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Abstract. We extend dynamic logic of propositional assignments by adding an

operator of parallel composition that is inspired by separation logics. We pro-

vide an axiomatisation via reduction axioms, thereby establishing decidability.

We also prove that the complexity of both the model checking and the satisfiabil-

ity problem stay in PSPACE.

Keywords: Dynamic logic, separation logic, propositional assignments, parallel com-

position

1 Introduction

It is notoriously delicate to extend Propositional Dynamic Logic PDL with an opera-

tor of parallel composition of programs. Several attempts were made in the literature:

Abrahamson as well as Mayer and Stockmeyer studied a semantics in terms of inter-

leaving [MS96]; Peleg and Goldblatt modified the interpretation of programs from a

relation between possible worlds to a relation between possible worlds and sets thereof

[Pel87,Gol92]; Balbiani and Vakarelov studied the interpretation of parallel composi-

tion of programs π1 and π2 as the intersection of the accessibility relations interpreting

π1 and π2 [BV03]. However, it seems fair to say that there is still no consensus which

of these extensions is the ‘right’ one.

Dynamic Logic of Propositional Assignments DL-PA [BHT13,BHST14] is a ver-

sion of Propositional Dynamic Logic PDL whose atomic programs are assignments of

propositional variables p to true or false, respectively written +p and −p. We and coau-

thors have shown that many knowledge representation concepts and formalisms can

be captured in DL-PA, such as update and revision operations [Her14], database base

fusion and repair operations [FHR19], planning [HMNDBW14,HMV19], lightweight

dynamic epistemic logics [CS15,CHM+16,CS17], and judgment aggregation [NGH18].

The mathematical properties of DL-PA are simpler than those of PDL, in particular, the

Kleene star can be eliminated [BHT13] and satisfiability and model checking are both

PSPACE complete [BHST14].

In this paper we investigate how dynamic logic can be extended with a program

operator of parallel composition π1||π2 of two programs π1 and π2 that is inspired by

separation logic. The latter was proposed in the literature as an account of concurrency,

e.g. by Brookes and by O’Hearn [O’H04,Bro04,Bro07,BO16]. Their Concurrent Sepa-

ration Logic is characterised by two main principles:



1. When two programs are executed in parallel then the state of the system is parti-

tioned (‘separated’) between the two programs: the perception of the state and its

modification is viewed as being local to each of the two parallel programs. Each of

them therefore has a partial view of the global state. This in particular entails that

parallelism in itself does not modify the state of the system: the parallel execution

of two programs that do nothing does not change the state. This means that the for-

mula ϕ→
[

⊤??||⊤??
]

ϕ should be valid, where “??” is the test operator. These tests ϕ??

differ from standard PDL tests; this will be explained when we discuss what system

states should look like.

2. The execution of a parallel program π1||π2 should be insensitive to the way the

components of π1 and π2 are interleaved. So “race conditions” [BO16] must be

avoided: the execution should not depend on the order of execution of atomic ac-

tions in π1 and π2, where we consider tests to be atomic, too. Here we interpret

this in a rather radical way: when there is a race condition between two programs

then they cannot be executed in parallel. For example, the parallel program +p||−p

where +p makes p true and −p makes p false is inexecutable because there is a

conflict: the two possible interleavings +p;−p and −p;+p are not equivalent. We

even consider that +p||+p and p??||+p are inexecutable, which some may consider

a bit over-constrained.

Together, the above two principles entail that the dynamic logic formula

[

(π1;ϕ1??)||(π2;ϕ2??)
]

(ϕ1 ∧ ϕ2)

should be valid. If we replace ϕ1 by p and ϕ2 by ¬p then the above tells us that

(π1; p??)||(π2;¬p??) is inexecutable. So the program π1; (p??||π2);¬p?? that is obtained

from it by interleaving should be inexecutable, too.

We have not yet said what one should understand by a DL-PA system state. A previ-

ous approach of ours only considered the separation of valuations, i.e., of truth values of

propositional variables [Her13]. Two separating conjunctions in the style of separation

logic were defined on such models. This however did not allow us to define an adjoint

implication as usually done in the separation logic literature, which was somewhat un-

satisfactory. The paper [HMV19] has richer models where valuations are supplemented

by information about writability of variables, supposing that a variable can only be as-

signed by a program when it is writable. Splitting and merging of such models can be

defined in a natural way, thus providing a meaningful interpretation of parallel compo-

sition. We here push this program further and consider models having moreover infor-

mation about readability of variables. We suppose that writability implies readability3

and that a variable can only be tested if it is readable. So our tests ϕ?? differ from stan-

dard PDL tests and also from DL-PA tests in that their executability depends on whether

the relevant variables are readable. In particular, while
〈

p??
〉

⊤ → p, remains valid, its

converse p→
〈

p??
〉

⊤ becomes invalid in our logic.

