rescue vehicles due to limited resources. That is why
in our model we will consider several Tours for the rescue
vehicles between the rescue center and the demand points.

We formalize the problem via linear programming: on the
one hand, expressing this problem into constraints (in the
form of inequalities) associated with an objective function
makes the problem clearly defined. On the other hand, it
facilitates the computation of an optimal solution on small-
sized inputs thanks to linear programming solvers, such as
Gurobi. We solve it on a wide set of graphs each simulating a
crisis configuration based on SDIS 31 experience’s feedback.
The SDIS 31 is the firefighting organization of Toulouse’s
department. They are among others in charge of people relief
in case of flooding and collaborate with us on the e-Flooding
project. They gave us for instance logs from previous crisis
for us to base our graph generation on. We were then able
to build experiences based on real-life scaled demand size or
travel times between nodes. Due to the complexity of this
kind of problems, we cannot compute optimal solution in
an affordable timing for big-sized inputs. As a consequence,
we design heuristic algorithms to get a solution (though not
optimal) in acceptable time. This double approach using MILP
and heuristics also allows us to compare the results of our
heuristics to optimal results on small-sized inputs.

The remainder of this paper is organized as follows. In
Section II we present the literature around the problem stud-
ied. The Section III describes the problem and explains the
mathematical model. The Heuristic algorithms are presented
in Section IV and the computation results are detailed in
Section V. We conclude in Section VI where we open the
perspectives of our work.

II. STATE OF THE ART

The Vehicle Routing Problem has been studied under dif-
ferent formulations in the literature. First it has been studied
mainly in a static version in the 1980’s and 1990’s as reviewed
in [1]. And thanks to the improve in technologies the subject
has been revived under its dynamic version. Due to the
nature of our problem, we need to consider a multi-period
static problem which means we execute our model offline
in knowledge of the demands for the current time-horizon
and repeat this process with new demands on the next time-
horizon making our model partially dynamic according to the
definition of [2].

[3] presents a wide view of the applications that have
been made in the area of Dynamic VRP especially in the
area of emergency vehicles dynamic allocations. [4] solves
VRP with uncertainty on demands by submitting Reliable,
Robust and Fuzzy Selective VRP models extending [5]. [6]
anticipates capacity limitation of vehicles and minimize the
detour for restocking on an online model. We focus our studies
on articles dealing with disaster relief situations such as [7]
aiming at dispatching research and rescue teams and define

dynamic problems as multi-periodic static problems which
means that we could focus on a static model and expand it
to a dynamic form later. Studying dispatching, [8] and [9]
develop full dynamic models for ambulance relocation. It is
focused on the anticipation to an event optimizing the response
time of the rescue teams as well as [10] that uses a 3 layers
approach to plan the rescue in disaster relief. [11] also presents
a three-stage disaster relief plan considering uncertainty on
infrastructure’s state but the approach is focused on a delivery
aspect and does not consider pickups. Furthermore in the case
of flash flooding where by definition the anticipation phase
is not applicable, the notion of time window presented in
these articles could be adapted to fit the requisite. The work
in [12] proposes a dynamic model adapted from the Pickup
and Delivery Problem (PDP) with time window that could
easily be adapted to our CVRPD. Furthermore this model
considers uncertainty on both demands and travel times while
trying to optimize equipment use. In the same category of
problems, [13] tries to solve the problem using a Particle
Swarm Algorithm and [14] showed that using heuristics is
most of the time necessary in dynamic problem. With a
different approach on exact methods [15] arrives to the same
conclusion that we need to use heuristics if we want to solve
a VRP in real-time.

The solution promoted by [16] keeps in the model all the
information without simplifications with even uncertainty on
demands. In order to be consistent with the real-time constraint
it proposes to artificially reduce problem size using data
fusion. The algorithms presented by [17] partially use spatial
clustering as well as other neighborhoods local search in their
VMND algorithm. For our purpose, this heuristic could be
merged with [18] heuristic to handle dynamic problems re-
launching the solver on appropriate chosen time intervals.[19]
multi-scenario approach for dynamism is more suited to our
requirements than [20] double-horizon approach for the degree
of dynamism of our problem.

