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Evaluation of Analogical Arguments by Choquet Integral

Leila Amgoud 1

Abstract. Analogical arguments are a special type of inductive ar-

guments, whereby perceived similarities are used as a basis to infer

some further similarity that has yet to be observed. Although they are

not deductively valid, they may yield conclusions that are very prob-

ably true, and may be more cogent than others in persuasive contexts.

This paper tackles the question of their evaluation. It starts by dis-

cussing their features, how they can be attacked/supported, and key

considerations for their evaluation. It argues in particular for the need

of semantics that are able to take into account possible interactions

(synergies, redundancies) between attackers (respectively support-

ers) of any analogical argument. It presents principles that serve as

guidelines for choosing candidate semantics. Then, it shows that ex-

isting (extension, gradual, ranking) semantics are not suitable as they

may lead to inaccurate assessments. Finally, it redefines three exist-

ing semantics using the well-known Choquet Integral for aggregating

attackers/supporter, and discusses their properties.

1 INTRODUCTION

Analogical reasoning is one of the most common methods by which

human beings attempt to understand the world and make decisions

[6, 21, 25]. It consists of exploring parallels between situations. In-

deed, to give an analogy is to claim that two distinct items are alike

or similar in some respect, or share features. For instance, how a doc-

tor diagnoses diseases is like how a detective investigates crimes; the

structure of an atom is like a solar system. Analogical arguments or

arguments by analogy are a special type of inductive arguments that

rely on analogies for drawing conclusions. They cite accepted sim-

ilarities between two items in support of the conclusion that some

further similarity exists. They have the following general schema:

Items I1 and I2 are similar in having properties P1, . . . , Pn.

I1 has property Q.

Therefore, I2 also has property Q.

An example of analogical argument is: This novel is similar to the

one I have read recently; they both have a green cover (P1). The pre-

vious book was boring (Q), then this novel will be boring as well.

Staring from the common feature (P1) for the two books, the argu-

ment concludes that they will share also the feature (Q).

Such arguments are not deductively valid, however some of them

may yield conclusions that are very probable. They may also be

more cogent than others in persuasive context [28]. The reason is

that analogy facilitates understanding, which is crucial for persuad-

ing an audience. Consequently, several scholars mainly philosophers

[13, 14, 15, 26, 27, 29] have investigated analogical arguments and

have focused on their types, features, and strengths.
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Despite a steady progress by philosophers in understanding how

analogical arguments can be evaluated, to the best of our knowledge

there is almost no study from the computational argumentation side

on the kind of semantics that are suitable for this type of arguments.

Two notable exceptions are the works in [8, 23], where the authors

used extension semantics that have been initiated in [12].

This paper investigates from a formal point of view the type of

framework that is necessary for reasoning with analogical arguments,

and the family of semantics that are suitable for evaluating them.

We start by arguing that bipolarity is inevitable as any analogical

argument may be supported by arguments and attacked by others. A

supporter provides additional features that are shared by the items

compared by the analogical argument, while an attacker highlights

non-shared ones (hence cases of dissimilarity between the items).

Both (supporters and attackers) are crucial for the evaluation of the

strength of the targeted analogical argument. The idea is that the

more features are shared and the fewer dissimilarities are highlighted

between the items, the stronger the analogy between the items, and

thus the stronger the analogical argument. This idea is captured by a

principle, called Monotony, that any semantics should satisfy. A sec-

ond important principle for a semantics is the so-called Diversity by

philosophers. It states that a semantics should take into account pos-

sible interactions (synergies and redundancies) among features, and

thus among respectively attackers and supporters.

We show that existing extension semantics [12] violate both prin-

ciples and are thus not suitable in the context of analogical argu-

ments. Some gradual semantics like Card-based and Weighted h-

Categorizer from [5] satisfy Monotony but violate Diversity leading

thus to inaccurate assessments. We argue that for satisfying Diversity,

attackers (respectively supporters) should be aggregated by a func-

tion that is able to deal properly with possible interactions (synergies,

redundancies) between arguments. Choquet integral [11] is one of

such functions. We redefine then three existing semantics (Weighted

h-Categorizer [5], Aggregation-based [3], Euler-based [4]) using

Choquet Integral and show that they satisfy the desirable principles.

The paper is structured as follows: Section 2 presents a running ex-

ample, Section 3 presents the formal framework for reasoning with

analogical arguments, Section 4 discusses different desirable prop-

erties for their evaluation, Section 5 proposes three novel semantics

and investigates their properties, Section 6 is devoted to related work,

and Section 7 concludes.

2 ILLUSTRATIVE EXAMPLE

Let us illustrate the different characteristics of analogical arguments

by the following simple example. Consider the six arguments below

exchanged during a dialogue between friends:

A This novel has a similar plot (p) like the one we have read. The



latter was boring (b), therefore the novel will be boring as well.

B The two books are alike in that their covers are both green (g).

C Their covers have both a picture of a dove (d).

D The two novels are written by the same author (a).

E Very few of the first book have been sold (s) while the new book

is a hit in bookstores.

F The two books are published by different editors (e).

