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Abstract 21 

1. The past thirty years have seen both a surge of interest in assessing ecological interactions using 22 

tools borrowed from network theory and an explosion of data on the occurrence of microbial 23 

symbionts thanks to next-generation sequencing. Given that classic network methods cannot 24 

currently measure the respective effects of different environmental and biological drivers on 25 

network structure, we here present two methods to elucidate the determinants of bipartite 26 

interaction networks.   27 

2. The first method is based on classifications and compares communities within networks to the 28 

grouping of nodes by treatment or similar controlling groups. The second method assesses the 29 

link between multivariate explanatory variables and network structure using redundancy analyses 30 

after singular value decomposition. In both methods, the significance of effects can be gauged 31 

through two randomizations.  32 

3. Our methods were applied to experimental data on Daphnia magna and its interactions with gut 33 

microbiota and bacterioplankton. The whole network was affected by Daphnia’s diet (algae 34 

and/or cyanobacteria) and sample type, but not by Daphnia genotype. At coarse grains, 35 

bacterioplankton and gut microbiota communities were different. At this scale, the structure of the 36 

gut microbiota-based network was not linked to any explanatory factors, while the 37 

bacterioplankton-based network was related to both Daphnia’s diet and genotype. At finer grains, 38 

Daphnia’s diet and genotype affected both microbial networks, but the effect of diet on gut 39 

microbiota network structure was mediated solely by differences in microbial richness. While no 40 

reciprocal effect between the microbial communities could be found, fine-grained analyses 41 

presented a more nuanced picture, with bacterioplankton likely affecting the composition of the 42 

gut microbiota. 43 

4. Our methods are widely applicable to bipartite networks, can elucidate both controlled and 44 

environmental effects in experimental setting using a large amount of sequencing data, and can 45 

tease apart reciprocal effects of networks on one another. The two-fold approach we propose has 46 

the advantage of being able to tease apart effects at different scales of network structure, thus 47 



allowing for detailed assessment of reciprocal effects of linked networks on one another. As such, 48 

our network methods can help ecologists understand huge datasets reporting microbial co-49 

occurrences within different hosts. 50 
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Introduction 58 

The past thirty years have seen the rapid development of ecological interaction network research, with 59 

the parallel growth of datasets (e.g. the interaction web database, 60 

https://www.nceas.ucsb.edu/interactionweb/ or the mangal repository, https://mangal.io; see also 61 

Bohan et al., 2016; Poisot et al., 2016) and methods to analyze them (Jordano, 1987; Memmott, 1999; 62 

Stouffer et al., 2007; Bascompte & Stouffer, 2009; Kissling et al., 2012; Stouffer et al., 2012; Weitz et 63 

al., 2013; Nogales et al., 2016; García-Callejas, Molowny-Horas & Araújo, 2018; Joffard et al., 2019) 64 

with a view to describe regularities in species interactions (e.g. degree distributions, modules, 65 

motifs…) and ultimately to explain why some species interact and others do not. Many early analyses 66 

focused on network connectance (i.e. the density of the graph) and the distribution of species degrees 67 

within networks (e.g. Jordano, 1987; Dunne, Williams & Martinez, 2002), spurred by the long debate 68 

between the ‘constant degree’  and ‘constant connectance’ predictions from the cascade and niche 69 

food web models, respectively (Cohen & Briand, 1984; Williams & Martinez, 2000). Following the 70 

pioneering work of Bascompte et al. (2003), other network metrics such as nestedness and modularity 71 

have become the subject of many ecological studies (Lewinsohn et al., 2006; Olesen et al., 2007; 72 

Fortuna et al., 2010; Thébault & Fontaine, 2010). Recently, assessments of ecological networks have 73 

turned towards more sophisticated metrics and models encompassing e.g. motif counts, block models, 74 

degree equitability and abundance-corrected measures of specialization (Stouffer et al., 2005; 75 

Blüthgen, Menzel & Blüthgen, 2006; Leger, Daudin & Vacher, 2015). However, despite a few notable 76 

exceptions (Bartomeus, 2013; Bartomeus et al., 2016; CaraDonna et al., 2017; Joffard et al., 2019; de 77 

Manincor et al., in press), ecological network analyses are still not assessing the amount of network 78 

variation driven by different environmental and biological factors. 79 

 80 

In parallel with the increasing interest in ecological networks, the development of next-generation 81 

molecular ecology methods has set up the stage for an explosion of the number of datasets describing 82 

microbial interaction networks, from planktonic networks, e.g. informed by the Tara scientific cruise 83 

(Lima-Mendez et al., 2015; Guidi et al., 2016), to plant-fungus antagonistic (Vacher, Piou & Desprez-84 



Loustau, 2008) or mutualistic (Encinas-Viso et al., 2016) interaction networks, phage-bacteria 85 

infection networks (Weitz et al., 2013), or mammal species-gut microbiota associations (Ley et al., 86 

2008). Although inferring true interactions from co-occurrence is a difficult endeavour (Vacher et al., 87 

2016; Bohan et al., 2017; Derocles et al., 2018) – indeed, neither do co-occurrences necessarily imply 88 

interaction nor does the absence of co-occurrence imply the absence of interaction –, the analysis of 89 

host-microbe association networks can still benefit from the use of ecological network methods. In 90 

particular, since host-microbe associations are much more amenable to controlled experiments than 91 

marine food webs or plant-pollinator networks, they can provide a good starting point to test methods 92 

aimed at elucidating the drivers of network structure because drivers can be varied independently, thus 93 

removing the possibility of confounding effects. 94 

 95 

As stated above, classic network methods do not measure the respective effects of different 96 

environmental and biological drivers on network structure. A few methods have been proposed (see 97 

e.g. Kamenova et al., 2017 for a short review of existing models) to assess network structure as the 98 

result of latent or explicit traits (such as organism size), sometimes combining the information 99 

provided by traits with that provided by phylogenies or geographical distributions of species (Rohr et 100 

al., 2010; Gravel et al., 2013; Ovaskainen et al., 2016; Rohr et al., 2016), but not in an integrative 101 

framework allowing all types of external factors to be tested. However, one very promising method 102 

(Dalla Riva & Stouffer, 2016) based on low-dimension embedding of adjacency matrices through 103 

singular value decomposition allows the partitioning of network ‘inertia’ through the use of classic 104 

multivariate redundancy analyses (Sabatier, Lebreton & Chessel, 1989; Borcard, Legendre & Drapeau, 105 

