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Abstract. Model-Based Testing (MBT) relies on models of a System Under Test 

(SUT) to derive test cases for said system. While Finite State Machine (FSM), 

workflow, etc. are widely used to derive test cases for WIMP applications (i.e. 

applications depending on 2D widgets such as menus and icons), these notations 

lack the expressive power to describe the interaction techniques and behaviors 

found in post-WIMP applications. In this paper, we aim at demonstrating that 

thanks to ICO, a formal notation for describing interactive systems, it is possible 

to generate test cases that go beyond the state of the art by addressing the MBT 

of advanced interaction techniques in post-WIMP applications. 

Keywords: Post-WIMP Interactive Systems, Software Testing, Model-Based 

Testing. 

1 Introduction 

Model-Based Testing (MBT) of software relies on explicit behavior models of a system 

to derive test cases [30]. The complexity of deriving comprehensive test cases increases 

with the inner complexity of the System Under Test (SUT) that requires description 

techniques with an important expressive power. The modelling of post-WIMP (Win-

dows, Icons, Menus and Pointers) interactive applications (i.e. applications with an in-

terface not dependent on classical 2D widgets such as menus and icons [31]) proves to 

be a challenging activity as pointed out by [13]. For instance, when using a touch 

screen, each finger down/up is a virtual input device being added or removed from the 

systems at runtime and behaves in parallel with the other fingers or input devices. A 

modelling technique able to describe such interactive systems must support the descrip-

tion of dynamicity.  

Beyond the problem of describing the SUT behavior, testing Graphical-User Inter-

face, whether it is WIMP or post-WIMP, is known to be a complex activity [10], espe-

cially because of the unpredictability of the human behavior as well as the virtually 

infinite number of possible interaction sequences. To face such difficulty, model-based 

testing techniques have been developed to try to generate relevant test sequences with-

out relying on manual scripting or capture and replay of tester’s interactions.  



The massive adoption of touch screens means advanced touch interactions (e.g. 

swipe, pinch-to-zoom, etc.) gained in popularity, while most of the existing MBT tech-

niques for interactive applications are designed to deal with events performed on the 

standard GUI widgets (e.g. button, combo box, etc.) [1][10][16][28]. Lelli et al. [16] 

identified the need for new MBT techniques for post-WIMP applications by highlight-

ing the need for supporting ad-hoc widgets (i.e. non-standard widgets developed spe-

cifically for the application) and advanced interaction techniques. 

In this paper, we propose to build upon the work of Hamon et al. [13], which used 

the ICO [21] formal modelling technique to describe post-WIMP interactive systems, 

as a support to the generation of test cases for interaction techniques of post-WIMP 

applications, and to demonstrate that testing can be conducted following the standard 

process for Model-Based Testing proposed in [30]. As interaction techniques have to 

cope with the high dynamicity of Input/Ouput, as well as temporal aspects, they prove 

to be one of the most difficult components of interactive systems to be described. Thus, 

they are the prime focus of this paper, even though we will highlight that our proposed 

approach applies to other components of the interactive systems’ architecture as well. 

This paper is structured as follows: Section 2 presents related work on the MBT of 

interactive applications; Section 3 introduces the interaction technique on which we 

propose to apply the approach and its modelling in ICO; Section 4 discusses the gener-

ation of the test cases from the ICO specification and Section 5 provides some com-

ments on test execution; Section 6 discusses the generalizability of the proposed ap-

proach to other components of the SUT; Section 7 concludes the paper by discussing 

future work. 

2 Related Work 

The classical approaches to interactive applications testing consider that the user’s in-

teraction takes place at the GUI widget level (e.g. buttons, icons, label, etc.). While it 

is the case in the WIMP paradigm, this assertion cannot be used in the post-WIMP 

paradigm where “at least one interaction technique is not dependent on classical 2D 

widgets such as menus and icons” [31]. Consider a gesture-based (post-WIMP) draw-

ing tool. One may want to define (and test) whether moving two fingers on the drawing 

area means zooming (pinch-to-zoom), rotating or drawing. As this may be determined 

by how the user effectively moves his/her fingers (speed, angle, pressure level, delay 

between finger down events, etc.), it goes beyond available standard testing techniques 

for widget level interactions. 