3 As suggested by one of the reviewers, it may be relaxed and one may suppose that a pro-

gram can only modify a variable without being able to read its value. This would simplify the

presentation of the logic; however, we believe that our inclusion constraint is natural in most

applications.



The paper is organised as follows. In Section 2 we define models and the two ternary

relations ‘split’ and ‘merge’ on models. In Section 3 we define the language of our

logic and in Section 4 we give the interpretation of formulas and programs. In Section

5 we axiomatise the valid formulas by means of reduction axioms and in Section 6 we

establish that the satisfiability problem is PSPACE complete. Section 7 concludes.

2 Models and Their Splitting and Merging

Let P be a countable set of propositional variables. A model is a triple m = 〈Rd,Wr,V〉

where Rd, Wr, and V are subsets of P such that Wr ⊆ Rd. The idea is that Rd is the

set of readable variables, Wr is the set of writable variables, and V is a valuation: its

elements are true, while those of its complement P \ V are false. The constraint that

Wr ⊆ Rd means that writability implies readability.

Two models m1 = 〈Rd1,Wr1,V1〉 and m2 = 〈Rd2,Wr2,V2〉 are RW-compatible if

and only if writable variables of one model and the readable variables of the other do not

interfere, i.e., if and only if Wr1∩Rd2 = Wr2∩Rd1 = ∅. For example, m1 = 〈{p}, {p}, ∅〉

and m2 = 〈{p}, ∅, ∅〉 are not RW-compatible: in m1, some program π1 modifying the

value of p may be executable, while for programs executed in m2, the value of p may

differ depending on whether it is read before or after the modification by π1 took place.

As writability implies readability, RW-compatibility of m1 and m2 implies Wr1 ∩

Wr2 = ∅.

We define ternary relations ⊳ (‘split’) and ⊲ (‘merge’) on models as follows:

m ⊳
m1

m2
iff m1 and m2 are RW-compatible, Rd = Rd1 ∪ Rd2, Wr = Wr1 ∪Wr2,

and V = V1 = V2
m1

m2
⊲ m iff m1 and m2 are RW-compatible, Rd = Rd1 ∪ Rd2, Wr = Wr1 ∪Wr2,

V1 \Wr = V2 \Wr, and V = (V1 ∩Wr1) ∪ (V2 ∩Wr2) ∪ (V1 ∩ V2)

For example, for m = 〈Rd,Wr,V〉 we have m ⊳ m
m2

for every m2 = 〈Rd2, ∅,V〉 such that

Rd2 ⊆ P \Wr. Observe that, contrarily to splitting, merging does not keep the valuation

constant: it only keeps constant the non-modifiable part V \Wr of the valuation V and

puts the results of the allowed modifications of Wr together. These modifications cannot

conflict because m1 and m2 are RW-compatible. Figure 1 illustrates each of these two

operations by an examples. The checks that are performed in the merge operation are

reminiscent of the self composition technique in the analysis of secure information

flows ([DHS05,SG16].4

The set Rd of readable variables of a model m induces an indistinguishability rela-

tion between models:

m ∼ m
′ iff Rd = Rd

′,Wr = Wr
′,V ∩ Rd = V

′ ∩ Rd
′

So m and m
′ are indistinguishable if (1) they have the same readable and writable

variables and (2) the valuations are identical as far as their readable parts are concerned.

This relation will serve to interpret tests: the test ϕ?? of a formula ϕ is conditioned

by its truth in all read-indistinguishable models, i.e., in all models where the readable

variables have the same truth value.

4 We are grateful to Rainer Hähnle for pointing this out to us.



〈{p, q, r}, {p, q}, {p, q, r}〉

vv ((

〈{p, r}, {p}, {p, q, r}〉 〈{q, r}, {q}, {p, q, r}〉

〈{p, r}, {p}, {q, r}〉

((

〈{q, r}, {q}, {p, r}〉

vv

〈{p, q, r}, {p, q}, {r}〉

Fig. 1. Examples of split and merge operations: the top half illustrates the split of the

model 〈{p, q, r}, {p, q}, {p, q, r}〉 into 〈{p, r}, {p}, {p, q, r}〉 and 〈{q, r}, {q}, {p, q, r}〉; the bottom

half illustrates the merge of the models 〈{p, r}, {p}, {p, q, r}〉 and 〈{q, r}, {q}, {p, q, r}〉 into

〈{p, q, r}, {p, q}, {r}〉.