1992; Dray, Legendre & Peres-Neto, 2006; Peres-Neto et al., 2006) and has been successfully applied 106 

to the study of orchid-pollinator interactions across Europe (Joffard et al., 2019). In parallel, the study 107 

of multi-layer network structure, and notably the search for congruence between ‘mesoscale’ 108 

structures (i.e. modules or blocks) in two paired networks, has led to the development of a comparison 109 

method based on classifications obtained by modularity optimization and the use of classification 110 

congruence indices (Astegiano, Altermatt & Massol, 2017).  111 



 112 

Here we propose two methods to assess the effects of different drivers on the structure of host-113 

microbiota interaction networks. The first method compares communities within networks (i.e. groups 114 

of nodes which interact more between them than with nodes from other communities) to the grouping 115 

of nodes by external factors (e.g. treatments) in order to assess whether a single factor explains a 116 

significant part of the network structure. When two or more factors are considered, a similar approach 117 

is developed to adapt canonical correspondence analysis to the exploration of communities. The 118 

second method transforms host-microbiota networks into datasets amenable to redundancy analyses. 119 

In both cases, gauging the significance of external factors can be performed through two different 120 

randomizations, which can help tease apart richness effects (modalities of the factors control the 121 

number of links per node, but not the specificity of the links) from affinity effects. We illustrate the 122 

potential of both methods using the results of an experiment on Daphnia magna and its interactions 123 

with gut microbiota and bacterioplankton under controlled diets. 124 

 125 

126 



Materials & Methods 127 

Host-microbiota data as interaction networks 128 

In the following, we will consider bipartite networks, i.e. networks involving two disjoint sets of 129 

nodes, called levels, with edges only connecting nodes from two different levels. A host-microbiota 130 

association network is a bipartite network, with host populations or individuals forming one level, and 131 

microbial species, the other one. A bipartite network, with n nodes in the first level and p nodes in the 132 

second level, can be mathematically represented using an incidence matrix B of dimensions n by p. 133 

We will generally assume that the networks under study are not weighted, i.e. an existing link between 134 

two nodes is coded as “1” and an absent link is noted “0”. Indeed, since microbial sequence counts can 135 

vary widely between samples (e.g. due to PCR amplification heterogeneity), only relative microbial 136 

abundances can be obtained per host, which prevents the absolute quantification of links between host 137 

and microbial nodes (Amend, Seifert & Bruns, 2010; McMurdie & Holmes, 2014; Thomas et al., 138 

2016). For datasets able to more accurately quantify link weights, most of the analyses presented 139 

below could be adapted to weighted networks, e.g. by using block search instead of community search 140 

(Leger, Daudin & Vacher, 2015), and are further tackled in the Discussion. 141 

 142 

Community detection 143 

A community within a network is a group of nodes which interact more between them than with nodes 144 

from other communities. Different algorithms exist to find communities (Fortunato, 2010). Of late, 145 

bipartite network studies in ecology have narrowed down their interest to two procedures (Leger, 146 

Daudin & Vacher, 2015): modularity optimization algorithms and latent block models. Modularity is a 147 

network metric based on the amount of interactions within communities compared to what would be 148 

expected from the number of interactions per node, and modularity increases when more interactions 149 

occur within communities than between them (Newman, 2006b). Block models apply goodness-of-fit 150 

procedures to find the best sets of nodes so that the probability of finding an edge (or the value of an 151 

edge in weighted networks) between two random nodes is determined by the sets the two nodes belong 152 

to (Govaert & Nadif, 2008). Leger et al. (2015) have shown that some modularity-optimizing 153 



algorithms are best suited to discover communities in non-weighted bipartite networks (the leading-154 

eigenvector method of Newman, 2006a in particular), while block models reign undisputed when the 155 

task is to find communities within weighted bipartite networks. Given our focus on non-weighted 156 

networks, we will assume that community detection is performed using the leading-eigenvector 157 

modularity-optimizing algorithm. In practice, we will use the ‘cluster_leading_eigen’ function in the R 158 

package ‘igraph’ (Csardi & Nepusz, 2006). 159 

 160 

Null models for bipartite networks 161 

A striking feature of most statistics computed on networks is that they have no expected asymptotic 162 

distribution. To cope with this, network statistics are tested against their distribution after proper 163 

randomization of the initial network, i.e. using a null model. Null models assume that certain features 164 

of the network must be kept in all randomizations, but are designed so that the distribution of networks 165 

obeying these constraints is sampled as uniformly as possible. It is possible to imagine a wide array of 166 

null models for networks (Orsini et al., 2015). In the context of host-microbiota network, the most 167 

simple choice is to assume that host and microbial nodes are given their degrees (i.e. the number of 168 

nodes they interact with), but may interact randomly. Producing this null model, called the 169 

configuration model, can be done easily for bipartite networks using the recently published ‘curveball’ 170 

algorithm (Strona et al., 2014), with functions ‘simulate’ and ‘nullmodel’ of R package ‘vegan’ 171 

(Oksanen et al., 2018). In the following, each ‘curveball’-based test was performed using 10,000 172 

simulated networks. 173 

 174 

Approximating networks 175 

To understand the effects of external variables on network structure, a first step can be to approximate 176 

the incidence matrix using some simple equation, preferably related to well-known statistical 177 

procedures. The two methods presented below are based on two such approximations (Fig. 1). As the 178 

two approximations do not focus on the same underlying network structures, their respective analyses 179 



can lead to complementary, and sometimes seemingly discrepant, results. However, such 180 

discrepancies can be easily explained by differences in the approximation method.  181 

The first approximation consists in realizing that an n × p incidence matrix B can be decomposed into 182 

a matrix product involving the first-level and second-level community-membership matrices, 183 

respectively M1 and M2 (filled with 1’s and 0’s to indicate in which community each node belongs) 184 

and the reduced matrix defining interaction density between communities B’: 185 

1 2 B M .B .M           (1) 186 

where dots represent matrix products. Binary matrix M1 is n × b1, where b1 ≤ n is the number of 187 

communities found among the n nodes from the first level, and we assume that each node belongs to a 188 

single community and each community has at least one node; binary matrix M2 is b2 × p, where b2 ≤ p 189 

is the number of communities found among the p nodes from the second level; the reduced matrix B’ 190 

is b1 × b2. Its element ijb  yields the probability that a node within community i of the first level 191 

interacts with a node within community j of the second level. The approximation given by equation (1) 192 

becomes an equality when every node has its own community and becomes quite a poor fit when there 193 

is only one parameter to define probabilities of interactions. Given equation (1), an option to study the 194 

effects of external factors on network structure is to study their effects on node memberships, i.e. on 195 

matrices M1 and M2. Because nodes within each community can have different degrees, this 196 

approximation can partially help tease apart effects due to node degrees from those due to node 197 

membership in a given community, to the extent that the nodes belonging to the different communities 198 

have similar distributions of degrees. 199 

The second approximation we propose follows the logic of Dalla Riva and Stouffer (2016) based on 200 

the random dot-product graph model (RDPG, Young & Scheinerman, 2007). The singular value 201 

decomposition of an n × p incidence matrix B can be written as: 202 

TB U.D.V            (2) 203 

where U and V are orthogonal matrices, V
T
 denotes the transposed version of V, and the square matrix 204 