In this section, we first introduce the process of MBT and discuss the existing Model-

Based Testing techniques for WIMP applications. We then discuss the testing of post-

WIMP applications in order to highlight challenges to overcome. 

2.1 The Process of Model-Based Testing 

In their Taxonomy of Model-Based-Testing Approaches, Utting et al. [30] present the 

model-based testing process illustrated by Fig. 1. In this process, a model of the SUT 



is built from informal requirements or existing specification documents (Fig. 1.(1)) and 

test selection criteria (Fig. 1.(2)) are chosen to guide the automatic test generation to 

produce a test suite that fulfils the test policy defined for the SUT. These criteria are 

then transformed (Fig. 1.(3)) into a test cases specification (i.e. a high-level description 

of a desired test case). Utting et al. [30] use the example of test case specification using 

state coverage of a finite state machine (FSM). In such case, a set of test case specifi-

cation {reach s0, reach s1, reach s2…} where s0, s1, s2 are all the states of the FSM is 

the test case specification.  

Fig. 1. The process of Model-Based-Testing (from [30]) 

Once the model and the test case specifications are defined, a set of test cases is 

generated with the aim of satisfying all the test case specifications (Fig. 1.(4)). With 

the test suite generated, the test cases are executed (either manually -i.e. by a physical 

person- or automatically thanks to a test execution environment). This requires concre-

tizing the test inputs (Fig. 1.(5-1)) and comparing the results against expected ones to 

produces a verdict (Fig. 1.(5-2)). 

2.2 Model-Based Testing of WIMP Application 

In software engineering, the nearly three-decades-old field [1] that addresses concerns 

regarding the testing of user interfaces is called “GUI testing”. In [1] GUI testing is 

defined as performing sequences of events (e.g., “click on button”, “enter text”, “open 

menu”) on GUI widgets (e.g., “button”, “text-field”, “pull-down menu”). For each se-

quence, the test oracle checks the correctness of the state of the GUI either after each 

event or at the end of the sequence. Since the domain is three-decade-old, it naturally 

focused on WIMP UIs as they were the only available at the time. This focusing is still 

quite present today. 



Some of the research works presented in the following paragraphs do not follow the 

process of MBT presented by Utting [30], but they propose relevant and inspiring ap-

proach for WIMP application testing. 

Memon et al. [18] propose a detailed taxonomy of the Model-Based techniques em-

ployed to generate test cases in GUI testing. These techniques rely on various kinds of 

models (state machine, workflow, etc.) that target mono-event-based systems (i.e. sys-

tems on which UI events are produced directly as a result of a single action on a widget: 

key typed, mouse clicked, etc.). They describe the possible test cases by checking reach-

ability of a node. It is important to mention that most of the techniques listed in [18] 

rely on models built by reverse engineering of the SUT [25]. 

Another approach based on reverse engineering is the one of Morgado et al. [20] in 

the iMPAcT tool. This tool uses patterns of common behavior on Android applications 

to automatically test them. The tool explores the SUT checking for UI patterns using a 

reverse engineering process. Each UI pattern has a corresponding testing strategy (a 

Test Pattern) that the tool applies. 

Bowen et al. [8] adopt the test-first development approach in which abstract tests are 

built from formal specification of the system functionality (given using Z [29]) and 

from a presentation model describing the interactive components (widgets) of the user 

interface. These abstract test cases are used to produce JUnit and UISpec4J1 test cases. 

Finally, Campos et al. [9] propose an example of approach that matches the outlines 

of the MBT-process by using task models to perform scenario-based testing of user-

interfaces coded in Java using the Synergistic IDE Toucan [17]. The conformance be-

tween the application code and the task models is checked at runtime thanks to annota-

tions in the Java code that allow the association of methods calls to the Interactive Input 

and Output Tasks. The scenarios produced from the task model are then played auto-

matically on the Java application. 

