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ABSTRACT

The goal of query performance prediction (QPP) is to automatically 
estimate the effectiveness of a search result for any given query, 
without relevance judgements. Post-retrieval features have been 
shown to be more effective for this task while being more expen-
sive to compute than pre-retrieval features. Combining multiple 
post-retrieval features is even more effective, but state-of-the-art 
QPP methods are impossible to interpret because of the black-box 
nature of the employed machine learning models. However, in-
terpretation is useful for understanding the predictive model and 
providing more answers about its behavior. Moreover, combining 
many post-retrieval features is not applicable to real-world cases, 
since the query running time is of utter importance. In this paper, 
we investigate a new framework for feature selection in which 
the trained model explains well the prediction. We introduce a 
step-wise (forward and backward) model selection approach where 
different subsets of query features are used to fit different models 
from which the system selects the best one. We evaluate our ap-
proach on four TREC collections using standard QPP features. We 
also develop two QPP features to address the issue of query-drift in 
the query feedback setting. We found that: (1) our model based on a 
limited number of selected features is as good as more complex 
models for QPP and better than non-selective models; (2) our model 
is more efficient than complex models during inference time since 
it requires fewer features; (3) the predictive model is readable and 
understandable; and (4) one of our new QPP features is consistently 
selected across different collections, proving its usefulness.

KEYWORDS

Information retrieval, Query performance prediction, QPP, feature 
selection, predictive model, selective model, linear regression, AIC 
criterion.
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1 INTRODUCTION

In information retrieval (IR), query performance prediction (QPP) 
aims at automatically predicting the effectiveness of a system for a 
given query, without relevance judgments. QPP is useful to inform 
an IR system whether a query is difficult or not, allowing the system 
to process it differently. For example, in case of a difficult query, the 
system could either apply a specific automatic query reformulation 
or engage in an interactive session with the user in order to provide 
a better answer [8].

Query performance prediction uses query features that are ex-
tracted prior to running the query through the system (pre-
retrieval) and/or from the initially-retrieved documents (post-
retrieval). Intu-itively, a good QPP feature should significantly 
correlate with the ac-tual effectiveness of the IR system. Post-
retrieval QPP features have been found to be more effective that 
pre-retrieval features, although they are much more expensive to 
calculate, as they need the IR system to run the query in order to 
make the prediction. While the first studies on QPP used single 
features [12, 13, 17, 24, 32], a more recent path is to combine various 
query features [17, 26, 30, 39, 45]. While combining multiple post-
retrieval features improves accu-racy, the method becomes 
applicable in real-world scenarios only if the number of features is 
limited to just a few, due to the increased computational time 
required for obtaining these features. A state-of-the-art method for 
combining QPP features, that, however, does not take into account 
these critical issues, is Raiber et al.’s [26]. Their system uses a 
pairwise learning-to-rank model that combines several existing 
QPP features. It uses a large number of features, deeming it 
unlikely to be implemented in real-world systems. More-over, their 
method results in a non-interpretable model, due to the employed 
machine learning (ML) method.



Model interpretability refers to fairness, accountability, and trans-

parency in machine learning [1, 6, 22], either for compulsory rea-

sons (e.g. in the banking domain, the decision on accepting/reject-

ing mortgage) or because the end users want to understand the

decisions taken by the ML model [2, 43]. Although fairness and

transparency are not yet considered as requirements by search

engine users, these features could become more popular with the

growing awareness of the influence of search engines on social

media users’ opinion through the information these engines rec-

ommend to the users using sophisticated ML algorithms based on

past queries (e.g. influence in political pools, fake news diffusion

or unwanted ads). Moreover, public authorities may also require

transparency in the near future for users’ rights defense and pri-

vacy purposes [34]. Linear models (e.g. linear regression, SVM with

the linear kernel) ensure this transparency, although some recent

studies also explain how deep networks make decisions [7, 31].

Nevertheless, to our best knowledge, there is no previous effort

to build interpretable models for QPP. In addition to the previously

mentioned advantages, an interpretable QPP model would have

another huge advantage over non-interpretable ones, considering

our lack of understanding of query difficulty. Gaining additional

insights from an interpretable model about the difficulty of a query

would allow us to propose means for the system to overcome this

difficulty.