D is diagonal and its values are the singular values of matrix B (all non-negative), usually sorted in 205 



decreasing order. As Dalla Riva and Stouffer (2016) note, a useful approximation of the network can 206 

be obtained by finding the square-root of D, noted S, and define a number of ‘latent traits’ q less than 207 

the number of singular values, a matrix L as the first q columns of U.S and a matrix R as the first q 208 

columns of V.S, so that: 209 

TB L.R            (3) 210 

The approximation given by equation (3) becomes an equality when q equals the number of singular 211 

values. When q = 1, each node at both levels is exactly defined by a single value, which mimics the 212 

effect of heterogeneity of degrees among nodes (and leads to quite a poor fit for approximation [3]). 213 

 214 



215 
Fig. 1 – Summary of the proposed methods. Starting from an incidence matrix describing a bipartite 216 

network, one can either (i) perform a community search, then work on node communities by assessing 217 

their congruence with other classifications or perform a canonical correspondence analysis (CCA) 218 

with respect to several external factors (method 1), or (ii) approximate the incidence matrix as the 219 

product of two reduced ones through a singular value decomposition (SVD) and then analyze these 220 

reduced matrices using a redundancy analysis (RDA; method 2). In both cases, the results of analyses 221 

can be tested twice: (i) through row permutations, one can assess whether effects would have been 222 

expected from the imbalance and correlations between external factors (RDA and CCA); (ii) through 223 

edge permutations on the initial network, one can test whether an effect significant for the first test is 224 

only due to differences in numbers of interactions between factor levels, if the second test is not 225 

significant (a richness effect, e.g. a diet effect because Daphnia fed with Scenedesmus interact with 226 

more bacteria species) or, if the second is also significant, is due to an affinity effect (i.e. factor levels 227 

selectively associated with certain interactions). 228 

 229 



Method 1: node classification-based tests 230 

To assess the effects of categorical drivers on network organization, a first method is to test the 231 

congruence of node classifications obtained through community-search algorithms with those 232 

associated with external categorical variables, i.e. to study the links between matrices M1 and M2 from 233 

the previous section with matrices describing external categorical factors. Such a method is useful for 234 

analyzing the results of controlled experiments since external categorical variables then amount to 235 

treatments. Any grouping of the nodes (host, microbiota, or both) is effectively a classification in the 236 

statistical sense, which can be compared with other classifications of the same data (Danon et al., 237 

2005). Following Astegiano et al. (2017), we propose to use the Normalized Mutual Information index 238 

(NMI) to gauge the congruence of two classifications. The NMI takes values between 0 and 1, 0 239 

indicating no congruence and 1, perfect congruence. To test for the significance of a given NMI 240 

between two classifications, at least one of which being the classification of network nodes in 241 

communities, the network is randomized using the ‘curveball’ algorithm (Strona et al., 2014). This 242 

computation of NMI, implemented using the function ‘compare’ in the R package ‘igraph’ (Csardi & 243 

Nepusz, 2006), can help assess the effect of a single external factor on network structure. 244 

To extend the same logic to multiple factors, we propose to use Canonical Correspondence Analysis 245 

(CCA, ter Braak, 1986) on the M matrices. CCA decomposes the variation of the explained factor 246 

(here, the classification of nodes) through projections into the eigen-spaces induced by the external 247 

factors. It can classically test the significance of a given ‘fraction’ (e.g. chi square explained by factors 248 

X or Y once the effect of Z has been removed) by comparing the obtained F statistic to those yielded 249 

by randomizations of data rows (Peres-Neto et al., 2006). This first randomization tests whether an 250 

effect, e.g. host diet, is more related to network structure than expected by randomly assigning its 251 

values.  However, we also test whether an effect that is deemed significant following the first test is 252 

purely due to heterogeneity in node degrees between communities (i.e. not significantly different F 253 

from edge-permuted expectation; richness effect) or not (affinity effect) following the configuration 254 

model. This second randomization tallies up the probability that randomizing the network, keeping the 255 

number of links per node constant, would produce effects as strong as those obtained with the real 256 



network. To do so, we use the ‘curveball’ algorithm and compare the F-statistics obtained when 257 

performing CCA on the observed vs. simulated datasets. F-statistics larger than 95% of the simulated 258 

F’s for the same fraction indicate an affinity effect. Performing CCA can be done using the function 259 

‘cca’ in the R package ‘vegan’ (Oksanen et al., 2018). Using CCA to assess the covariation of network 260 

communities with external factors is but one of the many existing multivariate methods (Legendre & 261 

Gallagher, 2001; Blanchet et al., 2014) – other potentially useful approaches are tackled in the 262 

Discussion. However, with all those approaches, the same underlying process (approximation by 263 

communities, quantification of explained fractions, two randomization-based tests) should be applied. 264 

 265 

Method 2: singular value decomposition-based tests 266 

As mentioned above, the approximation of a network by community memberships overlooks 267 

differences in degrees among nodes belonging to the same community. Since these differences can 268 

also hold some of the underlying network structure, we propose to also model the effects of external 269 

variables on network structure using the RDPG decomposition proposed by Dalla Riva and Stouffer 270 

(2016; equation [3]). Following equation (3), a given n × p bipartite network can be approximated as 271 

two matrices (L and R) with a low number of columns and as many rows as nodes (n in L, p in R). 272 

Matrices L and R can be analysed through a Redundancy Analysis (RDA) to gauge how much 273 

variation among rows is explained by external variables, similarly to what is performed for CCA (i.e. 274 

quantifying the variation explained by each fraction such as that explained by factors X or Y once the 275 

effect of Z has been removed, Joffard et al., 2019). In RDA, variation is understood in the classic sum-276 

of-square sense and can be quantified using adjusted R² (Peres-Neto et al., 2006). Because the 277 

information stored in matrices L and R is represented by real numbers which do not correspond to 278 

presences or absences, multivariate analyses such as RDA or distance-based RDA (Legendre & 279 

