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ABSTRACT

Sound event detection (SED) aims at identifying sound events

(audio tagging task) in recordings and then locating them tempo-

rally (segmentation task). This last task ends with the segmentation

of the frame-level class predictions, that determines the onsets and

offsets of the sound events. This step is often overlooked in sci-

entific publications. In this paper, we focus on the post-processing

algorithms used to identify the sound event boundaries. Different

post-processing steps are investigated through smoothing, thresh-

olding, and optimization. In particular, we evaluate different ap-

proaches for temporal segmentation, namely statistics-based and

parametric methods. Experiments were carried out on the DCASE

2018 challenge task 4 data. We compared post-processing al-

gorithms on the temporal prediction curves of two models: one

based on the challenge’s baseline and one based on Multiple In-

stance Learning (MIL). Results show the crucial impact of the

post-processing methods on the final detection scores. When us-

ing ground truth audio tags to retain the final temporal predictions

of interest, statistics-based methods yielded a 29.9% event-based F-

score on the evaluation set with MIL. Moreover, the best results

were obtained using class-dependent parametric methods with a

43.9% F-score. The post-processing methods and optimization al-

gorithms have been compiled into a Python library named “aeseg”1.

Index Terms— Weakly-labeled Sound Event Detection, Neu-

ral networks, Threshold, Post-processing

1. INTRODUCTION

In real life, sound events are produced by many possible different

sources that overlap and produce a mixture. In that context, poly-

phonic Sound Event Detection (SED) refers to the task of detecting

overlapping sound events from a defined set of events [1]. This

task has been investigated in various works [2, 1, 3, 4] and different

kinds of applications that include multimedia indexing [5], context

recognition [6] and surveillance [7].

In that domain, as well as in many others, Deep Learning [8]

has become a reference with deep neural networks that outperform

previously proposed models [9]. As these models strongly rely on

data availability, the size of the exploitable corpora is expanding

rapidly. The release of Audioset [10] is a milestone in polyphonic

SED, as it provides about 5,000 hours of authentic audio record-

ings. Precise manual labeling of all the sound events included in

this dataset is almost impossible to obtain. Therefore, Audioset is

annotated only globally with a set of tags at clip-level, and the time

boundaries of the sound events remain unknown. In that respect,

1https://github.com/aeseg/aeseg.git

many recent works cited here-above address the issue of semi/non-

supervised SED. These works aim to find temporal sound events

from learning sets annotated globally with the so-called ”weak la-

bels.” The present study is conducted within this framework.

Typically, systems output probabilities for each event at acous-

tic frame level. These temporal probabilities need to be post-

processed in order to locate event onsets and offsets. In monophonic

SED, the event type with the highest probability is detected as the

final active event. Yet, in polyphonic SED, a threshold is often used

to determine if the sound events are active or not [3]. However,

these post-processing methods remain globally overlooked and not

described in details, as many papers focus on model descriptions.

In this paper, we evaluate different approaches for post-

processing through smoothing, thresholding, and optimization.

This work aims to i) demonstrate the impact of the post-processing

step on the final results, ii) document different post-processing and

optimization methods (with an available implementation of code1

that hopefully will benefit to the research community), iii) de-

termine what are the best post-processing approaches for semi-

supervised SED. For this purpose, experiments are based on two

different systems evaluated on the DCASE 2018 task 4 data.

This paper is organized as follows. Section 2 presents the semi-

supervised SED task and related works. Section 3 describes post-

processing approaches. We report the experimental setup in Sec-

tion 4 and analyze the results in section 5.

2. PROBLEM STATEMENT

2.1. Overview

Many recent works on semi-supervised polyphonic SED rely on the

workflow shown in Figure 1. A time/frequency representation ex-

tracted from each audio file is used as input of two neural networks,

a classifier, and a localizer. The classifier outputs binary vectors rep-

resenting the classes of the sound events detected in a file, namely

audio tags. The localizer outputs a matrix containing the probabil-

ity values for each class and each temporal frame. A segmentation

algorithm is used on these probabilities to output the sound event

temporal markers.

2.2. Related work

In different works [2, 11], the authors do not mention what post-

processing methods are used. In [1], the authors report tests of

eight thresholds varying from 0.1 to 0.9. Lately, a mean-teacher

model based on Recurrent Neural Networks (RNN) [12] won the

DCASE 2018 challenge on large-scale weakly-labeled SED [13].

Nevertheless, very few details are given on the post-processing pro-

cess. In [14], Convolutional RNNs were used to make predictions



.