In this paper, we propose a QPP approach that combines various

features, yet, results in an interpretable and transparent model, so

that we know the influence of each feature on the prediction. As a

matter of fact, interpretability and transparency should not prevail

in detriment of effectiveness. Hence, the model interpretability vs.

effectiveness trade-off challenge corresponds to our first research

question:

RQ1: Can we design an interpretable and transparent model for QPP

that is as effective as complex state-of-the-art black-box models?

One could argue that the prediction performance improves as the

model considers more and more features. However, this statement

holds only up to some point [38], due to the curse of dimensionality.

The curse of dimensionality is particularly problematic when few

training examples are available, which happens for QPP evaluated

on international reference collections (the only ones available for

academic research). A smaller number of features reduces the model

uncertainty and improves performance because fewer parameters

have to be estimated in the model. Moreover, using more features

increases the processing time of the model to the point where it be-

comes less applicable in real-world scenarios. These considerations

are mentioned in present guidelines for IR practitioners [15, 36],

being crucial for QPP due to the reliance on post-retrieval features

which ensure effectiveness. On the other hand, feature selection

poses the challenge of finding the appropriate criteria or strategies

to select features in an optimal way. We tackle this problem in our

second research question:

RQ2: How selective can a white-box model be, without degrading

prediction performance as compared to a non-selective one?

To solve our two research questions, we develop a new feature

selection model for QPP, whose main advantage compared to other

related feature selection and QPP models is that it is parameter-free,

making it applicable without tuning.

More precisely, our proposed framework is based on an iterative

model selection procedure founded on linear regression, one of the

most popular yet readable ML approaches. Linear regression is also

known for its simplicity, following the Ockham’s razor problem-

solving principle that essentially states that “simpler solutions are

more likely to be correct than complex ones" [4, 27]. However, rather

than calculating the importance of each feature in one shot as linear

regression does, we implement an iterative process which, at each

step, adds a new feature to test or removes the least performing

feature. Moreover, our approach uses a model selection criterion

and is able to consider a large set of candidate features. While this

approach has been used in machine learning [10], to our knowledge,

it has never been considered in QPP.

In terms of performance prediction, we found that our model is

consistently better than non-selective linear regression. We also

compare our model with the penalized regression model called

LASSO [17], which selects features by shrinking some feature coef-

ficients to zero. The results reveal that our proposed model outper-

forms LASSO in most of the cases. Moreover, compared to LASSO,

our method is parameter free and keeps fewer features, thus being

less costly to use in the real world. Finally, we compare our model

to that of Raiber et al. [26], which is the most recent approach that

combines features and uses the same evaluation setting as ours. We

found no statistically significant difference between our model and

that of Raiber et al. [26], while our model is simpler, interpretable,

and uses fewer features. We also investigate the inference times

required by our model versus Raiber’s et al. [26] model, during pre-

diction of the query performance. The time evaluation shows that

our model requires less time than Raiber’s et al. [26]. We also found

that our method consistently selects a specific group of features

across collections for different folds and trials; one of these features

is the QFTERM proposed in this work.

The remainder of this paper is structured as follows: Section 2

includes the related work. Section 3 presents our framework of step-

wise model selection for query performance prediction. Section 4

presents the data collections, evaluation metrics, and experimental

settings used for the evaluation part. Section 5 reports the evalua-

tion of the proposed framework and the answers to our research

questions. Finally, Section 6 concludes this work and presents some

future directions.

2 RELATEDWORK

The core objective of our paper is to define an optimal readable

model that combines query features, selects the most important

ones, and can explain the predicted values as opposed to black-

boxes. Work related to our paper is about (a) query performance

predictors and (b) methods to combine predictors.

Query performance predictors. Query performance predic-

tion aims at automatically estimating the performance of a query

without relevance judgment [41]. Pre-retrieval predictors were de-

fined first, and they can be calculated prior to any search for the

given query. Examples of pre-retrieval predictors are the Inverse

Document Frequency (IDF) [35] or SynSet (the average number

of query term senses) [25]. Further pre-retrieval QPPs have been

defined in the literature, including the CLARITY score [12], the



query complexity [24], and the query scope [19]. However, the post-

retrieval features have been shown to be more effective [18, 23, 32].