The argument A follows the schema presented above. It compares

two items (books in this case) and claims a first similarity between

them: having same plot (P1 = p). Then, it concludes that two books

will share also the property of being boring (Q = b).

The three arguments B,C,D have the following schema:

Items I1 and I2 have both properties P1, . . . , Pn.

Therefore, I1 and I2 are similar.

They sustain the similarity claimed by A by providing other com-

mon features of the two books. They are thus supporting A.

The two arguments E,F have the following schema:

Item I1 has properties P1, . . . , Pn while I2 not.

Therefore, I1 and I2 are dissimilar.

They highlight features on which the two books are different. In E

the feature is the number of sales and in F it is the editor. Both ar-

guments undermine the first premise of A, which states that the two

books are similar. They are thus clearly attacking A. The graph be-

low depicts the relations between the arguments, where dashed lines

are support relations while plain ones denote attacks.
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Characteristics 1 Reasoning about analogical arguments requires

a bipolar framework (i.e., with both attack and support relations).

In analogical reasoning, the features that are used for comparing

items may not be of equal importance. For instance, cover’s colour

may be less important than book’s topic. Furthermore, some groups

of features may be more important than others. For instance, sharing

the two features (green covers with a picture of a dove) is less impor-

tant than sharing the two features (green cover and author). The two

first ones are on the same topic (book’s cover) while the second ones

are on varied aspects: book’s cover and book’s author. The impor-

tance of a group of features may be more important than the sum of

importances of its elements when synergies hold between features,

and may be less than the sum of importances of features when there

are redundancies among them.

Characteristics 2 Reasoning about analogical arguments requires

capturing properly the diversity and the interactions of features that

are shared by items. This amounts to considering importance degrees

of groups of features.

The importance of (groups of) features is inherited by analogi-

cal arguments promoting them. Indeed, every argument has a basic

weight reflecting the importance of the features it promotes. For in-

stance, the basic weight of the argument A is the importance of the

feature p, and the basic weight of B is the importance of g.

Characteristics 3 Every analogical argument has a basic weight,

which is related to the importance of the features it promotes.

Consider now the three arguments A1, A2, A3 of Figure 1. The

first one is supported by two arguments promoting the features g and

d, which are both on book’s cover. The second argument is supported

by two arguments promoting g and a (on cover and author) and the

third argument is supported by arguments referring to d, a (also on

cover and author). Intuitively, {B,C} should have less impact on A1

than {B,D} on A2 and than {C,D} on A3 due to the importance

of the groups of features underlying the arguments. Thus, both A2

and A3 should be stronger than A1. This shows that the possible

interactions between features lead to interactions between arguments

referring to them.

Characteristics 4 Reasoning about analogical arguments requires

capturing interactions between attackers/supporters. This amounts

to identifying basic weights of groups of arguments.

We have seen that features have weights reflecting their impor-

tance for comparing items (eg., books). However, the fact that a fea-

ture is important does not mean that it is necessarily relevant to an ar-

gument’s conclusion. Let us consider the argument F , which claims

that the two books are dissimilar because they have different editors

(e). The feature e is irrelevant for concluding that a book will be bor-

ing, hence the attack from F to A is quite weak. Consider now the

two following arguments:

G These two books are similar, they have the same cover. The first

one has a lot of typos, therefore the second one too.

H They have been edited by the same editor.

Clearly, H supports G and this relation is relevant since one would

think that editors should check books before publication. Thus, the

feature “same editor” is relevant to the conclusion “having typos”.

Characteristics 5 Attack/Support relations have relevance degrees.

3 ARGUMENTATION FRAMEWORK

This section formalizes the different characteristics discussed pre-

viously. Throughout the paper, we assume a finite set F =
{f1, . . . , fi} of features for comparing objects. Each feature and

each subset of features has an importance degree, capturing thus the

second characteristic. Such degrees are ascribed by a capacity, called

also fuzzy measure by Choquet in [11], which is a function that as-

signs to every subset of features a value from the unit interval [0, 1].

Definition 1 (Capacity) A capacity over a set X is a function V
from P(X )2 to [0, 1] satisfying the following conditions:

• V(∅) = 0 (Boundary condition)

• V(A) ≤ V(B) whenever A ⊆ B ⊆ X (Monotonicity)

Monotonicity means: the bigger a set, the more important it is.

We are now ready to introduce the notion of theory.

Definition 2 (Theory) A theory is a pair 〈F , π〉 where F is a finite

set of features and π is a capacity over F .

2 P(X ) denotes the power set of the set X .
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Figure 1. Examples of Graphs: Every Ai is the argument A

It is worth mentioning that the definition of capacity covers three

types of capacity functions over the set of features: For A ⊆ B ⊆ F ,

Concave: π(A ∪B) + π(A ∩B) ≤ π(A) + π(B)
Convexe: π(A ∪B) + π(A ∩B) ≥ π(A) + π(B)
Additive: π(A ∪B) + π(A ∩B) = π(A) + π(B)

The first type expresses existence of redundancies between the sets

A and B. The second type expresses positive synergies among the

two sets. Finally, the third type expresses independence of the sets.