Gallagher, 2001) applied to these matrices do not suffer from the ‘double zero’ problem (Legendre & 280 

Legendre, 2012). This means that different multivariate approaches similar to classic RDA could be 281 

applied instead (Blanchet et al., 2014), but lacking a clear rationale for favouring one over the others, 282 

we will tackle these other approaches in the Discussion. 283 



As for CCA, the classic test of significance of a ‘fraction’ is based on the randomization of dataset 284 

rows. Again, as in the previous method, we complement this first test by randomizing edges and 285 

gauging whether the adjusted R² obtained using the true data is higher than 95% of the simulated ones. 286 

A fraction that would be doubly significant, i.e. with adjusted R² higher than those expected from both 287 

the row and edge permutations, would indicate an affinity effect, which cannot be solely interpreted as 288 

stemming from heterogeneity in node degrees; by contrast, an effect deemed significant on the first 289 

test but not on the second one would signal a richness effect, i.e. the differences in connections among 290 

nodes explained by this effect could be simply understood as differences in the numbers of 291 

connections per node, not the identity of the nodes they are connected to (Joffard et al., 2019). 292 

One issue arises in the case of the method presented here: how can one choose the number of vectors 293 

to keep after SVD? For instance, assuming that L is the focus of an RDA, leaving L with the first 10 294 

or 100 columns will lead to different sums of squares to explain and, hence, to different R² statistics. 295 

Another similar problem arises when e.g. one wants to explain a SVD-based matrix L1 using another 296 

SVD-based matrix L2 (e.g. explaining plant-pollinator associations using plant-herbivore 297 

associations): how many vectors should one keep in L2? These two dimensionality problems can be 298 

solved, but in different ways.  299 

The number of vectors to retain in the explained table is really a choice of object to model – with more 300 

vectors retained, one obtains a finer approximation of the network. In the Daphnia-microbiota 301 

example given below, as we focus on mesoscale network structure (i.e. communities), we select the 302 

number of vectors to retain by looking at the congruence between communities of approximated 303 

networks with those of the original network using the NMI. Approximated networks, in this case, need 304 

to be binary, so we resort to transforming the L.R product from equation (3) into a binary incidence 305 

matrix using a threshold value (L.R values over threshold yield network edges). The threshold value 306 

can be obtained by maximizing the sum of sensitivity and specificity of the approximation, using 307 

function ‘optim.thresh’ in the R package ‘SDMTools’ (Van Der Wal et al., 2014). It should be 308 

repeated that our choice of criterion is here arbitrary – if this method were to be used to qualify other 309 

network structures, such as e.g. motif relative frequencies, one could come up with other criteria to 310 



optimize to find the “best vectors” (e.g. minimize Mahalanobis distance between motif relative 311 

frequency vectors of observed vs. approximated networks). Dealing with all possible focal structures 312 

and the way to best represent them using SVD vectors is, however, beyond the point of this study. 313 

Regarding the number of vectors/columns in the explanatory tables (obtained from networks or 314 

otherwise extracted in a way that allows choosing which vectors to use or not, e.g. like Moran 315 

Eigenvector Maps, Dray et al. 2006), we use forward selection with double stopping criteria (p-value 316 

<0.05 and adjusted R² less than that found with all vectors), as described by Blanchet et al. (2008) and 317 

advocated by Bauman et al. (2018). This was practically implemented borrowing from the code 318 

proposed by Bauman et al. (2018), using functions ‘RsquareAdj’ and ‘forward.sel’ from the R package 319 

‘adespatial’ (Dray et al., 2019). 320 

 321 

Application: Daphnia magna gut microbiota and bacterioplankton data 322 

The methods presented here were applied to experimental data obtained for another study (Macke et 323 

al., 2020).  324 

Daphnia genotypes. Nine Daphnia magna genotypes (G1 to G9) were used in the experiment. G1, G4 325 

and G9 were obtained from resting eggs sampled in three sediment core sections in a 8.7 ha shallow 326 

man-made pond located in Oud Heverlee, Belgium (Stoks et al., 2016). G2 was isolated from Bysjön 327 

lake in Sweden. G3 was hatched from sediment of a small, fishless and mesotrophic pond located near 328 

Knokke, Belgium (51°20’05.62” N, 03°20’53.63” E). G5-G8 were hatched from sediment of a 329 

eutrophic pond containing fish and located in Heverlee, Belgium (50°51’47.82” N, 04°43’05.16” E).  330 

Preparation of diets. The unicellular green alga Scenedesmus obliquus (hereafter called Scenedesmus 331 

or abbreviated as “S”; strain CCAP 276/3A, provided by the Culture Collection of Algae and 332 

Protozoa, UK) and the unicellular cyanobacteria Microcystis aeruginosa (hereafter called Microcystis 333 

or abbreviated as “M”; strain PCC 7806, provided by the Pasteur Culture Collection, Institut Pasteur, 334 

Paris, France) were used as food for Daphnia. The Microcystis strain used in the present study 335 

produces toxins and bioactive compounds such as microcystins (Rohrlack et al., 2001). Scenedesmus 336 

and Microcystis were cultivated under sterile conditions at 20±2°C and a light:dark cycle of 16:8 h, in 337 



2L glass bottles with constant stirring and aeration. Filters (0.22 µm) were placed at the input and the 338 

output of the aeration system to avoid bacterial contamination. Algae were harvested weekly in early 339 

stationary phase. Axenity was checked on LB medium agar plates.  340 

Experiment. For each of the nine Daphnia genotypes (G1-G9), three maternal lines were cultured 341 

under standardized conditions (2 L jars, 19±1°C; 16:8 h light:dark cycle). They were fed daily with 342 

saturating amounts of Scenedesmus. Medium was refreshed once a week. When a sufficient number of 343 

individuals was reached, 120 juveniles were sampled from each maternal line and divided into two 2L 344 

experimental jars (each containing 60 individuals, split-brood design). The first jar was fed a 345 

Scenedesmus diet (100% Scenedesmus), while the second was fed a Microcystis diet, composed of a 346 

mixture of Microcystis and Scenedesmus in a proportion adjusted so as to avoid too high mortality in 347 