Post-retrieval predictors require to search through the documents

to compute their scores and thus to predict the query difficulty.

For example, Diaz [14] found that “low correlation between scores

of topically close documents often implies a poor retrieval per-

formance" and suggested a spatial analysis of retrieval scores for

QPP. Indeed, several QPPs from the literature rely on document

scores. Examples of post-retrieval predictors are: the agreement be-

tween the entire query results and the results obtained when using

sub-queries [41], Query Feedback (QF) [45], Weighted Information

Gain (WIG) [45], CLARITY [12], Normalized Query Commitment

(NQC) [33], and score-distribution models [13]. Roitman et al. pro-

posed an enhanced QPP estimator based on calibrating the retrieved

document scores through learning document-level features [29].

Zamani et al. [42] proposed a NeuralQPP method based on integrat-

ing the retrieval scores, the term distribution, and the continuous

representation of the top-retrieved documents by training a neural

network with multiple weak supervision signals.

Combining query features. Several previous studies attempted

to combine multiple query features or predictors. Bashir [3] em-

ployed a genetic algorithm to combine multiple pre-retrieval fea-

tures and showed that it is more effective than using any single

predictor. However, a straightforward way to combine features to

predict a target value is by linear regression, and most of the related

works combining features that way [17, 45].

Zhou and Croft [45] combined WIG and QF post-retrieval pre-

dictors in a linear way, showing that the combination improves

performance. Shtok et al. [32] proposed a framework based on

statistical decision theory to estimate the utility of a document

ranking for QPP, considering four predictors (WIG, QF, CLARITY,

NQC). They reached to the same conclusion as [45], namely that

WIG and QF are worth combining. Collins-Thompson et al. [11]

used a regression tree for QPP by combining features based on

divergences between language or topic model representations, such

as simplified clarity [20], query drift [40], clarity [12], expansion

drift [44], and expansion clarity [11].

Hauff [16] used the absolute shrinkage and selection operator

(LASSO) penalization when combining pre-retrieval features using

linear regression. The LASSO penalization in linear regression aims

at making the model sparse by removing features that roughly cor-

respond to the smallest coefficients of the model. Even if LASSO

exhibits proficiency in selecting the most important features, it re-

lies on a parameter that has to be tuned optimally, for instance, using

a cross-validation approach that can be time-consuming. Therefore,

we rather opted for a stepwise approach with a straightforward

implementation since it is parameter free.

Another closely related work is that of Raiber et al. [26]. They

proposed a pairwise learning-to-rank model, that combines several

existing pre-and post-retrieval QPP features through a two-stage

training [21] process. In the first stage, the SVM-rank-based training

combines several variants of individual post-retrieval features (e.g.

NQC [33]) calculated for different hyper-parameter values and for

several QPP features. In the second stage, another SVM-rank-based

training combines all the QPPs from the first stage, while weighting

them according to the weights learned in the first step. The main

reason why the two stages are needed is the (large) number of

features (and/or feature variants) compared to the relatively small

number of training examples. Although this framework [26] shows

convincing performance, (a) it is computationally expensive at

inference time since all the features are used in the final model,

for both training and inference. Moreover, there are as many SVM-

rank-based training procedures as the number of QPP features (first

stage) plus an additional SVM training in the second stage and (b)

the method is not parameter free, specifically in its adaption to

sparse SVM. Since it is computationally expensive to extract the

many QPP features required by Raiber’s framework [26] in the

second stage, we rather develop a selective model which requires

only a few features.

3 STEPWISE MODEL SELECTION FOR QPP

In this section, we describe our novel framework for selecting

features to be used in the query performance predictive model. It

employs an iterative process which relies on model selection theory

in the context of linear regression and aims at combining various

query features into a readable model. Not all the features are equally

important and our model aims at optimizing the feature selection.

Moreover, we use an iterative algorithm in order to select the best

predictive model. While our model belongs to the group of models

that have a solid mathematical background, we think it is worth

providing the basics of linear regression for readers unfamiliar to

ML, since our model is based on an adaption of it.