The diversity condition (mentioned in characteristic 2) may not be

suitable in all cases. For instance, claiming that two books are similar

in that they are written by the same author (f1) is more important

than claiming that they are similar in having the same colour of their

covers (f2) and are edited in the same country (f3). Indeed, the group

of features {f2, f3} may be less important than the singleton {f1},

i.e., π({f2, f3}) ≤ π({f1}).

Throughout the paper, we assume a finite set of analogical argu-

ments. Every argument promotes one or more features in support of

a similarity/dissimilarity between two items. An attacker of an ar-

gument highlights some features that two items do not share while

a supporter shows some additional similarities between the items.

This bipolarity of the framework answers characteristic 1. For meet-

ing characteristics 3 and 4, we assume that every argument and every

group of arguments has a basic weight, which is equal to the im-

portance degree of the group of features that are considered. Finally,

for meeting the last characteristic we assume that attack/support re-

lations are weighted.

Definition 3 (Argumentation Framework (AF)) An AF built on

theory 〈F , π〉 is an ordered tuple A = 〈A, v, σ,Rs,Ra, δ〉, where:

• A is a non-empty finite set of analogical arguments

• v : A → P(F) \ ∅
• σ: P(A) → [0, 1] such that σ(∅) = 0 and for every X ⊆ A,

σ(X) = π(
⋃

a∈X

v(a))

• Rs ⊆ A×A is a support relation

• Ra ⊆ A×A is an attack relation

• δ : Ra ∪Rs → [0, 1]

For a ∈ A, v(a) is the set of features promoted by a, for X ⊆ A
σ(X) denotes the importance degree of X , and it is equal to the

importance of the set of features promoted by the elements of X .

Example 1 Let us now come back to our running example. The fig-

ure below shows the relevance degrees of the (attack, support) re-

lations as well as the importance degrees of the individual argu-

ments. In addition, we assume the following: σ({B,C}) = 0.75,

σ({B,D}) = 0.9, σ({C,D}) = 0.9, σ({B,C,D}) = 0.9,

σ({E,F}) = 0.8. Note that the importance of the group {E,F}
is the same as the importance of any of its elements. This means that

E and F are redundant and thus only one of them can be considered.

The same holds for the group {B,C,D}. Indeed, it is as important

as any of {B,D} and {C,D}. This means that one should discard

either B or C but not both.
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Property 1 Let A = 〈A, v, σ,Rs,Ra, δ〉 be an AF. For any A ⊆
B ⊆ A, it holds σ(A) ≤ σ(B). Furthermore,

σ(A) = 1 iff
⋃

a∈A

v(a) = F .

The above result shows that σ is a capacity. Moreover, it is normal-

ized (σ(A) = 1) when the capacity on F is normalized (σ(F) = 1)

and items are compared with respect to all features in F .

4 EVALUATION OF ANALOGICAL
ARGUMENTS

The different studies made by philosophers (eg., [13, 14, 15, 26, 27,

29]) claim that an analogical argument has a gradual strength, which

may range from very weak to very strong depending on the following

four considerations:

Relevance (Rel): The idea is to check the relevance of the features

in which the items are similar to an argument’s conclusion. In the

example, the colour of book’s cover is not relevant for concluding

that a book will be boring. In other words, we need to ensure that

having features P1, . . . , Pn increases the probability of an item

having feature Q. The Pi are either those features stated in the

analogical argument under study or in its supporters.



Number (Num): An analogical argument is stronger when the com-

pared items share a lot of relevant features. For instance, in Figure

1 our confidence in the conclusion of the argument A4 is greater

than in the conclusions of A1, A2, A3 since the similarity between

the two books is based on more common features in A4.

Diversity (Div): To ensure that the shared features are not all of the

same kind. This condition depends on the importance of groups

of features. Assume three features f1, f2, f3 such that π({f1}) >
π({f2, f3}). Intuitively, an analogical argument promoting the

feature f1 would be stronger than anyone that promotes f2, f3.

Disanalogy (Dis): Even if two items are similar in lots of relevant

aspects, we should also consider whether there are dissimilarities

between them which might cast doubt on the conclusion.

Evaluation of arguments has largely been investigated in the com-

putational argumentation literature. Three families of semantics have

been proposed [1]: extension semantics [12], gradual or weighting

semantics [9], and ranking semantics [2].

Extension semantics look for sets of arguments, called extensions,

that defend their elements against all attacks. Each extension rep-

resents an alternative set of acceptable arguments. These semantics

have the following characteristics, which impede their use for the

evaluation of analogical arguments. First, the effect of an attack is

binary. Indeed, an attack either leads to full rejection of arguments or

has no effect. Consider the argument A5 (which is A in the running

example) in Figure 1. As soon as E has a greater basic weight than

A5, all existing extension semantics will reject A5. However, in case

of analogical arguments, it is rare to have non-attacked arguments

since items always differ in at least one feature.

Second, the impact of one attack is the same as n attacks. In Figure

1, being attacked by E only or by both E and F has the same effect,

violating thus the above consideration (Num).