[21] uses parallel computing in order to speed up the resolution
time in case of real-time models. [22] adapted the Pickup and
Delivery Problem dynamically from a static version.

III. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

In this section, we present the Capacited Vehicle Routing
Problem under Deadlines (CVRPD).
We apply the CVRPD to people rescue in flash flooding’s
emergency phase, optimizing routes for rescue vehicles. We
characterize our problem as a directed graph G = (V, £) where
V is the vertex set V = {0,...,V} of size V41,V € N where
every vertex is a point of demand where people need to be
rescued except the vertex 0 which is the rescue center. We
use V* as the set of all demand points without the depot, and
E = {(i,j) : (i,5) € V2,i # j} the set of the direct edges
representing existing roads that link nodes together. Each of
these edges is associated with a cost reduced for our problem
to a travel time t¢t;;. Each demand ¢ has a size d; corresponding
to the number of victims and has a time a; for the action to
be completed on the node (to rescue victims).
In the CVRPD we are looking for a global optimal solution of



a VRP problem for the current state of the graph. Due to the
capacity limitations of the rescue vehicles and according to the
SDIS 31 expertise, the rescue teams will not have resources
to solve the problem with only one passage by the depot. We
introduce the tours, indexed by z € Z = {1,...,Z} with Z
the maximum number of times any vehicle has to go through
the depot, we will then solve the problem on several tours. To
deal with the capacity limit of the vehicles, we also need to
consider that a vehicle £ € M has a maximum capacity Qp,
where M is the set of available vehicles. For the purpose of
the model we also use x7;;, a binary variable equals to 1 if
and only if vehicle k visits vertex j using edge (4,7) in tour
z € Z.

We study a Crisis Management case with people lives at
stake so we need to determine for the model a way to differ
the urgent nodes to be treated in priority from demands that
do not need to be treated urgently. To do so, we based our
categories of priorities on the ones of the fireman’s department
who use the following scale: (1) Can remain on the spot, (2)
Have to be rescued within 12 hours, (3) Have to be rescued
within 6 hours, (4) Need to be rescued in emergency. These 4
priority categories are used to characterize the problem with
both priority factors and deadlines. For each node of 7 € V* we
will associate a deadline f; € N and a priority factor p; € N.

While the hard deadlines cover the emergency aspect of the
problem through the f;’s, the objective function minimizes the
cumulative weighted time for the demands to be treated. We
introduce the Flow-time which is the time between reception
and treatment of a demand at node i: h};, — r; for vehicle
k on tour z with hj, the absolute date of arrival of vehicle
k to node i on turn z and r; the release date of demand on
node ¢ which is the date we received the information of the
demand. The objective of our optimization is to minimize the
total Flow-time weighted by the priority for every demand.
The aim of the optimization problem is to assign the demands
to the vehicles and to the tours. For each vehicle on each tour
we have to decide for a circuit of the graph going through the
depot. For each node of each circuit we assign a part of the
demands. We consider that the action time a; is constant on a
node even if only a part of the demands is assigned. We will
consider that the first turn for the solution is for z = 1 and
we will set all the variables for z = 0 to 0.

Using these variables and parameters we establish the
following objective function:
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R an integer of big size compared to all other variables. We
will use R = 1000 for instance

p; | Priority: A constant coefficient used in objective function for
demand i
fi | Deadline: latest time for any vehicle to pick the last demand at
node 1
r; | Release time: time when the demand ¢ appears
d; | Demand: The number of victims to rescue at node 7
Qk | Maximum capacity of vehicle k
tt;;| Travel time from node ¢ to node j
a; | Action time for a demand at node ¢
R | High size coefficient
M | Set of available vehicles
v Set of vertices in the graph
V* | Set of demand points in the graph (without depot)
TABLE I
INPUTS

x7;), | Binary variable equal to 1 if vehicle k use the edge from 2
to j during tour z
hZ, absolute arrival time of vehicle k& at node ¢ on tour z
[ victims taken by vehicle k£ at node ¢ on tour z
TABLE II
VARIABLES

The objective function (1) is the sum of all the Flow-time
for every intervention of vehicles, weighted by the priority
factor of the demand.