Linear model as a basis for predictor combination. Our

model is founded on the theory of linear models [28]. A linear

model links a response variable y to several predicting variables

x j , j = 1, . . . ,p. In our context, x j refers to a query feature and

y refers to a performance measure representing the ground-truth

effectiveness, that our model aims at predicting. We can model the

performance measure according to query features and express it as

the following linear model:

yi = β1 · x
1
i + β2 · x

2
i + · · · + βp · x

p
i + β0 + εi ,∀i ∈ {1, . . . ,n}, (1)

where i is the index of a query. A standard assumption for linear

models is that εi ∽ N(µ,σ 2), expressing that the residuals contain

only noise. Equivalently, the linear model can be expressed using

vector and matrix notations:
Y = Xβ ′ + ε, (2)

where Y and ε are n-dimensional vectors, β is a (p + 1)-dimensional

row vector of weights, β ′ is the transposed (column) vector, and X

is a n × (p + 1) matrix containing n training examples. Our choice

toward a linear model for QPP is driven by better interpretability

and by the theoretical background we can rely on.

Parameter estimation. In the linear model, the unknown pa-

rameters βj can be estimated using maximum likelihood. In statis-

tics, the likelihood function expresses the way the parameters to be

estimated are associated to the data actually observed. Maximizing

the likelihood function consists in finding the values of the param-

eters that plausibly describe the observations. Using the previously

defined setting, the likelihood function is given by:

L(β,σ 2) = (2πσ 2)
−n/2

exp −
1

2σ 2

n
∑

i=1

(yi − Xiβ)
2

)

. (3)



Maximizing L(β,σ 2) is equivalent to maximizing logL(β,σ 2)which

is easier to handle and maximize. We thus want to maximize:

logL(β,σ 2) = −
n

2
log(2π ) −

n

2
log(σ 2) −

1

2σ 2

n
∑

i=1

(yi −Xiβ)
2
. (4)

The maximum (log-)likelihood is reached when the partial deriva-

tive according to each parameter is zero. This leads to the following

estimators for β and σ 2:

{

β̂ = (X ′X )−1X ′Y

σ̂ 2
=

1
n (Y − X β̂)′(Y − X β̂)

(5)

Once the parameters are estimated, the model can infer the fitted

values for the performance measure y. Statistical testing (or equiv-

alently confidence intervals) can be used to assess the significance

of the parameters. The null hypothesis relies on the nullity of the

parameters, i.e. on the uselessness of the associated features to

predict the effectiveness of the system. It is interpreted through

one p-value associated with each parameter. The p-value can be

viewed as the probability to make an error when rejecting the null

hypothesis. In other words, it is the probability of considering that

the feature is not relevant to predict the performance measure,

while the opposite is true. Based on the p-value, a feature could

be excluded but that feature might be important if combined with

others. Thus, we consider combining features rather than accepting

or rejecting individual features.

Another crucial issue in linear modeling is variable selection,

especially when dealing with a relatively large number of predicting

variables. To address this issue, one has to go beyond elementary

indicators, that mechanically increase with the number of variables.

We chose to focus on the Akaike Information Criterion (AIC) [10]

for assessing the goodness of fit of a linear model.

Akaike Information Criterion. This criterion is defined from

the log-likelihood and uses a penalty to limit the number of param-

eters in the model. The function to minimize is defined as follows:

AIC = −2 logL(β,σ 2) + 2 · k (6)

where k is the number of retained predictors.

AIC aims at selecting the most important features of the linear

model. If a feature is kept, then a parameter is estimated to assess its

influence in the linear model. As mentioned above, the parameters

in a linear model can be estimated through the maximization of the

(log-)likelihood. AIC is based on the opposite of the log-likelihood,

thus requiring minimization. However, the penalty term added in

AIC (2 · k) depends on the number of parameters k to be estimated

in the model (the same as the number of features included to predict

the performance): the higher the number of parameters, the higher

the penalty. Therefore, using AIC will ensure that the model does

not use “too many" features and will keep only the most significant

ones. Moreover, AIC can be used as a stopping rule for stepwise

algorithms for model selection, as shown below.

An iterative stepwise selection algorithm. Our proposed

framework is based on a model selection approach. This means

different models are fitted with different subsets of features and the

system selects the best model. This selection process is iterative.