Third, in the bipolar case (eg., [10, 19, 7, 18, 20]), if the attack re-

lation is empty, all arguments will be accepted. Hence, in Figure 1,

the four arguments A1, . . . , A4 are all equally acceptable, violating

again the consideration (Num). Note that A4 is based on a similar-

ity which involves more features (p, g, d, a) than the others, thus A4

should be stronger than A1, A2, A3.

Finally, when both types of relations are available in a graph, the

effect of attacks may be lethal. The argument A will be rejected by

all existing bipolar extension semantics. Thus, as said above most

analogical arguments will be rejected since they are all attackable.

Ranking semantics return for every argumentation graph a total

preorder on the set of arguments. Indeed, they rank order arguments

from the strongest to the weakest ones. Such semantics also are not

suitable for analogical arguments. In our running example, they rank

order the arguments A,B,C,D,E, F without specifying whether

A is strong or not. Consider for instance the case of two distinct

analogical arguments X,Y such that X attacks itself and Y is not

attacked. Existing semantics would return the following: X is at least

as strong as X and Y is at least as strong as Y . They do not declare

that X is stronger than Y , and that Y is very weak.

Gradual semantics do not focus on acceptance/rejection of argu-

ments, but rather on their strengths. Thus, they are more appropriate

for our purpose. In what follows we will use such semantics.

Definition 4 (Semantics) A semantics is a function S transforming

any AF A = 〈A, v, σ,Rs,Ra, δ〉 into a weighting sSA : A → [0, 1].
Let a ∈ A, sSA(a) denotes the strength of a.

Remark: When the semantics and the AF are clear from the context,

we write s(a) for short for denoting the strength of a.

This definition is very general and does not constrain the choices

of semantics. In what follows, we propose some principles that a

reasonable semantics for analogical arguments should satisfy. The

principles will capture the considerations (Rel, Num, Dis). Before

presenting them formally, let us first introduce some useful notations.

Notations: Let A = 〈A, v, σ,Rs,Ra, δ〉 be an AF and a ∈ A. We

denote by Att(a) the set of all attackers of a in A (i.e., Att(a) =
{b ∈ A | bRaa}), sAtt(a) = {b ∈ Att(a) | s(b) > 0}, by Supp(a)
the set of all supporters of a (i.e., Supp(a) = {b ∈ A | bRsa}) and

sSupp(a) = {b ∈ Supp(a) | s(b) > 0}.

Relevance (Rel) is captured by two principles. The first one en-

sures that weights of relations between arguments are properly taken

into account. The basis idea is that the weaker a relation (hence

the weaker the degree of relevance of the features promoted by the

source to the conclusion of the target argument), the less impact it

has on an argument.

Principle 1 (Relevance) A semantics S satisfies relevance iff for

every AF A = 〈A, v, σ,Rs,Ra, δ〉, for all X,Y ⊆ A, for all

a, b ∈ A, for all x, x′, y, y′ ∈ A \ (X ∪ Y ) such that

• σ({a}) = σ({b}) > 0,

• Att(a) = X ∪ {x} and Att(b) = X ∪ {y},

• Supp(a) = Y ∪ {x′} and Supp(b) = Y ∪ {y′},

• s(x) = s(y) and s(x′) = s(y′),
• ∀X ′ ⊆ X , σ(X ′ ∪ {x}) = σ(X ′ ∪ {y}) and ∀Y ′ ⊆ Y , σ(Y ′ ∪

{x′}) = σ(Y ′ ∪ {y′})
• ∀z ∈ X , δ((z, a)) = δ((z, b)), ∀z′ ∈ Y , δ((z′, a)) = δ((z′, b)),

δ((y, b)) ≥ δ((x, a) and δ((x′, a)) ≥ δ((y′, b)),

the following holds:

• s(a) ≥ s(b); (Relevance)

• if (s(a) > 0 and δ((y, b)) > δ((x, a))) or (s(b) < 1 and

δ((x′, a)) > δ((y′, b))), then s(a) > s(b). (Strict Relevance)

The second principle is a generalization of Reinforcement pro-

posed in [4]. It states that any argument becomes stronger if the qual-

ity of its attackers is reduced and the quality of its supporters is in-

creased. This principle takes into account the importance of groups

of features that are used for showing similarities/dissimilarities.

Principle 2 (Reinforcement) A semantics S satisfies reinforcement

iff, for every AF A = 〈A, v, σ,Rs,Ra, δ〉, for all X,Y ⊆ A, for

all a, b ∈ A, for all x, x′, y, y′ ∈ A \ (X ∪ Y ) such that

• σ({a}) = σ({b}) > 0,

• Att(a) = X ∪ {x} and Att(b) = X ∪ {y},

• Supp(a) = Y ∪ {x′} and Supp(b) = Y ∪ {y′},

• s(x) ≤ s(y) and s(x′) ≥ s(y′),
• ∀z ∈ X , δ((z, a)) = δ((z, b)), ∀z′ ∈ Y , δ((z′, a)) = δ((z′, b)),

δ((x, a)) = δ((y, b)) and δ((x′, a)) = δ((y′, b)),
• ∀X ′ ⊆ X , σ(X ′ ∪ {x}) = σ(X ′ ∪ {y}) and ∀Y ′ ⊆ Y , σ(Y ′ ∪