2.3 Model-Based Testing of post-WIMP Application 

Testing post-WIMP applications requires going beyond GUI testing as mentioned by 

Lelli et al. [16]. This requires considering ad-hoc widgets and complex interaction tech-

niques that cannot be performed simply as sequences of events on GUI widgets. For 

instance, interactions such as gesture-based or voice command activations are not tied 

to a specific GUI widget. 

One of the main references in post-WIMP application testing is Malai [16] that has 

been proposed as a framework to describe advanced GUI Testing. It allows the descrip-

tion of interaction using Finite State Machine (FSM) with two types of end state: ter-

minal state and aborting state. These states are dedicated to identifying whether the user 

completed the interaction or aborted it. The output actions associated with completing 

the interaction (i.e. reaching its terminal state) are described in a specific reification of 

tools called instruments.  

However, the use of FSM limits the description of interaction techniques and should 

be enhanced to support: 

1  https://github.com/UISpec4J/UISpec4J 



· The description of dynamic instantiation of physical and virtual in-

put/output devices: on systems with a touchscreen, the display is a physi-

cal output device and the touch layer the physical input device. When deal-

ing with multi-touch interaction, a finger is a virtual device that is added/re-

moved whenever it touches the screen or is removed from it;

· The description of timing aspects to represent quantitative temporal evo-

lution of the interaction technique (available in timed-automata);

· The description of concurrent aspect to represent concurrent usage of in-

put devices by the user; events from these devices might be fused to pro-

duce higher-level multimodal event [15];

· The description of dynamic user interface behavior driven by temporal

events such as animations during transition between states of the system

[19];

· The description of system configurations as, for instance, using resolu-

tion scaling on displays with high pixels densities affects the size, location

and translation of the GUI elements on screen. Beyond, this also applies to

mobile and web-based UI in which having a responsive-design behaving

properly is a concern.

While advances have been made in the description of such aspect, especially in work 

such as [13], there are not, to the best of our knowledge, techniques taking advantages 

of them to generate tests cases for interactive applications. In the following of the paper, 

we introduce and use the ICO formalism to demonstrate the need for advanced model-

ling techniques for effective testing of interactive applications. 

3 Modelling of a Post-WIMP Case Study Using ICO 

In this section, we present an architecture for post-WIMP applications and highlight 

where the interaction techniques take place. We then present the informal requirements 

for the “finger clustering” interaction technique used as a case study in the remaining 

of this paper. Thereafter, we introduce the formal description technique we use, ICO 

[21], and present the models associated to the “finger clustering” interaction technique. 

3.1 Architecture of a Post-WIMP Application 

Effectively testing an interactive application requires a good understanding of its archi-

tecture and of the role of its components to select appropriate test criteria [10]. While a 

detailed architecture such as MIODMIT [11] is able to describe in detail the hardware 

and software components of interactive systems, we use in this paper a simpler software 

architecture (inspired by ARCH [4]) for touch applications, presented in Fig. 2, to detail 

the role of the component we focus on. The work presented in the remaining of this 

paper is still applicable to a more complex architecture. 



Fig. 2. Example of architecture of a post-WIMP application adapted from [13]. 

As this paper discusses specific aspects of post-WIMP application, we do not detail 

the “back-end”, or Functional Part, of the application (leftmost part of Fig. 2). The 

Dialogue Part of the application shares a common role in WIMP and post-WIMP ap-

plications, i.e. translating high-level events resulting of the user interaction into invo-

cations on the Functional Part. The main difference between WIMP and post-WIMP 

applications then resides in the Window Manager that contains, from right to left, the 

widgets (that share similar roles to widgets of WIMP interfaces), the Interaction Tech-

niques, the Logical Input Device and the Low-Level Transducer. 