More precisely, we employ a stepwise algorithm which mixes

two strategies: forward and backward. Basically, the forward strat-

egy starts from the model with no predictors and adds at each step

the feature with the smallest p-value, thus possibly, the most useful

because its coefficient in the linear model can be considered as

significantly different from zero with a very low risk (quantified by

the p-value) to be wrong. A stopping rule is based on a threshold

for the p-value. On the other hand, the backward strategy starts

from the complete model with all available features and, at each

step, removes the feature with the highest p-value. In this case,

the p-value can be interpreted as the probability to make an error

if we consider that the coefficient of the feature is not null. The

stepwise strategy combines the forward and backward strategies

by attempting to remove a feature (applying backward) each time

another one is added in the model (applying forward). This strategy

is improved using AIC as a criterion instead of considering a thresh-

old on the p-value. That is what we use in the following. Although

this approach has been used in other ML tasks, it has never been

used for QPP. We believe that AIC is worth investigating because

of the cost of using multiple post-retrieval prediction features.

Our stepwise algorithm is an automaticmodel specification based

on the AIC criterion. Starting from the complete model, the stepwise

algorithm aims at decreasing the AIC at each step, using one of the

two possible operations: (a) Remove one variable (obviously, this is

the only option at the first step when starting from the complete

model); (b) Add one variable removed in an earlier step.

The algorithm stops when the AIC criterion cannot be further

decreased by removing or adding a variable. We note that our

iterative feature selection algorithm is employed only at train time

and it does not affect inference time.

Figure 1 illustrates the selection process when eight variables

are used. The initial model consists of 8 variables. In Step 1, we

cannot add any variable, the only possibility is to remove one. Eight

models are built consisting each of 7 variables. Let us assume that

the model without V6 got the lowest AIC. The model without V6
is the starting point for Step 2. In Step 2, we can either add V6 or

remove one of the other 7 variables. We thus test these 8 possible

models and keep the one with the lowest AIC. Let us assume that

removing V3 is the best. We now have a model with 6 variables

whereV3 andV6 do not belong to. This model is used to start Step 3.

We can either add one of these 2 variables or remove the third one

(6 possibilities). Again, we test all the models. Let us assume that

removing V5 leads to the smallest AIC; we would keep the model

with 5 variables for the next step.

4 DATA COLLECTIONS AND EVALUATION

Data collections. We considered four standard TREC collections

from the ad-hoc task as follows: Robust, GOV2,WT10G, and ClueW-

eb12-B13. For Robust, there are approximately 500K newspaper

articles. WT10G is composed of 1.6 million web/blog page docu-

ments. GOV2 includes 25 million web pages and ClueWeb12-B13

subset includes 50 million web pages. Table 1 summarizes a few

features about the collections used for evaluation. The four TREC

test collections also include topics. The “standard" format of a TREC

topic statement comprises a topic ID, a title, a description, and a

narrative. In our experiments, a query is composed of the topic



Figure 1: The four first steps of AIC stepwise model selection when starting with 8 variables. At each step, the best model is

kept, either from removing a variable or adding one.

Table 1: Details of the collections used in the experiments.

Corpus #Docs Queries (Title only)

Robust 528,918 301-450, 601-700

WT10G 1,692,096 451-550

GOV2 25,205,179 701-850

Clueweb12B (CW12B) 52,343,021 201-300

title that contains two or three words representing the keywords

a user could have used as a search query. Finally, the collections

provide qrels (i.e. judged documents, relevant or non-relevant, for

each query), which are used by the evaluation program trec_eval1

in order to calculate the effectiveness of the IR system.

Query performance predictors. Several post-retrieval features

have been proposed in the literature as QPP features and we reuse

the main ones in this paper. We also propose two new post-retrieval

features named QFTERM and QFJSD as variants of QFDOC [45].

Our proposed QPP features, as well as the state-of-the-art ones, are

described as follows:

- QFDOC [45]: estimates the query feedback as the percentage of

overlap at some rank between the returned document lists for the

original query and the expanded query induced from the initially

retrieved documents. It measures the query-drift.