DOG

time (10 secondes)

c
la

ss
e
s SPEECH SPEECH SPEECH

DOG

DOG, SPEECH (431, 10)

Threshold

Dog

Speech

Classi✁er Localizer

Figure 1: Semi-supervised polyphonic sound event detection work-

flow illustrated for dog and speech event types as examples.

of pseudo-strong labels using median/Gaussian filters. These fil-

ters are mentioned but not fully described. In [15], more details

are given regarding which parameters must be tuned and how. The

authors tested only absolute thresholding and median filtering. In

other cases, simple threshold values are tuned on a development

subset of the training data, such as in [16, 17].

In [3], Xia et al. addressed the issue of threshold selection

in the context of polyphonic SED. The benchmark system is a

Deep Neural Network (DNN) based on [4] and trained with bi-

nary cross-entropy as loss function. To estimate thresholds for the

post-processing step, the authors proposed two approaches, named

contour-based and regressor-based methods, that estimate a thresh-

old value for each frame. In the first one, the threshold is computed

as the product between a coefficient α, which is set globally and

expresses the ratio of non-empty frames, and the maximum values

of the probabilities for each class. The second one uses a regres-

sion to estimate the thresholds, based on an RNN, given as input

the acoustic features and as a target, the probabilities output by the

DNN. Both approaches rely on a precisely labeled training set that

contains the time boundaries of each sound event.

Finally, aside from this last work, post-processing methods are

often overlooked and not carefully evaluated. To our knowledge,

there is no systematic analysis of the impact of post-processing

within the sound event detection task. We suppose that many re-

search works could benefit from a clear presentation of the ap-

proaches as well as a detailed evaluation.

3. POST-PROCESSING METHODS

This section presents the proposed post-processing approaches,

namely smoothing, segmenting and optimizing. They are described

in-depth in the toolbox documentation online.

Smoothing removes noise in the probabilities, limiting the num-

ber of small segments and small gaps created during the seg-

mentation process. We use a smoothed moving average to do

so, with class-independent or class-dependent smoothing window

sizes. These can be optimized with our toolbox.

3.1. Segmentation

3.1.1. statistics-based methods

The statistics-based methods are directly based on the statistics ex-

tracted from the temporal predictions of each sample. The main ad-

vantage of these methods is that they are fast and often efficient. i)

class-independent data-wise average (CIDWA); ii) class-dependent

data-wise average (CDDWA). We also tested class-(in)dependent

file-wise average and median. However, those methods will not

be mentioned as they yield either poor results (file-wise aver-

age/median) or slightly worse results (data-wise median).

(i) CIDWA: we use the localizer outputs to compute the average

probability of each class over time. We aggregate the averages

to create a single threshold for all the classes.

(ii) CDDWA: class-dependent averages are used as thresholds.

3.1.2. Parametric methods

The parametric methods require optimization. We optimized the

parameters on the test set and used them on the evaluation set. They

can be either class-independent or class-dependent. We tested three

methods: i) class-(in)dependent absolute (CIA-CDA), ii) class-

(in)dependent hysteresis (CIH - CDH), iii) class-(in)dependent

slope (CIS - CDS).

(i) Absolute thresholding refers to directly applying a unique and

arbitrary threshold to the temporal predictions without using

their statistics. This naı̈ve approach still yields exploitable

results that can get close to the best ones in some cases. It is

also the approach with the shortest optimization time due to

the unique parameter to optimize.

(ii) Hysteresis thresholding consists of two thresholds. One of

them will be used to determine the onset of an event, and the

second one its offset. This algorithm is used when probabili-

ties are unstable and changing at a high pace. It should, there-

fore, decrease the number of events detected by the algorithm

and reduce the insertion and deletion rates, giving a better er-

ror rate than the Absolute threshold approach.

(iii) The Slope-based method determines the start and end of a seg-

ment by detecting fast changes in the probabilities over time.

Fast-rising probabilities imply the start of a segment, and fast

decreasing probabilities, its end. It is capable of detecting the

end of segments even if the probabilities are high.

3.2. Optimization

The parametric methods regroup together the different algorithms

that exploit arbitrary parameters to locate with precision sound

events. The search for the best parameter combination is a meticu-

lous work that is often not possible to automatize. Indeed, depend-

ing on the number of parameters to tune, the search space growth is

exponential and the execution time often exceeds reasonable times.

Consequently, we implemented a dichotomic search algorithm.

For every parameter to tune, the user provides an initial search

interval. The algorithm tries every combination with a coarse reso-

lution and picks the one that yields the best score. From this com-

bination, a new smaller interval is computed. The complete process
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Figure 2: Architecture of MIL and Baseline. In Baseline, (∗) is a

standard dropout layer (p = 0.3), and (∗∗) is removed.

is repeated with an increased precision and a reduced search space.

It stops when the number of steps given by the user is reached.

The dichotomous search algorithm, when compared to an ex-

haustive search of all the possible combinations, considerably re-

duces the time needed to reach a near-optimal solution with excel-

lent accuracy. However, the execution time is still dependent on the

number of parameters to tune and the amount of iterations for every

step. The total number of combinations increases exponentially.