3 Language

We use p, q, . . . for variables in the set of propositional variables P. Formulas and pro-

grams are defined by the following grammar, where p ranges over P:

ϕ ::= p | ⊤ | ¬ϕ | ϕ ∨ ϕ |
〈

π
〉

ϕ

π ::= +p | −p | r+p | r−p | w+p | w−p | ϕ? | ϕ?? | π; π | π∪ π | π∗ | π||π

The program +p makes p true and −p makes p false. The executability of these two

programs is conditioned by the writability of p. The program r+p makes p readable

and r−p makes p unreadable; similarly, w+p makes p writable and w−p makes p non-

writable. We suppose that these four programs are always executable. The program ϕ?

is the PDL test that ϕ, that we call exogeneous; ϕ?? is the endogeneous test that ϕ: it is

conditioned by the readability of the relevant variables of ϕ.

The formula
[

π
]

ϕ abbreviates ¬
〈

π
〉

¬ϕ. Given an integer n ≥ 0, the program πn is

defined inductively by π0 = ⊤? and πn+1 = π; πn. Similarly, π≤n is defined by π≤0 = ⊤?

and π≤n+1 = ⊤?∪ (π; π≤n). The program if ϕ then π abbreviates (ϕ?; π)∪¬ϕ?. For a

finite set of variables P = {p1, . . . , pn} and associated programs {π1(p1), . . . , πn(pn)}, we

are going to use the notation ;p∈P π(p) to denote the sequence π1(p1); · · · ; πn(pn), in

some order. We will make use of this notation with care to guarantee that the ordering

of the elements of P does not matter.

The set of propositional variables occurring in a formula ϕ is noted P(ϕ) and the set

of those occurring in a program π is noted P(π). For example, P(p∨
〈

+q
〉

¬r) = {p, q, r}.



4 Semantics

Let m = 〈Rd,Wr,V〉 be a model. Formulas are interpreted as sets of models:

m |= ⊤

m |= p iff p ∈ V, for p ∈ P

m |= ¬ϕ iff m 6|= ϕ

m |= ϕ ∨ ψ iff m |= ϕ or m |= ψ

m |=
〈

π
〉

ϕ iff there is a model m
′ such that m~π�m′ and m

′ |= ϕ

Programs are interpreted as relations on the set of models:

m~+p�m′ iff Rd
′ = Rd, Wr

′ = Wr, V
′ = V ∪ {p}, and p ∈ Wr

m~−p�m′ iff Rd
′ = Rd, Wr

′ = Wr, V
′ = V \ {p}, and p ∈ Wr

m~r+p�m′ iff Rd
′ = Rd ∪ {p}, Wr

′ = Wr, and V
′ = V

m~r−p�m′ iff Rd
′ = Rd \ {p}, Wr

′ = Wr \ {p}, and V
′ = V

m~w+p�m′ iff Rd
′ = Rd ∪ {p}, Wr

′ = Wr ∪ {p}, and V
′ = V

m~w−p�m′ iff Rd
′ = Rd, Wr

′ = Wr \ {p}, and V
′ = V

m~ϕ?�m′ iff m = m
′ and m |= ϕ

m~ϕ??�m′ iff m = m
′ and m

′′ |= ϕ for every m
′′ such that m

′′ ∼ m

m~π1; π2�m
′ iff there is an m

′′ such that m~π1�m
′′ and m

′′~π2�m
′

m~π1 ∪ π2�m
′ iff m~π1�m

′ or m~π2�m
′

m~π∗�m′ iff there is an n ≥ 0 such that m~π�n
m
′

m~π1||π2�m
′ iff there are m1,m2,m

′
1
,m′

2
such that m ⊳

m1

m2
,

m
′
1

m′
2

⊲ m
′,

m1~π1�m
′
1
, Rd1 = Rd

′
1, Wr1 = Wr

′
1, V1 \Wr1 = V

′
1
\Wr

′
1,

m2~π2�m
′
2
, Rd2 = Rd

′
2, Wr2 = Wr

′
2, V2 \Wr2 = V

′
2
\Wr

′
2

In the interpretation of assignments of atomic formulas we require propositional vari-

ables to be modifiable, while readability and writability can be modified uncondition-

ally. When a variable is made writable then it is made readable, too, in order to guarantee

the inclusion constraint on models; similarly when a variable is made unreadable.

The interpretation of parallel composition π1||π2 is such that both π1 and π2 only

modify ‘their’ variables: parallel composition π1||π2 of two programs π1 and π2 relates

two models m and m
′ when the following conditions are satisfied: (1) m can be split

into m1 and m2; (2) the execution of π1 on m1 may lead to m
′
1

and the execution of

π2 on m2 may lead to m
′
2
; (3) m

′
1

and m
′
2

can be merged into m
′. Moreover, (4) the

modifications are legal: π1 and π2 neither change readability nor writability, and each

of them only modifies variables that were allocated to it by the split.