-QFTERM (ours): we argue that the overlap at the document level, as

computed by QFDOC, is too strict to estimate the discrepancy. We

thus propose to relax this phenomenon at the term level, computing

the percentage of overlap between the list of terms available in the

top-retrieved documents for the original query and the term list for

the expanded query. The higher the percentage of term overlaps,

1http://trec.nist.gov/trec_eval/

the higher is the chance that the top-retrieved documents cover

many relevant documents, since the expanded query is not too

drifted away from the original query.

- QFJSD (ours): instead of computing the percentage of overlap at

the document level between the top-retrieved documents for the

original and the expanded queries, as QFDOC does, we rather mea-

sure the query feedback based on the similarity of term statistics

between the two document lists, considering that a higher simi-

larity value should correspond to a lower query-drift and a higher

query performance. To estimate the similarity of term statistics

between the two lists, we first build language models from the

top-retrieved documents for the original query and the expanded

query, respectively. Then, we apply the Jensen-Shannon divergence

between the two language models to estimate how similar they are.

- CLARITY [12]: estimates the relative entropy between the rele-

vance language models of the top retrieved documents and the

corpus.

-WIG [45]: corresponds to the divergence between the mean of the

top-retrieved document scores and the mean of the entire set of

document scores.

- NQC [33]: is based on the standard deviation of the retrieved doc-

ument scores.

- UQC [33]: is a variant of the NQC predictor, based on the standard

deviation of the retrieved document scores without normalization.

- SW1 [26]: is the ratio between the number of stop and non-stop

words in each document, averaged over the top-retrieved docu-

ments for a query.



These QPP features can be estimated for different numbers of

n-top-ranked feedback documents where n is a hyper-parameter.

In this work, we consider 6 values of n = {10, 50, 100, 200, 500, and

1000}. Moreover, to compute QFDOC, QFTERM, and QFJSD, we need

to know the cutoff rank (termed QFcut) at which the percentage

of overlap is computed for each hyper-parameter n. According to

common practice [26, 29, 33], we defineQFcut =min(50,n), i.e. the

percentage of overlap is calculated for at most 50 documents.

Evaluation metrics. We use the Pearson and Spearman corre-

lations between the predicted effectiveness value and the ground-

truth effectiveness, as in previous works [5, 9, 17, 29, 30, 42]. To mea-

sure the ground-truth effectiveness of the system, we use AP (aver-

age precision) and NDCG (normalized discounted cumulative gain)

since they are commonly adopted in related works [9, 17, 26, 29, 42].

Experimental settings. As a common practice in QPP evalua-

tion [26, 30, 42], we randomly split the queries into two equally-

sized sets and conduct two-fold cross-validation. We repeat these

steps for 30 times and report the average results. Statistically sig-

nificant differences of prediction performance are estimated using

two-tailed paired t-test with Bonferroni correction (p < 0.05) com-

puted over the 30 splits. Similar to previous works [12, 26, 32, 45],

we chose the Language Modeling with Dirichlet smoothing and

µ = 1000 without query expansion (as implemented in Lemur Indri

platform, using default parameters) to retrieve n documents for

each query and to calculate the performance of the IR system (and

thus, determine the results to be predicted in terms of AP or NDCG).
5 RESULTS AND DISCUSSIONS

Trade-off between sparsity and effectiveness. To answer our

two research questions, we first study the correlation between

the predicted and the ground-truth effectiveness (Table 2). When

the Pearson correlation coefficient is employed, we measured the

correlation between the predicted value and the actual value (the

reference system is the language model with µ = 1000). When the

Spearman correlation coefficient is used, we measured the correla-

tion between the ranks of the queries obtained when ordered by

the predicted effectiveness and the actual effectiveness.

In Table 2, the first row is obtained by using the linear model (LM)

with all the features in a single step (1S), a baseline that achieves

readability, but not sparsity. The models listed on the subsequent

rows use a two-stage approach as in [26], where the second step is

either SVM-rank [26] (second row) or one of the models that ensure

interpretability, as follows: LM (third row) refers to the linear model;

LASSO (fourth row) is the LASSO selection [37] that ensure sparsity.

Finally, the last row (AIC FS) corresponds to our proposed method

of feature selection (FS) using the AIC criterion.