4. EXPERIMENTS

4.1. Audio Material

The DCASE 2018 challenge task 4 [13] provided audio material

directly extracted from Audioset. The training set is divided into

three subsets. Only one of them is weakly annotated and we will

refer to it as the ”weak” subset. The two others, being not annotated

at all, are not of any use for the training of our models. The weak

training subset is comprised of 1578 clips (2244 class occurrences)

for which weak annotations have been verified and cross-checked.

The challenge also proposed a test and an evaluation subsets.

Both of them have been strongly annotated, providing precise tem-

poral segmentation (onset and offset boundaries) for each event oc-

currence and are composed respectively of 279 and 880 files. Both

of them present a similar distribution of the classes.

Each file can include one or several events from a set of sound

classes occurring in domestic environments: Speech, Dog, Cat,

Alarm/ Bell ringing, Dishes, Frying, Blender, Running water, Vac-

uum cleaner, and Electric shaver/toothbrush. All the files are 10-

second clips extracted from Audioset. These recordings contain

generally several overlapping sound events from different classes.

The parametric methods will be optimized using the test dataset

and validated on the evaluation dataset.

4.2. Models

To observe the impact of the segmentation algorithms, we used

two approaches. The first one is similar to the DCASE 2018 base-

line [18]. It uses a single RCNN to perform both audio tagging (AT)

and segmenting. The second one is based on “Multiple Instance

Learning (MIL)” as proposed in [19, 20, 21]. It consists of two sep-

arate networks: one for AT trained with standard cross-entropy and

one for segmenting trained with a MIL objective.

The Baseline and MIL architecture is shown in Figure 2. It

is composed of a convolutional part followed by a recurrent one,

namely a bi-directional Gate Recurrent Unit layer and a time-

distributed dense layer.

4.3. Experimental setup

Post-processing takes place after the model training phase, when

thresholds are applied on smoothed time predictions to obtain the

onset and offset of sound events. It is performed in the following or-

der: 1) The curves representing the prediction of the model for each

frame are smoothed using the smoothed moving average algorithm.

This smoothing was applied only with the parametric methods since

statistics-based methods are not meant to involve optimization. 2)

the temporal predictions are segmented using one of the segmenta-

tion algorithms described above. 3) Segments separated by a gap

smaller than the challenge tolerance margin are merged together. In

the same fashion, segments smaller than this margin are removed.

When a parametric method is used, the process is repeated to

reach the best score by using the optimization algorithm. Sim-

ilarly, the smoothing window size can be optimized either class-

independently or class-dependently.

For both models, we tested the segmentation algorithms previ-

ously described, as well as a coarse grid search that represents the

combination of absolute thresholds from 0.1 to 0.9 and a 0.1 step,

with smoothing window sizes from 5 to 21 and a step of 2, totaling

64 combinations. Two issues must be taken into consideration: i)

the potential errors made by the audio tagging model, ii) the setting

of parameter values when using a parametric method.

(i) To remove the bias induced by faulty audio tag classification,

we used the classes of the strong annotations as if they were

outputs from a perfect classifier. It allows us to pick only the

relevant classes on which the events must be localized. We

will refer to this mode as Audio Tagging oracle (AT oracle).

We applied this procedure on both test and evaluation subsets.

(ii) We used the event-based metrics defined in [22]. More pre-

cisely the macro-F1 score, alias F1, with the challenge preci-

sion parameters: a 200 ms collar on the onsets and an offset

collar corresponding to 20% of the event’s length.

5. RESULTS

The results are presented in Table 1. Overall, they show a wide dis-

parity in values. The F1 score varies from 17.9% to 23.4% with

our baseline model, and from 25.8% to 43.9% with the MIL model.

Therefore, we observe a significant impact of the post-processing

algorithms on the final results. The best scores are obtained by us-

ing the class-dependent parametric methods. On the evaluation set,

CDS for our baseline gives a final F1 score of 23.4%, and CDA for

the MIL model a final F1 score of 43.9%.

Regarding computation time, the best method is not necessarily

the longest one and the gain, if there is any, is not linear. The base-

line benefits only of 1.1 points for a computation time a thousand

time longer, whereas MIL shows a decrease in performance. How-

ever, the gain from class-independent to class-dependent is worth

the extra time, which is in our case, approximately ten times more.



Post-processing methods

Baseline MIL Relative

Test Eval Test Eval Computation

F1 (%) Er F1 (%) Er F1 (%) Er F1 (%) Er Time

Coarse grid search 20.9 1.2 19.4 1.3 18.2 1.8 15.3 1.8 1

S
ta

t. Class-independent data-wise average (CIDWA) 19.9 1.3 17.9 1.5 29.8 2.0 25.8 2.5 0

Class-dependent data-wise average (CDDWA) 19.6 1.3 18.7 1.4 32.5 1.8 29.9 2.4 0

Class-independent absolute (CIA) 25.0 1.1 22.8 1.2 44.2 1.1 37.1 1.4 1

Class-independent Hysteresis (CIH) 25.0 1.1 22.6 1.2 46.4 1.0 40.7 1.2 3

P
ar

am
.