Daphnia, but always ranging between 50 and 80% of Microcystis (same ratio in all jars). In total there 348 

were 54 populations (9 genotypes × 2 diets × 3 replicates). Food was provided every other day with a 349 

final carbon concentration of approximately 1.5 mg C.L
-1

. Medium was refreshed every other week. 350 

Water from a pond on the campus (Kortrijk, Belgium, 50°48'30.3"N, 3°17'38.0"E) was added to the 351 

ADaM medium (15% of the final volume) every other week in order to provide a large diversity of 352 

bacteria and optimal growth conditions for the Daphnia.  353 

Sampling microbiotas. After 1.5 years (circa 58 generations) of exposure to the two types of diet, 354 

bacterioplankton and gut microbiota compositions were assessed through next-generation sequencing 355 

of 16S rRNA. To obtain gut microbiota samples, 20 adult Daphnia were collected from each 356 

population and placed in autoclaved ADaM medium for 24h to reduce the amount of contaminating 357 

food particles within the gut (Callens et al., 2016). Daphnia guts were subsequently extracted using 358 

sterilized dissecting needles under a stereomicroscope and placed in 1.5 ml Eppendorf tubes 359 

containing 10 µl of deionized sterile water. For bacterioplankton characterization, 100 ml of medium 360 

was sampled from each population and filtered with a 0.22 µm syringe filter. The filter was 361 

subsequently placed in a 1.5 ml Eppendorf tube. Gut microbiota and bacterioplankton samples were 362 

immediately placed at -20°C until further processing. 363 

Determination of microbiota composition. DNA was extracted using a PowerSoil DNA isolation kit 364 

(MO BIO laboratories) and dissolved in 20 µL MilliQ water. The full length 16S rRNA gene was 365 



amplified with primers 27F and 1492R on 10 ng of template (94°C - 30s; 50°C - 45s; 68°C - 90s; 30 366 

cycles) using a high-fidelity Pfx polymerase (Life technologies). PCR products were subsequently 367 

purified using the QIAquick PCR purification kit (Qiagen). To obtain dual-index amplicons of the V4 368 

region, a second amplification was performed on 5 μL PCR product using primers 515F and 806R for 369 

30 cycles (94°C - 30s; 55°C - 30s; 68°C - 60s). Both primers contained an Illumina adapter and an 8-370 

nt barcode at the 5’-end. For each sample, PCRs were performed in triplicate, pooled and gel-purified 371 

using the QIAquick gel extraction kit (Qiagen). An equimolar library was prepared by normalizing 372 

amplicon concentrations with a SequalPrep Normalization Plate (Applied Biosystems) and subsequent 373 

pooling. Amplicons were sequenced using a v2 PE500 kit with custom primers on the Illumina Miseq 374 

platform (KU Leuven Genomics Core) producing 2 × 250-nt paired-end reads. Sequence reads were 375 

processed using R package ‘phyloseq’, following Callahan et al. (2016b). Sequences were trimmed 376 

(the first 10 nucleotides and from position 190 onwards were removed) and filtered (maximum of 2 377 

expected errors per read) on paired ends jointly. Sequence variants were inferred using the high-378 

resolution DADA2 method (Callahan et al., 2016a), and chimeras were removed. Taxonomy was 379 

assigned with a naive Bayesian classifier using the RDP v14 training set. Amplicon Sequence Variants 380 

(ASV) with no taxonomic assignment at phylum level or which were assigned as “Chloroplast” or 381 

“Cyanobacteria” were removed from the dataset. The final dataset contained 1,500,800 reads, on 382 

average 29,427 reads per sample (min. = 5,804 reads, max. = 78,154 reads). 383 

384 



Results 385 

Communities in the bipartite networks 386 

Applying the leading-eigenvector community search algorithm to the whole network (gut microbiota 387 

and bacterioplankton samples together) led to three communities (Fig. 2), with a relatively high and 388 

significant modularity score (Q = 0.303, p < 10
-4

). Visual inspection evinces that found communities 389 

perfectly match the classification of nodes by type of microbial sample (Fig. 2).  390 

 391 

Fig. 2 – Result of the community search within the whole network (all 104 Daphnia samples × 1656 392 

microbial ASV). The leading-eigenvector modularity optimization algorithm evinced three 393 

communities, here represented by the gray lines dividing columns and rows of the incidence matrix, 394 

with dots representing existing interactions (green dots for bacterioplankton, blue dots for gut 395 

microbiota). Communities found by the algorithms perfectly correspond to sample types, with two 396 

groups within bacterioplankton and one fitting all gut microbiota interactions. 397 

 398 

The same community-search algorithm was also applied to the two sub-networks obtained by taking 399 

only gut microbiota or bacterioplankton samples (Supp. Figs S1 and S2).  In the gut microbiota 400 

network, 16 communities were found (Supp. Fig. S1), with a moderate and not significant modularity 401 

score (Q = 0.242, p = 0.1739). In the bacterioplankton network, 6 communities were found (Supp. Fig. 402 

S2), with a moderate but significant modularity (Q = 0.216, p = 0.0021). These 6 communities were 403 

poorly related to the two-community division of the bacterioplankton network obtained by running the 404 

community-search algorithm on the whole network (results not shown). 405 

 406 



Congruence of classifications 407 

The communities found in the whole network were highly congruent with sample type 408 

(bacterioplankton vs. gut microbiota; NMI = 0.806, p < 10
-4

; Figs. 1 and 3a), moderately congruent 409 

with diet (Scenedesmus vs. Microcystis diets; NMI = 0.096, p = 0.0163; Fig. 3b) and not congruent 410 

with Daphnia genotype (NMI = 0.025, p = 0.9377; Fig. 3b). 411 

 412 

Fig. 3 – Alluvial plots representing the congruence of community-based classification of the whole 413 

network (comprising both gut microbiota and bacterioplankton samples) found by the leading-414 

eigenvector algorithm and other classifications based on treatments. Vertically stacked white solid 415 

boxes represent groups of nodes following a given classification; grey flows represent the 416 

correspondence of nodes between classifications, with larger flows indicating more nodes shared by 417 

the two groups linked by the flow. (a) Congruence between communities and the type of microbiota 418 

sample (gut microbiota, “Gut”, and bacterioplankton, “BPK”). (b) Congruence between communities 419 

and the two treatment factors, diet (on the left-hand side; Scenedesmus diet, S, and mixed Microcystis 420 

and Scenedesmus diet, M) and Daphnia genotype (on the right-hand side; nine different genotypes 421 