From the results displayed in Table 2, we observe that Raiber

et al.’s [26] two-stage framework outperforms the one-stage linear

regression baseline. Indeed, rows 2 to 5 indicate significant increases

in correlation compared to the first baseline (see △ in the table),

irrespective of the model, the collection or the correlation measure

being used. This result was expected considering the state-of-the-

art results, but was worth checking2.

2The linear model with a single step (1S LM) does not work well apart from the Robust
collection.

More interestingly, we notice that, in Table 2, the three models

we implemented (LM, LASSO and AIC FS) are generally (a) close to

one another in terms of results, (b) without significant differences

with respect to Raiber et al. [26], apart from a few cases (see ↓

and ↑ in the table). These results show that it is possible to use an

interpretable model without decreasing effectiveness. From these

three models, only LASSO and AIC FS ensure sparsity; we thus

focus next on the results obtained by these models.

LASSO and AIC FS perform almost the same apart from a few

cases where LASSO is slightly better (ROBUST AP and GOV2) or,

conversely, where AIC is slightly better (WT10G). However, one

important observation is that LASSO has a shrinkage parameter λ

that needs to be tuned. In our experiments, we fitted it using 10-

fold cross-validation, thus using the same data for both parameter

fitting and model training, giving a clear advantage to LASSO in

our experiments. In a preliminary set of experiments, we found that

the transfer learning of λ (learning the parameter on a collection

and using that value for another collection), that would make a

fair comparison between LASSO and AIC FS, did not work at all

for LASSO. Hence, λ has to be tuned separately for each collection,

which is a clear drawback of LASSO compared to our parameter-

free selection model based on the AIC criterion.

While one could have hypothesized that using all the features

(the 1st and 3rd rows in Table 2) would have outperformed all the

selective methods, this is not the case. This result is likely due to

the curse of dimensionality [38]. This is an important result, as one

crucial advantage of selective methods is to avoid calculating some

features at inference time, that are not kept in the trained model.

This also follows the Ockham’s principle “the law of briefness", that

is “more things should not be used than are necessary." In the case

of AIC, not only a limited number of features have to be computed,

but the results are also better than using all features.

Sparsity and time complexity of the resulting models. As

eight predictors are not that many, one may argue that this is a

reasonable number which does not require feature selection. How-

ever, each feature can take valuable time in order to be computed,

e.g. WIG requires 3.8 seconds on average for each query from the

TREC-ROBUST collection on a machine having 8GB of RAM and

processing on a single core. Thus, sparsity is an important issue

when the number of predictors is large and/or costly to compute.

Moreover, a smaller number of predictors leads to a simpler model

and easier interpretation [46].

To investigate the sparsity of our model, we computed the num-

ber of features selected in the second stage for the different models.

We start from eight QPP features in the second stage, two folds, and

30 trials. Since different numbers of features may be selected by a

model across trials, we compute the average number of selected

features. Table 3 reports the average number of features selected by

Raiber et al. [26] and AIC FS models. Remarkably, our method, AIC,

selects much fewer features than Raiber et al. [26] across all collec-

tions. The average number of features selected by AIC ranges from

2 to 5, while maintaining a similar performance to SVM-rank [26],

that uses 7 to 8 features. This makes our method more applicable

in real-world systems.



Table 2: Correlation of predicted and ground-truth effectiveness for scores with Pearson (r ) and for ranks with Spearman (ρ).

The first line uses a one step process. The others use a two steps process, the first step being SVM-rank based. △ indicates

statistically significant improvement over the Linear model (1S LM). ↑ (resp. ↓) indicates statistically significant increase (resp.

decrease) over the model of Raiber et al. [26], according to a paired t-test (p < 0.05) with a Bonferroni correction.