{x′}) = σ(Y ′ ∪ {y′})

the following holds:

• s(a) ≥ s(b); (Reinforcement)

• if (s(a) > 0 and s(x) < s(y)) or (s(b) < 1 and s(x′) > s(y′)),
then s(a) > s(b). (Strict Reinforcement)



The consideration (Num) is captured by the following monotony

principle proposed in [4]. It states that an argument is all the stronger

when it is less attacked and more supported. In other words, an ana-

logical argument is all the stronger when the items it compares share

more features and have less dissimilarities

Principle 3 (Monotony) A semantics S satisfies monotony iff, for

any A = 〈A, v, σ,Rs,Ra, δ〉, for all a, b ∈ A such that:

• σ({a}) = σ({b}),
• Att(a) ⊆ Att(b) and ∀x ∈ Att(a), δ((x, a)) = δ((x, b)),
• Supp(b) ⊆ Supp(a) and ∀x ∈ Supp(b), δ((x, a)) = δ((x, b)),

the following holds:

• s(a) ≥ s(b); (Monotony)

• if (s(a) > 0 and sAtt(a) ⊂ sAtt(b)) or (s(b) < 1 and

sSupp(b) ⊂ sSupp(a)), then s(a) > s(b). (Strict Monotony)

Consideration (Dis) states that dissimilarities should be taken into

account. This amount to ensuring that attackers have impact on their

targets. The following weakening principle captures this idea. It ex-

tends the one from [4] and states that if attackers overcome support-

ers, the argument should lose weight.

Principle 4 (Weakening) A semantics S satisfies weakening iff for

any AF A = 〈A, v, σ,Rs,Ra, δ〉, for any a ∈ A such that there

exists an injective function f from Supp(a) to Att(a) such that

• ∀x ∈ Supp(a), s(x) ≤ s(f(x)) and δ((x, a)) ≤ δ((f(x), a)),
• ∀X ⊆ Supp(a), σ(X) ≤ σ({f(x) | x ∈ X}),

the following holds:

• s(a) ≤ σ({a}) (Weakening)

• if (σ({a}) > 0) and ({b ∈ Att(a) | δ((b, a)) × s(b) 6= 0} \
{f(x) | x ∈ Supp(a)} 6= ∅ or ∃x ∈ Supp(a) s.t s(x) <

s(f(x)) or ∃X ⊆ Supp(a) s.t σ(X) < σ({f(x) | x ∈ X})),
then s(a) < σ({a}) (Strict Weakening)

Several weighting semantics have been proposed in the literature.

A few of them deal with support graphs, some with attack graphs, and

finally a few with bipolar graphs. None of this plethora of semantics

deals with interactions between arguments as they all assume that

only individual arguments may have basic weights. However, inter-

actions may exist in case of analogical arguments, and are important

for argument strength as suggested by the diversity (Div) considera-

tion. Let us illustrate how two existing semantics may lead to inac-

curate assessments of analogical arguments.

The first one is weighted h-Categorizer that have been studied in

[?]. This semantics takes as input an AF A = 〈A, v, σ,Rs,Ra, δ〉,
where the support relation is empty (Rs = ∅), σ is defined from A
to [0, 1], and assigns to every argument a ∈ A a value as follows:

s
h(a) =

σ(a)

1 +
∑

bRaa

δ((b, a))× sh(b)
(1)

Example 2 In our running example, assume that A has no sup-

porters and it is only attacked by E and F . Consider the functions

π, δ as described previously and recall that σ({A}) = 0.5 and

σ({E}) = σ({F}) = σ({E,F}) = 0.8. Note that having both

features e and s has the same impact as having only one of them.

This means that the two features are redundant, and thus only one of

them should be considered. The above semantics will unfortunately

punish the argument A more than necessary since it will consider

each attacker separately and neglect the interaction between the two.

It will return the following scores: sh(E) = sh(F ) = 0.8 and

sh(A) = 0.5
1+0.7×0.8+0.2×0.8

= 0.29.

Let us consider the Aggregation-based (Agg) semantic from [3]. It

was defined for support graphs, i.e., AF A = 〈A, v, σ,Rs,Ra, δ〉
where the attack relation is empty (Ra = ∅), σ is defined from A to

[0, 1] and δ ≡ 1, i.e., all relations are assumed to be fully relevant.

Agg assigns to every a ∈ A a value as follows:

s
g(a) = σ(a) + (1− σ(a))×

∑
bRsa

sg(b)

1 +
∑

bRsa

sg(b)
(2)

Example 3 Consider the three graphs depicted below and assume

that B and C promote two features on the same topic while D refers

to a feature of another kind. Assume also that σ({B,C}) = 0.7
and σ({B,D}) = 0.9. As in the previous example, B is redun-

dant with C. Thus, intuitively one would expect that A1 should

have the same strength as A2. Despite the fact that all support-

ers have the same basic weight in the 3 graphs, the group {B,D}
supporting A3 is stronger than the groups supporting the other ar-

guments. Thus, one expects A3 to be stronger than A1, A2. How-

ever, the aggregation-based semantics returns the following scores:

sg(B) = sg(C) = sg(D) = 0.7 in the three graphs while

sg(A1) = 0.70, sg(A2) = 0.79, and sg(A3) = 0.79. Note that this

semantics declares A2 as stronger than A1 because it does not take

into account the redundancy that exists between the arguments B,C.