indicated by different codes). 422 

 423 

Communities found in the two sub-networks based on different types of samples were moderately, but 424 

not significantly, congruent with one another (NMI = 0.335, p = 0.0551; Fig. 4a). The communities of 425 

both sub-networks were significantly congruent with diet (gut microbiota: NMI = 0.212, p = 0.0009; 426 

bacterioplankton: NMI = 0.439, p = 0.0004; Fig. 4b-c), but not with Daphnia genotype (gut 427 

microbiota: NMI = 0.462, p = 0.0543; bacterioplankton: NMI = 0.288, p = 0.2025; Fig. 4b-c), 428 

although visual inspection of Fig. 4c suggests a weak association between bacterioplankton-based 429 



communities and genotype (communities 2 and 6 could be associated with some genotypes). Because 430 

we intuitively expected Daphnia genotypes to affect associations only after sample type and diet, we 431 

checked the congruence between communities found in the four sub-networks corresponding to 432 

treatments (diet [Scenedesmus vs. Microcystis] crossed with sample type [gut microbiota vs. 433 

bacterioplankton]). The Microcystis × gut microbiota sub-network was the only one to be significantly 434 

modular and for which communities were significantly congruent with Daphnia genotypes (Supp. 435 

Table S1). 436 

 437 

Fig. 4 – Alluvial plots representing the congruence of community-based classifications of the two 438 

different microbiota networks, based on gut microbiota or bacterioplankton samples, found by the 439 

leading-eigenvector algorithm and other classifications based on treatments. (a) Congruence between 440 

communities among gut microbiota samples (left-hand side) and those found among bacterioplankton 441 

samples (right-hand side). The numbers of communities do not exactly correspond to those found by 442 

the algorithm (respectively, 16 and 6) because some communities only comprise microbial ASV 443 

nodes, not Daphnia population nodes. (b) Congruence between gut microbiota-based communities and 444 

the two treatment factors, diet (on the left-hand side; Scenedesmus diet, S, and mixed Microcystis and 445 

Scenedesmus diet, M) and Daphnia genotype (on the right-hand side; nine different genotypes 446 



indicated by different codes).(c) Congruence between bacterioplankton-based communities and the 447 

two treatment factors, diet and genotype (as in panel b). 448 

 449 

Canonical correspondence analyses 450 

The results of CCA applied to the communities found in the whole network confirm some of the 451 

results found by congruence comparisons (Table 1). Sample type  significantly explained 452 

communities, irrespectively of whether the effects of diet, genotype, or both, were removed first 453 

(Table 1). In all cases, both types of randomization led to significant effects, thus indicating an affinity 454 

effect of sample type on network structure – remember that the three communities represented in 455 

Fig. 2 perfectly matched sample type, with two communities for bacterioplankton and one for gut 456 

microbiota samples. All effects linked to diet, although weaker than sample type effects, were found 457 

significant using both types of randomization procedures (Table 1), thus indicating a significant 458 

affinity effect of diet on communities, which thus should correspond to the division between the two 459 

bacterioplankton communities. By contrast, all assessments of Daphnia genotype effects on network 460 

structure resulted in low and not significant F-values (Table 1).  461 

 462 

Effect df χ² F Row perm. p-

value 

Edge perm. p-

value 

type 1 1.000 103.0 0.0001 0.0008 

diet 1 0.154 8.482 0.0004 0.0006 

genotype 8 0.077 0.513 0.9581 - 

type+diet 2 1.153 70.14 0.0001 0.0007 

type+genotype 9 1.070 13.16 0.0001 0.0008 

diet+genotype 9 0.233 1.494 0.1459 - 

type+diet+genotype 10 1.225 16.27 0.0001 0.0007 

type | diet+genotype 1 0.992 120.3 0.0001 0.0007 

diet | type+genotype 1 0.155 18.81 0.0002 0.0004 

genotype | type+diet 8 0.072 1.164 0.3937 - 

type | genotype 1 0.992 101.3 0.0001 0.0008 

type | diet 1 1.000 120.4 0.0001 0.0007 

diet | genotype 1 0.156 8.277 0.0008 0.0007 

diet | type 1 0.153 18.46 0.0001 0.0004 

genotype | type 8 0.070 0.954 0.5256 - 

genotype | diet 8 0.079 0.567 0.9309 - 

Table 1 – Results of the CCA applied to the whole network to explain network communities using 463 

sample type (gut microbiota vs. bacterioplankton), diet (Scenedesmus diet vs. mixed Microcystis and 464 

Scenedesmus diet), and Daphnia genotype. Effect: the explanatory effects and the conditioning ones 465 

(figured after the vertical line); df: degrees of freedom (= number of categories - 1); χ²: values of the 466 

corresponding chi squared statistic; F: values of the F-statistic; row perm. p-value: probability that a 467 



randomized version of the explained community table, once removed the effect of conditioning 468 

variables, obtains a F-statistic equal or larger to the one obtained with real data; edge perm. p-value: 469 

probability that a randomized version of the Daphnia-microbial ASV network, keeping node degrees 470 

constant, obtains a F-statistic equal or larger to the one obtained with real data. This second probability 471 

was only computed for effects that were significant for the first test. 472 

 473 

Focusing on the gut microbiota network, CCA confirmed that bacterioplankton-based communities did 474 

not significantly explain gut microbiota network structure (Table 2). The congruence between gut 475 

microbiota communities and diet was partially refuted by the CCA: diet effects were not significant 476 

once the effect of bacterioplankton-based communities was accounted for (effects diet | bpk and diet | 477 

bpk + genotype), and the potential effect of diet on the two other rows (effects diet and diet | genotype) 478 

was only significant for the first test, hence suggesting a weak richness effect, confounded with 479 

potential effects of the bacterioplankton.  480 

 481 

Effect df χ² F Row perm. p-

value 

Edge perm. p-

value 

bpk 4 1.443 0.842 0.2586 - 

diet 1 0.537 1.180 0.0052 0.1619 

genotype 8 3.262 1.088 0.0033 0.7980 

bpk+diet 5 1.829 0.878 0.2083 - 

bpk+genotype 12 4.475 1.100 0.0245 0.7888 

diet+genotype 9 3.793 1.174 0.0006 0.7699 

bpk+diet+genotype 13 4.768 1.110 0.0362 0.8182 

bpk | diet+genotype 4 0.975 0.542 0.8924 - 

diet | bpk+genotype 1 0.293 0.573 0.5367 - 

genotype | bpk+diet 8 2.939 0.949 0.0575 - 

bpk | genotype 4 1.213 0.684 0.5519 - 

bpk | diet 4 1.292 0.752 0.4722 - 

diet | genotype 1 0.531 1.131 0.0074 0.3906 

diet | bpk 1 0.386 0.818 0.2954 - 

genotype | bpk 8 3.033 0.987 0.0304 0.8112 

genotype | diet 8 3.256 1.100 0.0031 0.7983 

Table 2 – Results of the CCA applied to the gut microbiota-based network, trying to explain network 482 

communities using communities found in the bacterioplankton-based network (“bpk”), diet 483 