Figure 2 illustrates the interpretation of the parallel program −p||−q. Some more

examples follow.

Example 1. Suppose m = 〈Rd,Wr,V〉 with Wr = Rd = V = {p, q, r}. Then m
′ =

〈Rd,Wr,V′〉 with V
′ = {p, r} is the only model such that m~+p||−q�m′.

The next example illustrates the last condition (4) in the interpretation of parallel

composition.



〈{p, q, r}, {p, q}, {p, q, r}〉

vv ((

〈{p, r}, {p}, {p, q, r}〉

−p
��

〈{q, r}, {q}, {p, q, r}〉

−q
��

〈{p, r}, {p}, {q, r}〉

((

〈{q, r}, {q}, {p, r}〉

vv

〈{p, q, r}, {p, q}, {r}〉

Fig. 2. Illustration of an execution of −p||−q at the model 〈{p, q, r}, {p, q}, {p, q, r}〉.

Example 2. The program +p||(w+p;−p; r−p) cannot be executed on the model m =

〈{p}, {p}, {p}〉. Indeed, suppose there are m1 and m2 such that m ⊳
m1

m2
and suppose +p

is executed on m1 and w+p;−p; r−p on m2. For +p to be executable we must have

p ∈ Wr1, and therefore p < Wr2 (and a fortiori p < Rd2). So m1 = 〈{p}, {p}, {p}〉

and m2 = 〈∅, ∅, {p}〉. Then m
′
1
= m1 is the only model such that m1~+p�m′

1
; and

m
′
2
= 〈∅, ∅, ∅〉 is the only model such that m2~w+p;−p; r−p�m′

2
. These two models

cannot be merged: V
′
2
\Wr

′
2 = ∅ fails to be equal to V2 \Wr2 = {p}.

Let us finally explain the different semantics of the two test operators of our logic.

Example 3. Suppose m is such that p < Rd and p ∈ V. Then the program p? is exe-

cutable at m because p ∈ V. In contrast, there is no m
′ such that m~p??�m′, the reason

being that there is always an m
′′ such that m ∼ m

′′ and p < V
′′. So p?? fails at m.

In practice, parallel programs should only contain endogeneous tests in order to

avoid that a subprogram accesses the truth value of a variable that is not among its

readable variables. Actually we have kept PDL tests for technical reasons only: we

could not formulate some of the reduction axioms without them.

Satisfiability and validity of formulas are defined in the expected way.

Example 4. The formulas ϕ→
[

⊤??||⊤??
]

ϕ,
[

+p||−p
]

⊥,
[

+p||+p
]

⊥ and
[

p??||+p
]

⊥whose

programs were mentioned in the introduction are all valid.

The formulas
〈

+p
〉

⊤ and
〈

−p
〉

⊤ both express that p is writable. Similarly,
〈

p??
〉

⊤

expresses that p is true and readable, and
〈

¬p??
〉

⊤ expresses that p is false and readable;

therefore
〈

p??
〉

⊤∨
〈

¬p??
〉

⊤ expresses that p is readable. This will be instrumental in our

axiomatisation.



5 Axiomatisation via Reduction Axioms

We axiomatise the validities of our logic by means of reduction axioms, as customary

in dynamic epistemic logics [vDvdHK07]. These axioms transform every formula into

a boolean combination of propositional variables and formulas of the form
〈

+p
〉

⊤ and
〈

p??
〉

⊤ ∨
〈

¬p??
〉

⊤. The former expresses that p is writable: we abbreviate it by wp. The

latter expresses that p is readable: we abbreviate it by rp.

We start by eliminating all the program operators from formulas, where the elimi-

nation of parallel composition is done by sequentialising it while keeping track of the

values of the atoms. After that step, the only remaining program operators either occur

in formulas of the form rp or wp, or are assignments of the form
〈

+p
〉

,
〈

−p
〉

,
〈

r+p
〉

,
〈

r−p
〉

,
〈

w+p
〉

, or
〈

w−p
〉

. The assignments can be distributed over the boolean oper-

ators, taking advantage of the fact that all of them are deterministic modal operators

(validating the Alt1 axiom
〈

π
〉

ϕ →
[

π
]

ϕ). Finally, sequences of such modalities facing

a propositional variable can be transformed into boolean combinations of readability

and writability statements rp and wp. The only logical link between these statements

is that writability of p implies readability of p. This is captured by the axiom schema

wp → rp.

The sequentialisation of parallel composition uses copies of variables, so we start

by introducing that notion. We then define some programs and formulas that will allow

us to formulate the reduction axioms more concisely.