It does not either consider the synergy that exists between B,D and

declares A2 as strong as A3, while it should not be the case.

A1

0.5

B

0.7

1

A2

0.5

B

0.7

C

0.7

1
1

A3

0.5

B

0.7

D

0.7

1
1

To sum up, existing weighting semantics are unable to capture pos-

sible interactions (synergies, redundancies) that may exist between

attackers/supporters. Some of them like Agg do not either deal with

varied-strength attacks/supports.

5 CHOQUET-BASED SEMANTICS

In what follows, we present novel semantics that satisfy the princi-

ples discussed in Section 4 and that deal properly with the capacity

over the set of features. We start first by extending both weighted

h-Categorizer semantics and aggregation-based semantics, then we

propose another semantics for bipolar argumentation frameworks.

The basic idea behind the three semantics is to use Choquet integral

[11] for aggregating the strengths of attackers (respectively support-

ers)of an argument. Choquet integral is an aggregation function that

is defined as follows:

The Choquet integral of x = (x1, . . . , xn) ∈ ℜn wrt a capac-

ity µ on a set N = {1, . . . , n} is:

C(x) =

n∑

i=1

xν(i)[µ(Aν(i))− µ(Aν(i+1))],



where ν is a permutation on N such that xν(1) ≤ . . . ,≤ xν(n),

Aν(i) = {ν(i), . . . , ν(n)} for every i ∈ N , and Aν(n+1) = ∅.

The difference µ(Aν(i))−µ(Aν(i+1)) represents the marginal im-

portance of element i ∈ N .

Example 4 Let us illustrate this function with an example where

N = {1, 2, 3} and µ({1}) = µ({2}) = µ({3}) = µ({1, 2}) =
0.7, µ({1, 3}) = µ({2, 3}) = 0.9, and µ({1, 2, 3}) = 1. Let

x = (0.7, 0.7, 0.7). Here the three values are equal, thus there is no

need for rank-ordering them from the weakest value to the strongest

one. It is easy to check that C(x) = 0.7(µ({1, 2, 3} − µ({2, 3}) +
0.7(µ({2, 3} − µ({3}) + 0.7(µ({3} − µ({}) = 0.7× 0.1 + 0.7×
0.2 + 0.7× 0.7 = 0.7.

5.1 Extending weighted h-categorizer

Throughout this section, we assume that the support relation is empty

(Rs = ∅). For capturing interactions between attackers, we replace

in Equation 1 the function that aggregates the attackers, which is the

sum of all attackers scores, by Choquet Integral.

Definition 5 (Choquet-based Categorizer) Choquet-based Cat-

egorizer is a function transforming any AF A = 〈A, v, σ,Rs =
∅,Ra, δ〉 into a function shc from A to [0, 1] s.t for any a ∈ A,

s
h
c (a) =

σ({a})

1 +
n∑

i=1

xν(i) × [σ(Aν(i))− σ(Aν(i+1))]

where ν is a permutation on Att(a) = {b1, . . . , bn} such that

xν(1) ≤ . . . ≤ xν(n) and xν(i) = δ((bν(i), a)) × shc (bν(i)),
Aν(i) = {bν(i), . . . , bν(n)} and Aν(n+1) = ∅.

If Att(a) = ∅, then
n∑

i=1

xν(i) × [σ(Aν(i))− σ(Aν(i+1))] = 0.

It is easy to check that if an argument is not attacked, then its

strength is equal to its basic weight. Furthermore, when an argument

is attacked by at least one argument whose strength is not 0, then the

argument looses weight (i.e., its strength is less than its basic weight).

Example 2 (Cont) Consider again the argument A6 from Figure 1

with σ({A}) = 0.5 and σ({E}) = σ({F}) = σ({E,F}) =
0.8. Since E and F are not attacked, then shc (E) = shc (F ) =
0.8. Regarding A6, note that shc (E) × δ((E,A6)) = 0.8 ×
0.7 = 0.56 and shc (F ) × δ((F,A6)) = 0.8 × 0.2 = 0.16.

Hence, we consider the ordering 〈F,E〉 and so shc (A6) =
0.5

1+0.16×[σ({F,E})−σ({E})]+0.56×[σ({E})−σ(∅)] = 0.345. It is worth

noticing that the attacker F is not taken into account since it is re-

dundant with E. This is captured by its marginal importance given

by σ({F, F})−σ({E}) = 0. Consequently, the argument A6 is less

punished and its score is greater than the one it received by Weighted

h-Categorizer (recall that it was 0.29).

It is worth mentioning that assigning scores to arguments with the

above semantics amounts mainly to solving a system of equations

(one per argument) for each argumentation graph. In what follows,

we show that each such system has a unique solution whatever the

topology of the graph. Indeed, even in presence of cycles, this se-

mantics guarantees a unique score to every argument.

Theorem 1 For any AF A = 〈A, v, σ,Rs = ∅,Ra, δ〉, Choquet-

based Categorizer assigns a unique value to each argument a ∈ A.