(Scenedesmus diet vs. mixed Microcystis and Scenedesmus diet), and Daphnia genotype. See Ttable 1 484 

caption for further details. 485 

 486 

The absence of congruence between gut microbiota communities and Daphnia genotypes, clear from 487 

NMI and alluvial plots (Fig. 4b), was somehow moderated by the CCA results: genotype had a 488 

significant effect for the first randomization procedure in all cases but the one conditioning by both 489 



diet and bacterioplankton-based communities (effect genotype | bpk+diet in Table 2). However, when 490 

the first test was significant, the second never was (Table 2), thus suggesting that some genotypes 491 

could be more likely associated with certain communities because of the number of microbial ASVs 492 

they are associated with. 493 

In the bacterioplankton network, communities were significantly explained by diet, thus confirming 494 

earlier insights from NMI and Fig. 4c (Table 3). In all cases, the effect was significant for both 495 

randomization procedures, thus suggesting an affinity effect. Although weaker (lower F statistics), the 496 

same conclusion could be reached for the effect of Daphnia genotype (Table 3), thus contradicting 497 

NMI comparisons and corroborating the hint given by Fig. 4c. In this case, an affinity effect (both tests 498 

significant) was also reported. The absence of correspondence between gut microbiota- and 499 

bacterioplankton-based communities (Fig. 4a) was confirmed by non-significant effects in CCA 500 

(effects gut, gut | diet, gut | genotype and gut | diet + genotype in Table 3). 501 

 502 

Effect df χ² F Row perm. p-

value 

Edge perm. p-

value 

gut 13 1.601 1.232 0.4527 - 

diet 1 0.573 4.643 0.0001 0.0034 

genotype 8 1.565 1.941 0.0023 0.0257 

gut+diet 14 1.993 1.563 0.1476 - 

gut+genotype 21 3.102 2.243 0.0324 0.0797 

diet+genotype 9 2.122 2.676 0.0001 0.0042 

gut+diet+genotype 22 3.485 2.772 0.0025 0.0372 

gut | diet+genotype 13 1.363 1.459 0.2845 - 

diet | gut+genotype 1 0.383 3.500 0.0006 0.0071 

genotype | gut+diet 8 1.493 2.226 0.0038 0.0152 

gut | genotype 13 1.538 1.470 0.2532 - 

gut | diet 13 1.420 1.172 0.5490 - 

diet | genotype 1 0.557 5.174 0.0001 0.0023 

diet | gut 1 0.391 3.028 0.0011 0.0083 

genotype | gut 8 1.501 2.008 0.0067 0.0253 

genotype | diet 8 1.550 2.148 0.0006 0.0150 

Table 3 – Results of the CCA applied to the bacterioplankton-based network, trying to explain 503 

network communities using communities found in the gut microbiota-based network (“gut”), diet 504 

(Scenedesmus diet vs. mixed Microcystis and Scenedesmus diet), and Daphnia genotype. See table 1 505 

caption for further details. 506 

 507 



Singular value decomposition and redundancy analyses 508 

When modelling the whole network, visual inspection of how congruent the modules obtained from 509 

the approximated networks were with those of the observed network indicated that congruence had 510 

several local maxima (Supp. Fig. S3a), while mean absolute error (MAE) declined steadily with 511 

number of vectors (Supp. Fig. S3b). The adjusted R² of individual fractions attributable to sample type 512 

or diet also declined with the number of vectors, while the fraction attributable to genotype had a 513 

maximum at 13 vectors (Supp. Fig. S4). Because the first maximum of NMI was found with three 514 

vectors, we present all RDA results on the whole network using three vectors only. However, given 515 

the patterns reported in Supp. Fig. S4, we also checked robustness with different number of vectors (5, 516 

13, and 100; Supp. Tables S2-S4). 517 

 518 

 519 

Fig. 5 – Venn diagrams representing the partition of variation (redundancy analysis, RDA) within the 520 

reduced matrices obtained by singular value decomposition (SVD) of incidence matrices (SVD-RDA 521 

method in Fig. 1). Fractions [a], [b], … [g] indicate the same fractions as those found in Tables 4-6. 522 

Given values are non-negative adjusted R² (negative adjusted R² are omitted for clarity) of individual 523 



fractions (i.e. [a] for Type, not [adfg]), all adjusted R² are given in Tables 4-6. Tested factors 524 

comprise: “type”, the type of microbiota sample (bacterioplankton vs. gut microbiota); “diet”, the diet 525 

treatment (Scenedesmus vs. Microcystis); “genotype”, the genotype of Daphnia populations; “BPK”, 526 

reduced matrix obtained from applying the SVD on the bacterioplankton-based incidence matrix; 527 

“Gut”, reduced matrix obtained from applying the SVD on the gut microbiota-based incidence matrix. 528 

SVD-reduced matrices comprise different numbers of vectors (see main text for details). (a) Results of 529 

the RDA applied to the whole network comprising both gut microbiota and bacterioplankton samples. 530 

(b) Results of the RDA applied to the gut microbiota-based network. (c) Results of the RDA applied to 531 

the bacterioplankton-based network. 532 

 533 

Fraction Effect df adjusted R²  Row perm. 

p-value 

Edge perm. 