5.1 Copies of Atomic Propositions

We are going to need fresh copies of each propositional variable, one per occurrence

of the parallel composition operator. In order to keep things readable we neglect that

the index of the copies should be attached to programs and denote the copies of the

variable p by pk, where k is some integer. In principle we should introduce a bijection

between the indexes k and the subprogram they are attached to; we however do not do

so to avoid overly complicated notations.

Given a set of propositional variables P ⊆ P and an integer k ∈ {1, 2}, we define the

set of copies Pk = {pk : p ∈ P}.

5.2 Useful Programs

Let P ⊆ P be some finite set of propositional variables. Figure 3 lists four programs that

will be useful to concisely formulate the reduction axioms. We comment on them in the

sequel.

The copyVk(P) program assigns the truth value of each variable p ∈ P to its copy pk.

The splitRW(P) program simulates the split operation by nondeterministically as-

signing two copies of each read and write variable in a way such that a counterpart of

the RW-compatibility constraint Wr1 ∩ Rd2 = Wr2 ∩ Rd1 = ∅ is guaranteed. Note that

the assignments w+pk also make pk readable.

The copybackRWk(P) program will be executed after the split and before the sub-

program πk in order to make the readable and writable variables be all those p that

splitRW(P) has assigned to πk.



copyVk(P) = ;p∈P

((

p?;+pk)∪ (¬p?;−pk))

splitRW(P) = ;p∈P

(

r−p1; r−p2;

if wp then
(

w+p1 ∪ w+p2);

if rp∧¬wp then
(

r+p1 ∪ r+p2 ∪
(

r+p1; r+p2)))

copybackRWk(P) = ;p∈P

((

¬rpk ?; r−p
)

∪

(rpk ∧ ¬wpk ?; r+p; w−p) ∪

(wpk ?; w+p)
)

mergeRW(P) = ;p∈P

(

if rp1 then r+p ; if wp1 then w+p
)

Fig. 3. Useful programs, for P ⊆ P and k ∈ {1, 2}

The mergeRW(P) program simulates the merge operation by reinstating all those

read- and write-atoms that had been allocated to the first subprogram in the sequential-

isation.

Observe that in the sequential compositions ;p∈P (. . .) occurring in the above pro-

grams, the order of the variables does not matter. Observe also that the only endoge-

neous tests on the right hand side occur in readability statements rp (which abbreviate
〈

p??
〉

⊤ ∨
〈

¬p??
〉

⊤).

Lemma 1. m~copyVk(P)�m′ if and only if Rd
′ = Rd, Wr

′ = Wr, and V
′ = (V \ Pk) ∪

(V ∩ P)k.

Lemma 2. For all models m and m
′ and all sets of propositional variables P, the fol-

lowing three are equivalent:

1. m~splitRW(P)�m′;

2. for k ∈ {1, 2}, Rd \ Pk = Rd
′ \ Pk, Wr \ Pk = Wr

′ \ Pk, V = V
′, and for all p ∈ P,

– p ∈ Rd iff (p1 ∈ Rd
′ or p2 ∈ Rd

′),

– p ∈ Wr iff (p1 ∈ Wr
′ or p2 ∈ Wr

′),

– if p1 ∈ Wr
′ then p2 < Rd

′, and if p2 ∈ Wr
′ then p1 < Rd

′;

3. there are m1,m2 such that m ⊳
m1

m2
and for k ∈ {1, 2}:

– Rdk = (Rd \ P) ∪ {p ∈ P : pk ∈ Rd
′},

– Wrk = (Wr \ P) ∪ {p ∈ P : pk ∈ Wr
′},

– Vk = V = V
′.

Lemma 3. m~copybackRWk(P)�m′ if and only if:

– Rd
′ = (Rd \ P) ∪ {p ∈ P : pk ∈ Rd},

– Wr
′ = (Wr \ P) ∪ {p ∈ P : pk ∈ Wr}, and

– V
′ = V.

Lemma 4. m~mergeRW(P)�m′ if and only if:

– Rd
′ = Rd ∪ {p ∈ P : p1 ∈ Rd},

– Wr
′ = Wr ∪ {p ∈ P : p1 ∈ Wr}, and

– V
′ = V.