Constraint (2) makes sure that solutions do treat every
demands fully.

The constraint (3) is the deadline constraint that states that a
solution cannot contain any completion time over the deadline
associated with the demand. The third term is used to ensure
the constraints only apply when node ¢ is visited by vehicle k
on turn z, in other cases the big factor R makes the inequality
true for all reachable values of the other terms.

The (6) inequalities are necessary in order to ensure that
Flow-times respect the timing imposed by travel times, action
times compared to the previous interventions of a vehicle.
Thereby the time of arrival at a node is equal to the time



[ «— sortDemands(criteria, demands);
while / not empty do
while > g7, <> Qp do
vehicle +— firstAvailableVehicle();
if noDeadlineViolation(vehicle,l[0]) then
| assignDemand(vehicle,1[0]);
else
| nextVehicle();
end
end
z4+—2z+1;
EmptyV ehicles()

end
Algorithm 1: GreedyDist and GreedySize algorithms

of arrival to the previous node to which we add the action
time on the previous node and the travel time between these
two nodes. Constraint (4) ensures that a vehicle that arrives to
a vertex also leaves it and (5) set the maximum capacity of
vehicles.

The quantity and binary variables g7 and z7;, are linked
thanks to (7). (8) defines the tours as the route between two
transitions through the depot and (9) makes sure there are no
empty tours in the planning because it ensures that a vehicle
that leaves the depot at tour z is also leaving the depot at tour
z—1

IV. HEURISTICS

The linear program expressed in the model has been solved;
results will be presented in next section. In the context of our
problem, we need a solution within a reasonable time. We
however have to consider that the VRP is NP-Complete.

To be able to respect the solving timing we need to develop
heuristics with the purpose to find the best solution possible
without guarantee of optimum. We will discern heuristics
integrated to the Linear Program and pure heuristics.

A. Linear Program Based Heuristic

The main issue for computation time is the size of the
problem. To reduce it, we develop a Heuristic that launches the
Linear Program several times on restricted sets of nodes. We
first create a subset of nodes only containing demands of the
highest priority. Once the problem is solved on this subset, we
fix the assignments of the demands to the vehicles and extend
the subset to the next priority. We follow this process until
the fourth category. The result of this method will not be a
global optimum but will be composed of local optimums. We
call this algorithm DecreasePrio.

B. Greedy Algorithms

We develop algorithms that assign demands to vehicles.
The first type of algorithms is an adaptation of the First Fit
algorithm which is a classical algorithm for the bin packing
problem. It scans previous bins in order and places the new
item in the first bin that fits and starts a new bin only if
it does not fit in any of the bins. The bins being here our

Vehicle 1 Planning

Insertion Score Position 1 = 214

'©/ 5@ Gu=2

Q-0@, \

@ =3

Insertion Score Position 3 = 352

Insertion Scare
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Vehicle 2 Planning
Insertion Score Position 1 = 189
Q P@ 9. =3

Q,=10 @'

©p

Insertion Score Position 3 =82

Insertion Score
Position 2

é; =4 =

5.2 344

- Insertion options for demand at node 3
B Current planning for vehicle k

Fig. 1. bestlnsertionScore example

vehicles and the items the victims to be rescued with the size
of the demands or the shortest distance as a sorting criteria. We
will use the function firstAvailableVehicle to get one random
vehicle in the fleet that can handle the size of the demand. If
none exists, the demand is split in several vehicles choosing
the biggest available, and putting back the demand in the list
with its size updated. For every assignment of the heuristics
(expect for Greedy Alea) we check whether this assignment
would violate a deadline. A failure of a heuristic then means
that we have reached a situation in which we cannot insert
the demand in any position of any available vehicle without
violating a deadline. We then use assignDemand in order to
update the current capacity of the vehicle. Finally, once a turn
is completed we use EmptyVehicles in order to initialize the
vehicles to their initial capacity translating the passage through
the depot.