ROBUST WT10G GOV2 CW12B

Method AP NDCG AP NDCG AP NDCG AP NDCG

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

1S LM (One stage linear model) .39 .41 .41 .43 .01 .01 .04 .05 .11 .23 .13 .25 .02 .01 -.00 -.02

SVM of Raiber et al. [26] .48△ .50△ .49△ .49△ .27△ .22△ .27△ .29△ .45△ .46△ .45△ .46△ .41△ .36△ .37△ .36△

LM (Linear model) .46△
↓
.47△

↓
.48△

↓
.48△

↓
.29△ .29△

↑
.30△ .36△

↑
.47△

↑
.48△

↑
.44△ .47△ .40△ .37△ .37△ .34△

LASSO .48△ .48△ .49△ .49△ .21△ .20△ .23△ .27△ .48△
↑
.50△

↑
.45△ .48△ .38△ .35△ .32△ .30△

↓

AIC FS (Feature selection) .46△ .47△
↓

.49△ .49△ .24△ .24△ .25△ .29△ .45△ .47△ .43△ .45△ .38△ .35△ .33△ .30△
↓

Table 3: Average number of features selected in the mod-

els and average inference time required to predict the query

performance using the same configurations as Table 2. We

use a machine with an AMD Opteron 6262HE 1.6 GHz CPU,

8GB of RAM, a single thread.

Method ROBUST WT10G GOV2 CW12B

AP

Raiber’s SVM 8 (.042s) 6 (.036s) 8 (.033s) 6 (.023s)

AIC FS 3 (.019s) 3 (.025s) 4 (.023s) 3 (.015s)

NDCG

Raiber’s SVM 8 (.041s) 7 (.037s) 8 (.017s) 7 (.020s)

AIC FS 3 (.026s) 4 (.029s) 4 (.014s) 3 (.013s)

In Table 3, we also report the inference times required by our

model versus Raiber’s et al. [26] model, respectively, during pre-

diction of the query performance. The time evaluation shows that

AIC FS takes less time than Raiber’s et al. [26] SVM to predict the

query performance, since AIC FS requires fewer QPP features.

Most important features and interpretability. For a deeper

understanding, we analyze the features selected by our AIC model,

presenting the usefulness of each feature in Figure 2 (similar results

are obtained for NDCG). We compute the number of times a feature

was selected (SF ) by our model, for two folds in 30 trials. Then,

we compute the percentage of selecting that feature as SF
T F × 100,

where TF denotes the number of times a feature could be selected,

i.e. the number of folds times the number of trials. This is done for

all individual features per collection.

One interesting finding is that QFTERM, one of the feature we

proposed in this paper, is consistently selected as an important

feature. WIG is also consistently important. UQC and SW1 are

more collection dependant, the first one being more important for

ROBUST, WT10G, and GOV2, while the second one being more

important for GOV2 and CW12B.

The proposed AIC FS method is easily interpretable and enables

one to understand the trained model and to know the impact of

each query features in QPP. To illustrate this, we include below a

model obtained on GOV2 collection:

QPP = .136 · SW 1 + .126 ·QFTERM + .101 ·UQC

+ .091 ·WIG + .034 ·CLARITY + .184
(7)

We can see that the weight of the two most important features

(SW1 and QFTERM) are 30% higher than the two following ones

(UQC and WIG); CLARITY is much less important.
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Figure 2: Distribution of features selected by our AIC FS

model across collections for AP. Each percentage is com-

puted as the number of times a feature is selected divided

by the total number of times a feature could be selected.

6 CONCLUSION

In this paper, we promoted the use of model selection for combining

query performance predictors. Our aim was twofold: (i) we wanted

to contribute to shifting the effort from complex predictive models

to simpler models and (ii) we wanted to develop a sparse and easy to

interpret model. Indeed, we have shown that the trade-off between

simplicity and effectiveness is in favour of our model. We showed

that our selective framework achieves similar results in terms of

correlation measures, while having the great advantage of using

a limited number of features, and thus, being much cheaper for

implementation in real-world systems. Our predictive approach

based on the AIC selection strategy provides the best trade-off

between the prediction accuracy and the number of features to be



computed. During inference, the features selected by our framework

are the only ones which need to be calculated. That gives a key

advantage to our framework compared to the literature. Moreover,

our model is interpretable, which is very important at this stage of

query difficulty research. These results open the path to a better

understanding of system failures by analyzing the model deeper.

To answer this challenge, in future work, we will analyze the

influence of each of the selected features individually as well as

their cost/effectiveness trade-off. Because the current results reveal

that our new version of QFDOC feature, namely QFTERM, is the

most important QPP feature in the model across collections and

performance metrics, it will be worth to continue defining new QPP

features to try to further improve query difficulty prediction.
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