〈

ϕ?
〉

ψ↔ ψ ∧ ϕ
〈

ϕ??
〉

ψ↔ ψ ∧
[ ;p∈P(ϕ)

(

if ¬rp then (+p∪−p)
)]

ϕ
〈

π1; π2

〉

ϕ↔
〈

π1

〉〈

π2

〉

ϕ
〈

π1 ∪ π2

〉

ϕ↔
〈

π1

〉

ϕ ∨
〈

π2

〉

ϕ

〈

π∗
〉

ϕ↔
〈

π≤2|P(ϕ)|〉

ϕ
〈

π1||π2

〉

ϕ↔
〈

splitRW(P(π1) ∪ P(π2));

copybackRW1(P(π1)); copyV1(P(π1)); π1;

NochangeRW1(P(π1))?; OkChangeV1(P(π1))?;

copybackRW2(P(π2)); copyV2(P(π2)); π2;

NochangeRW2(P(π2))?; OkChangeV2(P(π2))?;

mergeRW(P(π1))
〉

ϕ

Fig. 4. Reduction axioms for program operators

5.3 Useful Formulas

The following formulas will be of use in reduction axioms:

NochangeRWk(P) =
∧

p∈P

(

(rp ↔ rpk ) ∧ (wp ↔ wpk )
)

OkChangeVk(P) =
∧

p∈P

(

¬wp → (p↔ pk)
)

The first is true if and only if readability and writability statements have the same value

for every p in P and its copy pk.

5.4 Reduction Axioms for Program Operators

The reduction axioms for program operators are in Figure 4. Those for sequential and

nondeterministic composition and for exogeneous tests (PDL tests) are as in PDL. That

for endogeneous tests ϕ?? varies the truth values of the non-readable variables of ϕ. That

for the Kleene star is familiar from DL-PA. That for parallel composition π1||π2 executes

π1 and π2 in sequence: it starts by splitting up readability and writability between the

two programs, then executes π1, checks whether π1 didn’t change the readability and

writability variables and whether all truth value changes it brought about are legal, and

finally executes π2 followed by the same checks for π2.

Observe that the validity of the reduction axiom for || relies on the fact that the

copies p1 and p2 that are introduced by the program splitRW(P(π1) ∪ P(π2)) are fresh.

One may also note that the length of the right hand side can be shortened by restricting

P(πk) to the propositional variables that are assigned by πk, i.e., to elements p ∈ P such

that +p or −p occurs in πk.



〈

+p
〉

⊤ ↔ wp

〈

−p
〉

⊤ ↔ wp
〈

r+p
〉

⊤ ↔ ⊤
〈

r−p
〉

⊤ ↔ ⊤
〈

w+p
〉

⊤ ↔ ⊤
〈

w−p
〉

⊤ ↔ ⊤
〈

+p
〉

¬ϕ↔ wp ∧ ¬
〈

+p
〉

ϕ
〈

−p
〉

¬ϕ↔ wp ∧ ¬
〈

−p
〉

ϕ
〈

r+p
〉

¬ϕ↔ ¬
〈

r+p
〉

ϕ
〈

r−p
〉

¬ϕ↔ ¬
〈

r−p
〉

ϕ
〈

w+p
〉

¬ϕ↔ ¬
〈

w+p
〉

ϕ
〈

w−p
〉

¬ϕ↔ ¬
〈

w−p
〉

ϕ
〈

+p
〉

(ϕ ∨ ψ)↔
〈

+p
〉

ϕ ∨
〈

+p
〉

ψ
〈

−p
〉

(ϕ ∨ ψ)↔
〈

−p
〉

ϕ ∨
〈

−p
〉

ψ
〈

r+p
〉

(ϕ ∨ ψ)↔
〈

r+p
〉

ϕ ∨
〈

r+p
〉

ψ
〈

r−p
〉

(ϕ ∨ ψ)↔
〈

r−p
〉

ϕ ∨
〈

r−p
〉

ψ
〈

w+p
〉

(ϕ ∨ ψ)↔
〈

w+p
〉

ϕ ∨
〈

w+p
〉

ψ
〈

w−p
〉

(ϕ ∨ ψ)↔
〈

w−p
〉

ϕ ∨
〈

w−p
〉

ψ

Fig. 5. Reduction axioms for boolean operators

The exhaustive application of the equivalences of Figure 4 from the left to the right

results in formulas whose program operators are either endogeneous tests occurring in

a readability statement rp =
〈

p??
〉

⊤ ∨
〈

¬p??
〉

⊤, or assignments of the form r+p, r−p,

w+p, w−p, +p, or −p. (We recall that the last but one, +p, may also be written as wp.)

5.5 Reduction Axioms for Boolean Operators

We now turn to modal operators
〈

π
〉

where π is of the form r+p, r−p, w+p, w−p, +p, or

−p. They are deterministic and can therefore be distributed over the boolean operators.

The corresponding reduction axioms are in Figure 5.

We note that in the first equivalence
〈

+p
〉

⊤ ↔ wp, the right hand side actually

abbreviates the left hand side. We nevertheless state it in order to highlight that the

exhaustive application of these reduction axioms results in sequences of atomic assign-

ments facing either propositional variables or wp or rq. These sequences are going to be

reduced in the next step.

5.6 Reduction Axioms for Assignments

When atomic programs face propositional variables or readability and writability state-

ments then the modal operator can be eliminated (sometimes introducing a writability

statement wp). The reduction axioms doing that are in Figure 6.