This shows that shc is well-defined. The next result shows that it

satisfies the four principles introduced in the previous section.

Theorem 2 Choquet-based Categorizer satisfies the large and strict

versions of all the principles.

5.2 Extending aggregation-based semantics

Throughout this section, we assume that the attack relation is empty.

We empower the semantics Agg, recalled in Equation 2, to deal with

varied-strengths support relations and with possible interactions be-

tween supporters. The novel semantics is defined as follows:

Definition 6 (Choquet-based Agg) Choquet-based Agg is a func-

tion transforming any AF A = 〈A, v, σ,Rs,Ra = ∅, δ〉 into a

function sgc from A to [0, 1] s.t for any a ∈ A,

s
g
c(a) = σ({a}+ (1− σ({a})×X

where

X =

n∑
i=1

δ((bν(i), a))× sgc(bν(i))× [σ(Aν(i))− σ(Aν(i+1))]

1 +
n∑

i=1

δ((bν(i), a))× s
g
c(bν(i))× [σ(Aν(i))− σ(Aν(i+1))]

where ν is a permutation on Supp(a) = {b1, . . . , bn} such that

δ((bν(1), a)) × sgc(bν(1)) ≤ . . . ≤ δ((bν(n), a)) × sgc((bν(n)),
Aν(i) = {bν(i), . . . , bν(n)} and Aν(n+1) = ∅.

If an argument is not supported, then its strength is equal to its ba-

sic weight. When an argument is supported by at least one argument

whose strength is not 0, then the strength of the argument increases

(i.e., its strength is greater than its basic weight).

Let us illustrate the new semantics with an example.

Example 3 (Cont) Consider the three graphs of Example

3. Recall that σ({B,C}) = 0.7 and σ({B,D}) = 0.9.

Since the arguments B,C,D are not supported, then

sgc(B) = 0.7 in in the three graphs, sgc(C) = sgc(D) = 0.7.

sgc(A1) = 0.5 + 0.5 × 0.7×[σ({B})−σ({})]
1+0.7×[σ({B})−σ({})] = 0.66 sgc(A2) =

0.5 + 0.5 × 0.7×[σ({B,C})−σ({C})]+0.7×[σ({C})−σ({})]
1+0.7×[σ({B,C})−σ({C})]+0.7×[σ({C})−σ({})] =

0.66. Finally, sgc(A3) = 0.5 + 0.5 ×
0.7×[σ({B,D})−σ({D})]+0.7×[σ({D})−σ({})]

1+0.7×[σ({D,C})−σ({D})]+0.7×[σ({D})−σ({})] = 0.69. It is worth

noticing that the new semantics handles properly the interactions

between B,C. Indeed, since σ({B,C}) = σ({B}), then adding

C to B does not add anything. Thus, the new semantics considers

that the group supporting A1 is as strong as the one supporting A2.

Recall that the original version of this semantics assigns a greater

score to A2, neglecting thus the negative interaction (redundancy)

between B,C.

As for Choquet-based Categorizer, we show that the extended ver-

sion of Aggregation-based semantics assigns a unique score to every

argument. In other words, the system of equations associated to ar-

guments has always a solution, and it is unique.

Theorem 3 For any AF A = 〈A, v, σ,Rs,Ra = ∅, δ〉, Choquet-

based Agg assigns a unique value to each argument a ∈ A.

This shows that sgc is well-defined. The next result shows that it

satisfies the four principles introduced in the previous section.

Theorem 4 Choquet-based Agg semantics satisfies the large and

strict versions of all the principles.



5.3 Extending euler-based semantics

In the computational argumentation literature, several weighting se-

mantics have been proposed for unipolar argumentation frameworks,

and mostly for graphs where only attacks are available. The reasons

are twofold: First, attack graphs are suitable for conflict resolution

problems. Second, as shown in [17], finding semantics that ensure

unique value for every argument in a bipolar graph is not an easy

task, especially when the graph contains cycles. For instance, the au-

thors have shown that a semantics that uses the sum operator for ag-

gregating separately the attackers and the supporters of an argument

does not guarantee uniqueness of solutions. Consequently, in [4, 24],

the authors proposed semantics for acyclic graphs only. In what fol-

lows, we extend Euler-based semantics from [4] as it satisfies more

properties. This semantics is defined as follows: For every acyclic

graph A = 〈A, v, σ,Rs,Ra, δ〉, with δ ≡ 1 and σ be a function

from A to [0, 1], for every a ∈ A,

s
e(a) = 1−

1− σ(a)2

1 + σ(a)eE
, where

E =
∑

x∈Supp(a)

s
e(x)−

∑

y∈Att(a)

s
e(y).

Extending Euler-based semantics amounts to replacing both sum

functions that aggregate supports/attacks by Choquet integral. Fur-

thermore, the novel semantics will deal with weighted relations for

capturing the relevance consideration (Rel) discussed previously.