The Low-Level Transducer is connected to the Touch Provider (rightmost part of 

Fig. 2), i.e. the driver of the touch screen. The Touch Provider produces the lowest-

level events in the input chain as they are directly derived from the touch screen behav-

ior. The role of the Low-Level Transducer is to handle these low-level events and to 

translate them to make sense for the Window Manager logic. On touch applications, 

the Low-Level Transducer creates Logical Input Devices (i.e. Fingers) with unique IDs 

and additional information (coordinates, pressure level, etc.). The Logical Input De-

vices are added to the Window Manager Interaction Technique(s) that will notify widg-

ets and other subscribers (such as a drawing panel) using high-level events when either 

simple (e.g. tap) or complex (e.g. pinch) interactions are performed.  

While this paper focus on the testing of the Interaction Technique, i.e. on verifying 

that for a set of Logical Input Device actions, the correct high-level events are produced, 

we highlight the applicability of our methods to the other components of the architec-

ture and on integration testing of these components. 

3.2 Presentation of the “Finger Clustering” Interaction Technique 

The case study we use in this paper is a multi-touch interaction technique that produces 

events when fingers are clustered (i.e. within a given range of each other) and de-clus-

tered according to the requirements presented below. These requirements are the inputs 

for the MBT Process (top-right of Fig. 1): 

· Clusters may either contain two or three fingers;



· Clusters of three fingers are always created in priority over clusters of two

fingers (i.e. if 4 fingers are on the screen in a range suitable for creating a

cluster of 3 fingers, a three finger cluster will be created with a finger left

alone; in no occasion such circumstance may lead to the creation of two clus-

ters of two fingers);

· The distance between two fingers must be under 100 pixels to create a 2 finger

clusters;

· Clusters of three fingers are created when three fingers on the screen form a

triangle with each of its edges measuring less than 100 pixels. If it happens

that two fingers of an existing cluster of 2 fingers can be part of a three fingers

cluster, then the three fingers cluster is created, removing the 2 fingers cluster.

· Clusters of 2 fingers are de-clustered whenever the distance between the 2

fingers it contains goes over 150 pixels;

· Clusters of 3 fingers are never de-clustered because of the length of the edges

of the triangle;

· Clusters of 3 fingers are automatically de-clustered after 5 seconds;

· All the clusters cease to exist, producing the corresponding de-clustering

event, whenever a finger contained in this cluster is removed from the screen.

The events produced by this interaction technique are the following ones: twoFin-

gersClustered, twoFingersDeclustered, threeFingersClustered, threeFingersDeclus-

tered. 

3.3 ICO: A Formal Description Technique Dedicated to the Specification of 

Interactive Systems 

The ICO formalism is a formal description technique dedicated to the specification of 

interactive systems [21]. It uses concepts borrowed from the object-oriented approach 

(dynamic instantiation, classification, encapsulation, inheritance and client/server rela-

tionship) to describe the structural or static aspects of systems and uses high-level Petri 

nets to describe their dynamic or behavioral aspects. 

ICOs are dedicated to the modeling and the implementation of event-driven inter-

faces, using several communicating objects to model the system, where both the behav-

ior of objects and the communication protocol between objects are described by the 

Petri net dialect called Cooperative Objects (CO). In the ICO formalism, an object is 

an entity featuring four components: a cooperative object which describes the behavior 

of the object, a presentation part (i.e. the graphical interface), and two functions (the 

activation function and the rendering function) which make the link between the coop-

erative object and the presentation part. 

An ICO specification fully describes the potential interactions that users may have 

with the application. The specification encompasses both the "input" aspects of the in-

teraction (i.e. how user actions affects the inner state of the application, and which ac-

tions are enabled at any given time) and its "output" aspects (i.e. when and how the 

application displays information relevant to the user). 



This formal specification technique has already been applied in the field of Air Traf-

fic Control interactive applications [21], space command and control ground systems 

[22], interactive military [6] or civil cockpits [3]. 

The ICO notation is fully supported by a CASE tool called PetShop [5][23]. All the 

models presented in the following of this paper have been edited using it. Beyond, the 

presented test generation techniques are part of an effort to support MBT in PetShop. 