As announced, the exhaustive application of the above equivalences results in boolean

combinations of propositional variables and readability and writability statements.

5.7 Soundness, Completeness, and Decidability

Let us call DL-PA
|| our extension of DL-PA with parallel composition. Its axiomatisation

is made up of

– an axiomatisation of propositional logic;



〈

+p
〉

q↔















wp if q = p

wp ∧ q otherwise

〈

−p
〉

q↔















⊥ if q = p

wp ∧ q otherwise
〈

r+p
〉

q↔ q
〈

r−p
〉

q↔ q
〈

w+p
〉

q↔ q
〈

w−p
〉

q↔ q
〈

+p
〉

rq ↔ wp ∧ rq

〈

−p
〉

rq ↔ wp ∧ rq

〈

r+p
〉

rq ↔















⊤ if q = p

rq otherwise

〈

r−p
〉

⊤ ↔















⊥ if q = p

rq otherwise
〈

w+p
〉

rq ↔ rq

〈

w−p
〉

rq ↔ rq
〈

+p
〉

wq ↔ wp ∧ wq

〈

−p
〉

wq ↔ wp ∧ wq
〈

r+p
〉

wq ↔ wq

〈

r−p
〉

wq ↔ wq

〈

w+p
〉

wq ↔















⊤ if q = p

wq otherwise

〈

w−p
〉

wq ↔















⊥ if q = p

wq otherwise

Fig. 6. Reduction axioms for assignments

– the equivalences of Sections 5.4, 5.5, and 5.6;

– the inclusion axiom schema wp → rp, which is an abbreviation of the formula
〈

+p
〉

⊤ →
(〈

p??
〉

⊤ ∨
〈

¬p??
〉

⊤
)

;

– the rule of equivalence RE(
〈

π
〉

) “from ϕ↔ ψ infer
〈

π
〉

ϕ↔
〈

π
〉

ψ”.

The inference rules preserve validity and the axioms are valid:

Theorem 1. The axiomatisation of DL-PA
|| is sound: if ϕ is provable with the axiomat-

ics of DL-PA
|| then it is DL-PA

|| valid.

As to completeness, the reduction axioms of Sections 5.4, 5.5, and 5.6 allow us to

transform any formula into an equivalent boolean combination of propositional vari-

ables and readability and writability statements. (Their application requires the rule of

replacement of equivalents, which is derivable because we have rules of equivalence

for all the connectives of the language, in particular the above RE(
〈

π
〉

).) Let ϕ be the

resulting formula. Then ϕ has a DL-PA
|| model if and only if

ϕ ∧
∧

p∈P

(

wp → rp

)

has a model in propositional logic, where in propositional logic, rp and wp are consid-

ered to be arbitrary propositional variables; so there is a priori no connection between

them nor with the propositional variable p.

Theorem 2. The axiomatisation of DL-PA
|| is complete: if ϕ is DL-PA

|| valid then it is

provable in the axiomatics of DL-PA
||.

Based on the reduction of DL-PA
|| formulas to boolean formulas (and the transfor-

mation of rp and wp from abbreviations into propositional variables), we may check



the satisfiability of DL-PA
|| formulas by means of propositional logic SAT solvers.

This is however suboptimal because reduction may result in a formula that is super-

exponentially longer than the original formula. In the next section we explore another

route.

6 Complexity via Translation into DL-PA

We establish PSPACE complexity of DL-PA
|| satisfiability and model checking by trans-

lating formulas and programs to Dynamic Logic of Propositional Assignments DL-PA.

The language of the latter is the fragment of that of DL-PA
||: it has neither endoge-

neous tests, nor readability and writability assignments, nor parallel composition. So

the language of DL-PA is built by the following grammar:

ϕ ::= p | ⊤ | ¬ϕ | (ϕ ∨ ϕ) |
〈

π
〉

ϕ

π ::= +p | −p | ϕ? | (π; π) | (π∪ π) | π∗

None of the operators of the language refers to the Rd-component or the Wr-component

of models. The interpretation of DL-PA formulas and programs therefore only requires

a valuation V.

Our translation from DL-PA
|| to DL-PA eliminates endogeneous tests and parallel

composition. This is done in a way that is similar to their reduction axioms of Figure 4.

It moreover transforms readability and writability statements into special propositional

variables rp and wp, similar to the reduction axioms of Figure 6.

To make this formal, let the set of atomic formulas be

X = P ∪ {wp : p ∈ P} ∪ {rp : p ∈ P}.