Class-independent Slope (CIS) 24.3 1.2 21.0 1.2 43.6 1.2 35.5 1.5 115

Class-dependent absolute (CDA) 26.5 1.1 22.3 1.3 53.2 0.9 43.9 1.2 10

Class-dependent Hysteresis (CDH) 26.5 1.1 23.0 1.2 53.1 0.8 42.9 1.1 29

Class-dependent Slope (CDS) 26.2 1.1 23.4 1.2 52.4 0.9 41.0 1.2 1155

Table 1: F1-scores and Error Rates for both baseline and MIL on test and evaluation sets with the AT Oracle. The last column shows the

relative computation time of each method compared to CIA.

With a closer look at statistics-based methods, CDDWA yields

better performance with a final F1 score of 18.7% and 29.9%

respectively on our baseline and MIL. In both cases, it gave

better results on the evaluation subset than CIDWA. The Class-

Dependent variant of the algorithm seems more suitable than the

Class-Independent one even though it gave a slightly worse result

on the test set (0.3 absolute difference). Indeed, If we look closely

at the transition between test and evaluation sets, the difference is

only of -4% for the class-dependent and -10% relative for the class-

independent, making the first more robust.

Ultimately, the parametric methods present the best results.

They perform better than the manually chosen threshold and the

statistics-based ones. Furthermore, the best scores are obtained us-

ing their class-dependent variant. The same observation can be done

between the test and evaluation sets as the difference is only of -8%

for class-dependent, and -18% for class-independent, making the

class-dependent method not only perform better but also more ro-

bust. Our baseline reaches on Eval a final F1 score of 23.4% with

CDS. It represents an improvement of 4 points (20.6% relative).

For MIL, the CDA method yields the best final F1 score with an

improvement of 28.6 points (187.0% relative). The best Er value on

Eval is 1.1% obtained with CDH.

If the statistics-based methods have already shown improve-

ment of the final F1 score, the parametric ones push it even further,

especially the class-dependent variants. The maximum F1 scores

for the statistics-based methods are 18.7% and 29.9% for Baseline

and MIL, respectively, to be compared with the parametric ones of

23.4% and 43.9%.

Regarding smoothing, in the class-dependent parametric meth-

ods, the smoothing window size is a parameter that can be op-

timized. A closer look at the parameter combination resulting

from the optimization shows a wide variety of window size from

9 (Dishes) to 27 (Vacuum cleaner) frames. This highlights the im-

portance of smoothing the predictions according to the classes.

When looking at the scoring of each class independently, the

improvement is uniformly dispatched. When optimizing the algo-

rithm parameters specifically for each class, (class-dependent para-

metric methods), almost every class seems to benefit from the opti-

mization, but few do not. It is the case with the class dishes.

Finally, we applied these methods on our model without us-

ing the AT Oracle but the audio tags output by their classifier. We

then compared it to the best models from the DCASE 2018 task 4

challenge. After optimization, the baseline F1 score increases from

12.6% to 14.1 (CDH) %, and for MIL, from 21.1% to 32.0% (CDH).

The first [12] and the second [17] ranked participants obtained an

F1 score of 32.4% and 29.9%, respectively.

6. CONCLUSION

In SED, prediction post-processing is often overlooked. There is

no systematic analysis of its impact, and we compare several so-

lutions to this problem. We explored several methods to segment

the temporal prediction outputs from DNN-based models that can

be divided into two categories: statistics-based and parametric ap-

proaches, either class-independent or class-dependent.

The methods presented show the impact post-processing can

have on the final performance. statistics-based methods do not re-

quire optimization, making them suitable for a quick preview of

the results that can be achieved. They are model-agnostic, easy to

implement, fast to compute and can produce better results than a

coarse grid search of the smoothing and thresholding parameters.

The parametric methods are nonetheless better. Our best model

shows an improvement of 28.6 points (187.0% relative) by using

the class-dependent absolute method. The class-dependent methods

do not only yield better results but also greater robustness when

switching from the test set to the evaluation set. For our submission

to the DCASE 2019 Task 4 challenge, we obtain our best result with

CDH. We reached rank four with a single small RCNN [23].

When it comes to the numerous datasets available nowadays, a

larger one could be used to scale these methods and confirm their

relevance. The same applies to the vast variety of models that have

been implemented for SED tasks. Furthermore, other optimiza-

tion techniques relying on genetic algorithms and probabilistic ap-

proaches could be added to the ones tested in this work.
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