3.4 Modeling of the Interaction Technique Using ICO 

Based on the requirements provided in section 3.1, we can build a model of the inter-

action technique (step 1 of the MBT process) using ICO. Fig. 4 presents this model, 

which is made of places (oval shapes), transitions (rectangular shapes) and arcs. Two 

communication means are proposed by ICO: a unicast and synchronous communica-

tion, represented by method calls, and a multicast asynchronous communication, rep-

resented by event handling: 

· When an ICO proposes method calls, they are each mapped into a set of three places

representing three communication ports (the service input, output and exception

ports). For instance, on the top part of Fig. 4, the places called SIP_addFinger,

SOP_addFinger and SEP_addFinger are the input, output and exception ports of the

method addFinger. When this method is called (for instance, in the addFingerToIn-

teraction transition of Fig. 3), a token is created, holding the parameters of the invo-

cation and is put in place SIP_addFinger. The transitions that invoke such methods

have got a ‘I’ on the right part of their header.

· When an ICO is able to handle events, it uses special transitions called event handlers

such as transition updateFingerX in the middle-right of Fig. 4. Such transitions are

described using a set of information holding the event source, the event name, extra

event parameters and a condition that concerns the event parameters. In the example

of transition updateFingerX, the event source is fx, a value held by place

FINGERS_MERGED_BY_TWO, the event name is touchevent_up, the event pa-

rameters contain an object called info and there is no condition on the parameter.

These event handlers may handle events from outer sources or from other models.

When the event source is another model, this model contains transitions that raise

events. Events are raised using the keyword raiseEvent in the code part of the tran-

sition and an “E->” is put in the right part of the header of the transition (see transi-

tion merge2Fingers of Fig. 4).

The model illustrated by Fig. 4 represents the behavior of the “Finger Clustering” In-

teraction Technique described in section 3.2. This behavior may be divided into two 

different parts according to their role: 

· Managing fingers life cycle: Each finger is added or removed from the interaction

technique model. In between, their coordinates may be updated (i.e. the finger has

moved):

─ Adding finger to the interaction technique is done using the method addFinger,

implemented using the SIP_addFinger place, addFinger transition and 



SOP_addFinger place (see Fig. 4). This method is called by a transition of the 

Low-Level transducer model (see Fig. 3). This invocation is made each time a 

Finger is created to add it to the interaction technique. When the finger enters the 

interaction technique, it is placed in the SINGLE_FINGERS place. This mecha-

nism allows for dynamic appearance of fingers in the interaction technique. To 

ease the rest of the discussion, we limited the number of fingers instantiated in 

the interaction technique to 4 using the place  FINGER_LIMIT. Removing this 

place would remove this restriction. 

─ Removing or updating fingers coordinates is performed by handling events that 

comes from the Low-Level transducer model (see Fig. 3). When a 

touchEvent_up is received, the corresponding finger is removed from the inter-

action technique model (this is the case for instance with transition remove1 on 

the left part of Fig. 4). When a touchEvent_update is received, the correspond-

ing point (associated with a finger) is updated (this is the case for instance with 

transition updating1Finger on the top right part of Fig. 4). 

· Detecting clusters of fingers: Each time a finger is added or removed from the in-

teraction technique model, or each time the coordinates of one finger is updated, the

clustering or de-clustering of fingers is computed:

─ For two or three fingers, the principle is the same, supported thanks to the pre-

conditions of the mergeXFingersX and unMergeXFingers transitions, that com-

pute the proximity of the fingers.  

─ The 5 seconds timeout for de-clustering three fingers is handled thanks to a “timed 

transition” (note the [5000] - expressed in ms - line at the bottom of the un-

Merge3Fingers transition) that removes the fingers held by place 

FINGERS_MERGED_BY_THREE. 