The Best Fit algorithm is another classical algorithm of the
bin packing problem. Its principle is to place the new item
in the spot such that the space left in the bin is minimal.
The Best Flow-time Insertion (BFI) algorithm is an adaptation
of the Best fit algorithm using the Flow-time used in the
objective function as a decision criteria for the assignment. In
the function bestinsertionScore we consider a vehicle and its
current path (the nodes associated with the demand amounts
that the vehicle carries in the current tour), and we do not
modify the relative order of the nodes in the path. For each
possible insertion of the current node/demand amount in this
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path, we compute the increase it would implicate on the objec-
tive function (the flow-time), We finally choose the position
with the minimum contribution on the total weighted flow-
time. If the action time is long the demand would probably be
inserted at the end of the circuit; action time and travel time
are taken into account to find the best trade-off. For example
in fig. 1 we have two vehicles with the same initial capacity
but different current planned routes. The bestlnsertionScore
function returns the pair with vehicle 1 and position 2 for
this case. In fact the vehicle 1 has 5 places left and vehicle 2
only 3 so the best insertion score for vehicle 1 at position 2
is 124/5 < 82/3. One can observe that a vehicle might not

I +— sortDemandsSize(demands);
while [ not empty do
while > ¢7, <> Q. do
vehicle «— firstAvailableVehicle();
(vehicle, position) +—
bestInsertionScore(l]0]);
if noDeadlineViolation(vehicle,position,l[0])
then
| assignDemand(vehicle,1[0]);
else
| nextVehicle();
end

end
z2+—2+1;
EmptyVehicles()

end
Algorithm 2: Best Flow-time Insertion Algorithm

8 10
number of nodes

6 8
number of nodes

be able to deal with the whole demand; that is why we sort
among vehicles by multiplying the flow-time increase by the
demand amount that the vehicle can carry. The complexity
of this algorithms is characterized by the complexity of the
nested loop we can observe in the simplified algorithms. This
complexity is dmax * n in the worst case (if we rescue every
person at every node one by one) with dmax the size of
the biggest demand point and n the number of nodes so the
complexity of this algorithm is O(n?).
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V. EXPERIMENTAL RESULTS

In this section we describe the experimental process to
evaluate our results. We want to evaluate the effect of different
parameters on the model performances:

e Temporal constraint : action time evolution to test model
reaction to closing deadline planing

o Complexity : demand size variation associated with ca-
pacity constraint evaluation

o Size of the problem : number of nodes of the graph

From these 3 parameters we created randomly generated graph
with 10 graphs for every set of values. We fixed the number
of vehicles to 10, their capacities to 10 and we assigned fixed
priorities to demands. The number of nodes in the graphs will
vary between 2 and 12 where we will have only three values
for the action time mean and the demand size mean (5, 20, 35).
The actual value for the action time and demand size will be a
random distribution for every demand following a normal law
for action time and an exponential law for demand size. This
combination gives a total of 9 action time and demand size
pairs, 11 graph size and for every of this triplets, 10 graphs
for a total of 990 experiments. We used the GUROBI solver
under version 8.0.1 on 8 parallel Intel(R) Xeon(R) CPU E5-
2603 v3 @ 1.60GHz Cores. Since the problem we want to
solve needs to be solved as a real-time problem we consider
that this is not useful to continue the computation after 1
hour for a given graph. So we stop the computation at 3600s
even if the model did not find a solution or an optimum in