Definition 7 (Extended Euler-based Semantics) Extended Euler-

based is a function transforming any AF A = 〈A, v, σ,Rs,Ra, δ〉
into a function sec from A to [0, 1] s.t for any a ∈ A,

s
e
c(a) = 1−

1− σ({a})2

1 + σ({a})eE
, where

E = E1 − E2

E1 =

n∑

i=1

δ((sν(i), a))× s
e
c(sν(i))× [σ(Aν(i))− σ(Aν(i+1))],

E2 =

m∑

i=1

δ((aφ(i), a))× s
e
c(aφ(i))× [σ(Aφ(i))− σ(Aφ(i+1))].

where ν is a permutation on Supp(a) = {s1, . . . , sn} such that

δ((sν(1), a))× sec(sν(1)) ≤ . . . ≤ δ((sν(n), a))× sec((sν(n)),
φ is a permutation on Att(a) = {a1, . . . , am} such that

δ((aφ(1), a)) × sec(aφ(1)) ≤ . . . ≤ δ((aφ(m), a)) × sec((aφ(m)),
Aν(i) = {sν(i), . . . , sν(n)}, Aν(n+1) = ∅, Aφ(i) =
{aφ(i), . . . , aφ(m)} and Aφ(m+1) = ∅.

It is easy to check that if an argument is not attacked and not sup-

ported, then its strength is equal to its basic weight.

Let us illustrate how this semantics will evaluate the arguments of

our running example.

Example 1 (Cont) Recall that: σ({B,C}) = 0.75, σ({B,D}) =
0.9, σ({C,D}) = 0.9, σ({B,C,D}) = 0.9, σ({E,F}) = 0.8. It

is easy to check that sec(B) = sec(C) = sec(D) = 0.7, sec(E) =
sec(F ) = 0.8, and E1 = 0.357, E2 = 0.448, and sec(A) = 0.48.

Note that the argument A is weakened (its basic weight was 0.5 and

its final strength is 0.48). This is due to its group of supporters which

is weaker than the group of attackers.

This semantics guarantees a unique assignment of values to ev-

ery argument of a given framework when the latter does not contain

cycles. Unfortunately, this is not the case when cycles are present.

Theorem 5 For any acyclic AF A = 〈A, v, σ,Rs,Ra, δ〉, the ex-

tended Euler-based semantics assigns a unique value to each argu-

ment a ∈ A.

The semantics satisfies the four principles introduced in Section 3.

Theorem 6 Extended Euler-based semantics satisfies the large and

strict versions of all the principles.

6 RELATED WORK

As said before, several philosophers have tackled the question of

evaluation of analogical arguments. However, none of them have

proposed formal semantics. In the computational argumentation lit-

erature, to the best of our knowledge, there are two works on the

question. The first one [8] has used extension semantics from [12].

However, our running example shows that such semantics are not

suitable for analogical arguments. The second work [23] has used

the logical language of the ABA framework for representing ana-

logical arguments, but did not focus on their evaluation. Besides,

there is a plethora of semantics in the literature, and most of them

have been compared in [5] wrt a set of principles. Some of the se-

mantics that satisfy desirable properties, namely Strict Monotony

and Strict Weakening, use the max operator for aggregating attack-

ers/supporters. This means that among all attackers (resp. support-

ers), the operator considers only the strongest one. Such semantics

are definitely not suitable in case of analogical arguments, where the

numbers of highlighted similarities and dissimilarities are crucial.

The Strict Monotony principle suggests accrual of attack-

ers/supporters of any analogical argument. In [16, 22], a particular

form of accrual has been studied. It states that the more a claim is

supported by reasons, the more likely it is. Hence, the focus is on

arguments having the same conclusion. It is worth mentioning that

the supporters (resp. attackers) of the same argument do not neces-

sarily have the same conclusion. In [22], three principles were pre-

sented and deemed as mandatory for any formal treatment of accrual.

They state the following: (P1) “an accrual may be weaker than its el-

ements”, (P2) “an accrual makes its elements inapplicable”, and (P3)

“flawed arguments are not accrued”. While these principles are sat-

isfied by the approach studied in [16], (P1) and (P2) are not appli-

cable for analogical arguments. Indeed, the strength of a group, like

{B,C,D} in the running example, is at least as strong as any of its

elements. This is in accordance with the requirement (Num) encoded

by the Monotony principle, which is itself rooted in the monotonicity

of the capacity defined on the set of features. (P3) is compatible with

the idea that attackers/supporters of strength 0 have no impact. This

property is satisfied by our three semantics.

7 CONCLUSION

Starting from works by philosophers on the evaluation of analog-

ical arguments, we proposed a bipolar framework for reasoning

about such arguments. Its relations and (groups of) arguments are

weighted. A characteristic of analogical arguments is that their at-

tackers (resp. supporters) may interact. However, these interactions

are not considered by any existing semantics. The paper filled the gap

by proposing three semantics. They use Choquet integral for aggre-

gating attacks/supports, and are shown to satisfy desirable principles.



This work can be extended in several ways. The most urgent one

is to solve the problem of bipolar graphs with cycles. Another future

work consists of comparing our approach with works on case-based

reasoning (CBR). Our semantics evaluate somehow to what extent

two cases (a past case and a new one) are similar. A starting point for

a formal comparison would be comparing the “argumentation-based

similarity measures” with measures used by CBR models.
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