While we are able to describe the interaction technique, the approach can be applied 

to other components of the architecture. For instance, Fig. 3 presents the ICO model of 

the Low-Level Transducer component of the architecture presented earlier. Note that 

the addFingerToInteraction transition contains an invocation on the interaction tech-

nique. This invocation is the one associated with the SIP/SOP places in the Interaction 

Technique Model. To prevent inconsistent input such as two fingers at the same loca-

tion (which is physically impossible), a test arc allows to check whether a touch down 

is associated with a touch point of a finger already on the screen. 

Fig. 3. ICO Model for the Low-Level Transducer 



Fig. 4. ICO Model for the finger clustering interaction technique. 



4 Generating Test Cases from ICO Specifications 

In this section, we focus on steps 2, 3 and 4 of the MBT process (see Fig. 1) applied to 

our case study. We first present our test selection criteria and specification and then 

present our test generation approach. 

4.1 Test Selection Criteria and Test Case Specification 

Testing an interaction technique consists in verifying that, for a set of low-level input 

events, the corresponding high-level event is produced so that components subscribed 

to it (e.g. application dialogs or widgets) are notified with a well-formed event. This 

differs from testing the application as done in the work presented in section 2.2. Indeed, 

in these, the events considered in the test cases are already high-level ones and the 

verification that is made is that the effect on the UI is the correct one. To perform testing 

on the interaction techniques requires to i) describe the sequences of actions triggering 

the events raised by the interaction techniques and to ii) describe the associated events 

to observe on the interaction technique.  

Regarding the finger clustering interaction techniques, this means that we want to be 

able to identify all the possible sequences of low-level events leading to the raising of 

the “twoFingersClustered”, “threeFingersClustered”, “twoFingersDeclustered and 

“threeFingersDeclustered” events in the interaction technique transitions. For illustra-

tion purpose, we focus on the raising of the “threeFingersClustered” event. 

4.2 Generating Test Cases for the Interaction Technique 

To identify the relevant test cases for the raising of the “threeFingersClustered” event, 

we use the reachability graph of the Petri-net. A reachability graph of a Petri-net is a 

directed graph G=(V,E), where v!V represents a class of reachable markings; e!E rep-

resents a directed arc from a class of markings to another class of markings [32]. Fig. 

5 presents the reachability graph of the interaction technique introduced previously. In 

this graph, each state contains four digits symbolizing the number of tokens contained 

in the places “FINGER LIMIT”, “SINGLE FINGER”, “FINGERS MERGED BY 

TWO” and “FINGERS MERGED BY THREE”. For instance, the state “4,0,0,0” at the 

top means that the “FINGER LIMIT” place contains 4 tokens and that the other places 

are empty. We take advantage of the APT (Analysis of Petri nets and labelled transition 

systems) project2 [7] to generate this graph. 

2 https://github.com/CvO-Theory/apt 



Fig. 5. Reachability graph derived from the ICO model of the interaction technique 

As observable in Fig. 5, the reachability graph is actually a Finite State Machine with 

no accepting state. Considering that the event we focus on is raised in the “merge3Fin-

gersX” transition, we know that the event must be raised whenever a state of the FSM 

having a “merge3Fingers” incoming edge is reached. Marking these states (i.e. 

“1,0,0,1” and “0,1,0,1”) as accepting ones allows us to describe the actual grammar of 

the test cases for the “threeFingersClustered” event. This grammar3 only misses con-

crete values for fingers coordinates. The following is an example of test case matching 

this grammar expressed into Backus-Naur Form (BNF): 

<testCase> ::= <addFinger> <touchEventf_update> <addFinger> <addFin-

ger> <touchEventf_update> <merge3Fingers> 

The reachability graph we present in this case study contains values for each place as 

we intentionally limited to 4 the number of fingers in the interaction technique. How-

ever, some touch screens support more than 4 fingers and therefore one may want to 

use multiple clusters of three fingers. It would be possible to remove this restriction 

while still being able to apply our process by performing our analysis on a symbolic 

reachability graph. Symbolic reachability graphs use variables instead of concrete val-

ues in the states for the analysis of Petri-nets with such infinite marking, making it 

possible to express infinite number of states. 