Number of nodes

Number of nodes

this given time. This computation time limit is only applied
to the MILP, the heuristics are all giving a result within the
second. We first study the evolution of the computation time of
the MILP according to the 3 parameters above. The graphics
are displayed on a 3 x 3 grid where the Action Time is
constant on a given row, while the Demand Size does not
vary within a given column. Finally the Number of nodes is
the abscissa parameter for every graphics. The computation
time is displayed in fig. 2. For this experiment we considered
3 categories of results i) the MILP returns an optimal solution,
ii) The MILP returns a solution but this solution was not
proven optimal within one hour, we classify this as sub-optimal
solution or iii) the MILP fails to return any solution within
one hour, we consider this as a failure. On the y-axis we plot
the solving time among instances on which the solver finds a
solution within one hour. We could have considered one more
category when the MILP detects an unfeasible problem but we
never crossed this case in our experiment because we choose
our parameters to avoid it.

We observe a clear breaking point in every graphics from
which computation time starts increasing exponentially. This
point appears at 7 nodes size problems for low constraints
graphs down to 4 nodes size problems for the most constrained
graphs. These results obviously show that the MILP reaches
way to high computation time for real problems that SDIS
31 described. Furthermore these results also highlight the
failure problem. In fact in the high constrained graphs the
failure rate increase which translates the inability to get any



feasible solution through the MILP within one hour. All this
considered, we use heuristics algorithms described above in
order to find a feasible solution in short amount of time, the
computation time is around the second for all heuristics. We
then run the heuristics on the exact same set of graphs and
get the results focusing at first on the failure aspect aiming at
getting a solution whatever its quality. We plot the failure ratio
of each greedy algorithms on a rather constrained problem
(demand size: 35, action time: 35) in fig. 3.

We can see here in fact that two algorithms are better
than the others, in fact Greedy Dist and BFI algorithms show
lower failure rates than Greedy Size algorithm and the baseline
algorithm Greedy Alea which assigns demands to vehicle
randomly. On the Total of 990 graphs tested they only failed 6
times both. The results are satisfying in term of robustness of
this algorithm, we observe a great benefit in term of failures
compared to the MILP. We know we can get a solution in short
time but the question left is the quality of these solutions. To
evaluate them we keep the same algorithms and we display
the mean of the objective function for the graphs where all 4
greedy algorithms found a solution in fig. 4.

Again in this graphic the curves show that in term of
solution quality the same two algorithms (Greedy Dist and
BFI) are better than the other with a slightly advantage for BFI
for the low constrained graphs. We study the behavior of the
to best heuristics on bigger graphs by increasing the number
of nodes from 10 to 100. We choose the Demand Size and
Action Time pair in order to avoid unfeasible problems.

Figure 5 confirms that BFI algorithm gives better quality
solutions with a few failures on big graphs. Figures 6 and 7
show a comparison of BFI and MILP only when both get a
solution.

As expected, the MILP is better than the BFI algorithm but
the difference is reduced on highly constrained graphs. In fact
on low constrained graphs the MILP reaches an optimal result
more often than on highly constrained graphs which explains
its efficiency compared to BFI, going up to 80% less efficient.
But in highly constrained graphs where we can see the failures
rate increases for the MILP, this difference is reduced to a
maximum of 40%. These results confirm that the use a BFI
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as a heuristic for high size problem is a valid solution for our
problem.

VI. CONCLUSION

In this paper we studied the Capacitated Vehicle Routing
Problem under Deadlines introducing the terminology of dead-
lines best suited for our problem of people relief in the Crisis
Management context. We have developed a multi-tour MILP
fitting our project requirement based on an objective function
using the notion of Flow-time. We also proposed a set of
heuristics including the Best Flow-time Insertion algorithm
that we have compared to the MILP and validated thanks to
experiments on a wide set of graph based on field experience
of professionals of the field of people relief in case of flooding.
We showed that the BFI was able to reduce the number of
failure from 10,3% for the MILP to 0,6% keeping a maximum
of 40% solution’s quality lost for the Highly constrained
graphs.

New research direction will be directed on using this
heuristic mixed with the MILP in order to improve quality of
the solution keeping the effectiveness in term of low failure
rate of the BFI.
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