Given a set of propositional variables P ⊆ P, RP = {rp : p ∈ P} is the associated set

of read-variables and WP = {wp : p ∈ P} is the associated set of write-variables. So

X = P ∪ RP ∪WP. As before, the set of propositional variables occurring in a formula

ϕ is noted P(ϕ) and the set of those occurring in a program π is noted P(π). This now

includes the p’s in rp and wp. For example, P(p ∧
〈

+wq

〉

¬rp) = {p, q}.

We translate the DL-PA
|| programs r+p, r−p, w+p, and w−p into the DL-PA pro-

grams +rp, −rp, +wp and −wp. Moreover, we have to ‘spell out’ that −wp has side effect

−rp and that +rp has side effect +wp. So the programs of Figure 3 become the following

DL-PA programs:

copyVk(P) = ;p∈P

((

p?;+pk)∪ (¬p?;−pk))

splitRW(P) = ;p∈P

(

(−wp1 ;−rp1 ); (−wp2 ;−rp2 );

if wp then
(

(+wp1 ;+rp1 )∪ (+wp2 ;+rp2 )
)

;

if rp∧¬wp then
(

+rp1 ∪+rp2 ∪ (+rp1 ;+rp2 )
))

copybackRWk(P) = ;p∈P

((

¬rpk ?;−rp;−wp

)

∪

(rpk ∧ ¬wpk ?;+rp;−wp) ∪

(wpk ?;+wp;+rp)
)

mergeRW(P) = ;p∈P

(

if rp1 then +rp ; if wp1 then +wp

)



The useful formulas of Section 5.3 remain unchanged, except that readability and

writability statements are no longer DL-PA
|| abbreviations, but are now DL-PA proposi-

tional variables.

Given a DL-PA
|| program or formula, its translation into DL-PA basically follows

the reduction axiom for endogeneous tests ?? and parallel composition || of Figure 4. We

replace:

1. all occurrences of ϕ?? by
[

;p∈P(ϕ)

(

if ¬rp then (+p∪−p)
)]

ϕ?

2. all occurrences of π1||π2 by

splitRW(P(π1) ∪ P(π2));

copybackRW1(P(π1)); copyV1(P(π1)); π1; NochangeRW1(P(π1))?; OkChangeV1(P(π1))?;

copybackRW2(P(π2)); copyV2(P(π2)); π2; NochangeRW2(P(π2))?; OkChangeV2(P(π2))?;

mergeRW(P(π1))

3. all occurrences of r+p, r−p, w+p, and w−p by the DL-PA programs +rp, −rp, +wp

and −wp, for p ∈ P

4. all occurrences of −wp by −wp;−rp and all occurrences of +rp by +rp;+wp, for

p ∈ P

Let t(ϕ) be the translation of the DL-PA
|| formula ϕ. Remember that in t(ϕ), the variables

rp and wp are considered to be arbitrary propositional variables.

Theorem 3. A DL-PA
|| formula ϕ is DL-PA

||-satisfiable if and only if the DL-PA formula

t(ϕ) ∧
∧

p∈P(ϕ)(wp → rp) is DL-PA satisfiable.

As the length of t(ϕ) is polynomial in that of ϕ, it follows that DL-PA
|| model and

satisfiability checking are both PSPACE complete.

7 Conclusion

We have added to Dynamic Logic of Propositional Assignments DL-PA a parallel com-

position operator in the spirit of separation logics. To that end we have augmented

DL-PA valuations by readability and writability information. We have adopted a stricter

stance on race conditions than in the approach of [HMV19] where e.g. the program

+p||+p is executable. We have provided a complete axiomatisation in terms of reduc-

tion axioms, ensuring at the same time decidability. We have also proved PSPACE com-

plexity via a translation to DL-PA.

The mathematical properties of DL-PA
|| compare favourably with the high complex-

ity or even undecidability of the separation logics in the literature. They also compare

favourably with those of other extensions of dynamic logic by a separating parallel com-

position operator that were proposed in the literature [BdFV11,VVB14,BB18]. Just as

ours, the latter line of work is in the spirit of separation logic, having splitting and merg-

ing operations that are defined on system states. The axiomatisation that was introduced

and studied in [BB18] is restricted to the star-free fragment and the authors had to add

propositional quantifiers in order to make parallel composition definable. This contrasts



with the simplicity of our axiomatisation of DL-PA
|| that we obtained by adding reduc-

tion axioms to the axiomatisation of DL-PA. Just as DL-PA can be viewed as an instance

of PDL—the interpretation of atomic programs moves from PDL’s abstract relation be-

tween states to concrete updates of valuations—, DL-PA
|| can be viewed as an instance

of the logic of [BdFV11] where the interpretation of parallel composition no longer re-

sorts to an abstract relation ⋆ associating three states, but instead has concrete functions

that split and merge valuations and that are constrained by readability and writability

information.
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