To prepare the instantiation of the test scripts, we must focus on how the required 

values are produced, partly supported by the model of the application. This model de-

scribes the conditions under which the transitions are fired. In our case, it describes the 

constraints on the distance between the points, defining the values domain. When in-

stantiating the test scripts, the integration of these constraints relies on a semi-auto-

mated support, where the values are checked at editing time. For instance, in the instan-

tiation of the grammar example proposed above, whatever the coordinates of the three 

added fingers are, the distance between them must fit the precondition of the transitions 

“merge3Fingers1” and “merge3Fingers2”. 

3 For which the regular expression can be obtained from the FSM using tools such as FSM2Regex 

(http://ivanzuzak.info/noam/webapps/fsm2regex/) 



5 Test Cases Execution 

In this section, we discuss the execution of the test of the interaction technique, i.e. 

steps 5.1 and 5.2 of the MBT process. While the advances we propose are mostly related 

to test cases generation, we find it important to emphasis the relevance of selecting the 

test adapter appropriately and to discuss the possible ways to use our test cases. 

5.1 Test Adapter Selection 

Testing the interaction technique consists in verifying that for a set of input events the 

corresponding high-level event is produced. Key in executing such test properly is be-

ing able to produce an input event that is actually the event expected by the interaction 

technique as an input, i.e. an event from the low-level transducer. Assuming that we are 

testing our interaction technique as part of a JavaFX application, this means producing 

JavaFX Touch Events4. However, testing the interaction technique alone may prove to 

be insufficient to ensure that the interaction technique will behave properly for the end-

user. Indeed, while evaluating our approach, we encountered a known issue that no 

touch events are forwarded to JavaFX by most popular distributions of Linux using a 

GTK-based desktop environment5. In other words, the Touch Provider of these distri-

butions is not producing relevant events for the Low-Level Transducer that cannot, in 

turn, produce events for the interaction technique. This means that the JavaFX finger 

clustering cannot be used on a Linux platform even though tests based on JavaFX 

Touch Event would have indicated that the interaction technique behaves properly. 

Therefore, when testing touch applications, one may want to produce Operating Sys-

tem-level events and to perform integration testing of the Low-Level Transducer/Inter-

action Technique couple. Such tests can be executed on the Windows platform by using 

the Touch Injection technology of the Windows API6 to produce OS-level touch events 

as inputs. Regarding Linux, it is worth mentioning that ARM versions of GTK are not 

prone to the issue presented earlier. 

5.2 Test Execution for the Interaction Technique 

The execution of the tests on the SUT is an activity that is highly dependent of the way 

the SUT is implemented. Overall, testing the interaction technique alone requires i) 

being able to forward the event sequence of the test script to the interaction technique 

and ii) being able to subscribe to the events the interaction technique produces. The 

easiest way to test the interaction technique of the SUT is to do it using white-box or 

grey-box testing. Indeed, in such cases, it is easy to either instrument the class of the 

SUT responsible for the interaction technique or to encapsulate it in a test adapter with 

which the test execution environment can interact. Then, the test execution environment 

can perform the event sequence described by the test script. The role of the oracle is 

4  https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/input/class-use/TouchEvent.html 
5  https://bugs.openjdk.java.net/browse/JDK-8090954 
6  https://docs.microsoft.com/en-us/windows/desktop/api/_input_touchinjection/ 



then to determine whether the test passed based on whether or not it received the ex-

pected event from the interaction technique in a timely manner. 

6 Generalizability of the Approach 

While this paper focused on the interaction technique component of the architecture 

presented in section 3.1, the ICO notation, alongside with its CASE tool Petshop, sup-

port the modelling and the test generation for other components of the architecture, as 

well as GUI Testing as defined by Banerjee et al. [1]. This section highlights the gen-

eralizability of the modelling philosophy and of the test case generation approach. Due 

to space constraint and to the highly SUT-dependent nature of the tests execution, we 

will however not develop further on test execution. 

6.1 Generalizability of the Modelling Philosophy 

In addition to interaction techniques, we pointed out in section 3.4 that ICO can be used 

to model the low-level transducer of a post-WIMP application (Fig. 3). Modelling of 

Logical Input Devices (e.g. fingers) and their dynamic instantiation is covered in [13]. 

Moreover, [21] demonstrates that ICO allows the description of the Application (dialog 

part) components, including those with dynamic instantiation of widgets, on examples 

such as an Air Traffic Control (ATC) plane manager. To validate that our work is com-

patible with GUI Testing of WIMP application, we modelled the application specified 

in Memon et al.'s [18] review of advances in MBT for applications with a GUI front-

end. We had no trouble describing the behavior of this WIMP application using ICO in 

Petshop. Combining this with the modelling of post-WIMP interaction techniques 

demonstrated herein, shows that we are able to model post-WIMP applications. 

6.2 Generalizability of the Test Case Generation Approach 

Thanks to Memon et al.’s review of advances in MBT [18], we were able to verify that 

our test generation approach worked for WIMP applications. Indeed, [18] presented 

various models for the application it specifies, including one being a Finite State Ma-

chine. This allowed us to verify that the reachability graph of the Petri-net was the same 

(name of states aside) as the FSM in [18]. Beyond that, on applications that involve 

dynamicity such as the ATC plane manager dialog, the approach fits well as each air-

craft is added to the dialog model using invocation in the same way as fingers are added 

to the interaction technique presented in this paper. Yet, as the number of aircraft on 

the radar visualization is virtually infinite, the use of a symbolic reachability graph is 

made mandatory, while standard reachability graph can be kept for interaction tech-

niques (as the maximum number of touch points supported by the screen is known). 



7 Conclusion and Future Work 

Testing interactive applications is known to be a challenging activity, whether we con-

sider WIMP or post-WIMP applications. In this paper, we have shown that while the 

testing of WIMP applications retained most of the attention of researchers and practi-

tioners in the field of MBT, post-WIMP applications raise new challenges for the com-

munity. Indeed, properly testing post-WIMP following the standard Model-Based Test-

ing process requires modelling techniques that are expressive enough to describe the 

dynamic instantiation of virtual and physical devices, timing aspects, system configu-

ration, etc. Only such models allow the generation of exhaustive enough test cases.  

Building on previous work on the Petri-net-based notation ICO (and its associated 

CASE tool, PetShop), we showed that we are able to propose a toolchain that addresses 

the need for expressive modelling techniques in order to support the generation of test 

cases for post-WIMP application following the MBT process. We showed that thanks 

to the mechanism supported by ICO we are able to support the high dynamicity of post-

WIMP applications for all the software components of the architecture. This expres-

siveness allows for the generation of abstract test case using a grammar derived from 

the reachability graph of Petri-nets. 

As we focused on a specific component of the architecture, i.e. the interaction tech-

nique, we found that post-WIMP applications are more sensitive than WIMP applica-

tions to the execution platform, as touch event are not always well forwarded to libraries 

by operating-systems, highlighting the need for integration testing. A future extension 

to our work would be to implement the generation of integration test cases into PetShop 

by relying on the different artifacts allowing the communication between models.  

Finally, we are currently investigating using such approach for the testing of inter-

active applications to be deployed in large civil aircraft interactive cockpits. Indeed, 

following guidance from supplement DO-333 [27] on formal methods to the DO-178C 

certification process [26], one may use formal specifications during the development 

of such application. If a formal model of the interactive application is built for support-

ing reliability arguments (e.g. “low-level requirements are accurate and consistent 

[26]”) we propose to exploit that model to generate test cases from that formal specifi-

cation (as proposed by Gaudel [12]). Such process could result in more cost-effective 

test case generation leveraging on available formal models. Beyond, thanks to the ex-

pressive power of ICO, such approach could support the adoption of application offer-

ing richer interaction techniques (e.g. animations [19] or multitouch [13]) even in 

safety-critical context (e.g. brace touch [24]). 
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