p-value 

[adfg] type 1 0.52 0.0001 0.0002 

[bdeg] diet 1 0.13 0.0001 0.0001 

[cefg] genotype 8 -0.03 0.8997 - 

[abdefg] type+diet 2 0.66 0.0001 0.0001 

[acdefg] type+genotype 9 0.53 0.0001 0.0002 

[bcdefg] diet+genotype 9 0.11 0.0011 0.0002 

[abcdefg] type+diet+genotype 10 0.67 0.0001 0.0001 

[a] type | diet+genotype 1 0.57 0.0001 0.0002 

[b] diet | type+genotype 1 0.15 0.0001 0.0001 

[c] genotype | type+diet 8 0.02 0.0822 - 

[d] - - -0.01 - 0.9997 

[e] - - -0.01 - 1.0000 

[f] - - -0.04 - 0.9960 

[g] - - 0.00 - 0.0060 

[h] residuals - 0.33 - - 

[ad] type | genotype 1 0.56 0.0001 0.0002 

[af] type | diet 1 0.53 0.0001 0.0002 

[bd] diet | genotype 1 0.14 0.0001 0.0001 

[be] diet | type 1 0.14 0.0001 0.0001 

[ce] genotype | type 8 0.01 0.3185 - 

[cf] genotype | diet 8 -0.02 0.8218 - 

Table 4 – Results of the RDA-SVD applied to the whole network with the first three vectors retained, 534 

to explain network communities using sample type (gut microbiota vs. bacterioplankton), diet 535 

(Scenedesmus diet vs. mixed Microcystis and Scenedesmus diet), and Daphnia genotype. Fraction: 536 

symbolic representation of the components of variations explained by the different factors  as 537 

represented in Fig. 5; Effect: the explanatory effects and the conditioning ones (figured after the 538 

vertical line); df: degrees of freedom of the explanatory variables; R²: values of the corresponding 539 

coefficient of determination (expressed in percentage); adjusted R²: R² values corrected for the number 540 

of degrees of freedom; row perm. p-value: probability that a randomized version of the explained 541 

community table, once removed the effect of conditioning variables, obtains an adjusted R² equal or 542 

larger to the one obtained with real data; edge perm. p-value: probability that a randomized version of 543 

the Daphnia-microbial ASV network, keeping node degrees constant, obtains an adjusted R² equal or 544 

larger than the one obtained with real data. Dashes indicate values that cannot be computed and/or that 545 

cannot be tested. 546 

 547 



Sample type (gut microbiota vs. bacterioplankton) explained 57% of the sum of squares on its own 548 

(Fig. 5, Table 4). Diet explained 15% and genotype, 2% (Fig. 5). Type and diet had doubly significant 549 

effects, whereas genotype effect was not significant at all (Table 4). However, testing with different 550 

numbers of vectors yielded contrasted results for the effect of genotype, since all factors (diet, type 551 

and genotype) had doubly significant effects when considering approximations of 5, 13 or 100 vectors 552 

(Supp. Tables S2-S4). This suggests that all tested factors play a role in shaping the network, with 553 

different affinities between Daphnia and their microbes depending on their diet, their genotype and 554 

where the microbes are actually sampled, but the effect of genotype could only be detected by using 555 

sufficiently detailed approximations. In other words, Daphnia genotype determines whether a given 556 

Daphnia population is likely to associate with certain microbial species rather than others within the 557 

same community (Supp. Tables S2-S4), but not whether the same Daphnia population is more likely 558 

to associate with microbes from a given community rather than from another one (Table 1). 559 

In the gut microbiota network, the MAE of the approximated network steadily decreased with the 560 

number of retained vectors (Supp. Fig. S5b) while congruence between its communities and those of 561 

the original network displayed several local maxima between ca. 5 and 30 vectors (Supp. Fig. S5a). As 562 

the first important local NMI maximum was found for 10 retained vectors, we present all RDA results 563 

on gut microbiota using the first 10 columns of approximation (3). However, robustness checks were 564 

also performed using 30 vectors (Supp. Table S5). 565 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] bpk 9 0.27 0.0001 0.0001 

[bdeg] diet 1 0.05 0.0001 0.0004 

[cefg] genotype 8 0.18 0.0001 0.0001 

[abdefg] bpk+diet 10 0.27 0.0001 0.0001 

[acdefg] bpk+genotype 17 0.35 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.24 0.0001 0.0001 

[abcdefg] bpk+diet+genotype 18 0.38 0.0001 0.0001 

[a] bpk | diet+genotype 9 0.14 0.0009 0.0188 

[b] diet | bpk+genotype 1 0.02 0.0299 0.1160 

[c] genotype | bpk+diet 8 0.10 0.0002 0.0084 

[d] - - 0.04 - 0.0006 

[e] - - -0.01 - 0.7075 

[f] - - 0.09 - 0.0007 

[g] - - 0.00 - 0.7983 

[h] residuals - 0.62 - - 

[ad] bpk | genotype 9 0.18 0.0001 0.0002 



[af] bpk | diet 9 0.22 0.0001 0.0001 

[bd] diet | genotype 1 0.06 0.0001 0.0002 

[be] diet | bpk 1 0.01 0.1569 - 

[ce] genotype | bpk 8 0.09 0.0015 0.0106 

[cf] genotype | diet 8 0.19 0.0001 0.0000 

Table 5 – Results of the redundancy analysis / singular value decomposition (RDA-SVD) analysis 566 

applied to the gut microbiota-based network with the first 10 vectors retained, trying to explain 567 

network communities using the SVD-reduced matrix for the bacterioplankton network (“bpk”, with 9 568 

vectors chosen using the forward selection procedure of Blanchet et al. 2008), diet (Scenedesmus diet 569 

vs. mixed Microcystis and Scenedesmus diet), and Daphnia genotype. See table 4 caption for further 570 

details. 571 

 572 

Both bacterioplankton network structure (here summarized using 9 vectors among the first 30, 573 

following the procedure of Blanchet et al. 2008) and Daphnia genotype had doubly significant effects 574 

in all tested models (Table 5), indicating affinity effects of bacterioplankton and genotype. The effect 575 

of diet was weaker (adj. R² = 2%), significant against the other two effects together (effect: diet | 576 

bpk+genotype, Table 5), and yet failed to reach significance when conditioning for bacterioplankton 577 

only (effect: diet | bpk, Table 5). Because the diet | bpk+genotype effect was not significant for the 578 

second tests suggests that the weak effect of diet on gut microbiota network structure is only a richness 579 

effect. Using the first 30 vectors (instead of 10) of the approximation of the gut microbiota incidence 580 

matrix yielded relatively similar results, with the exception of a consistently significant richness effect 581 

of diet (Supp. Table S5). 582 

 583 

In the bacterioplankton network, the approximation of the network by SVD displayed steadily 584 

decreasing MAE with the number of retained vectors (Supp. Fig. S6b) and multiple local maxima for 585 

the NMI between communities of the original and approximated networks were found (Supp. Fig. 6a). 586 

A first local maximum NMI was obtained for 11 retained vectors, which we used in the ensuing RDA. 587 

We also checked the robustness of RDA results using the first 30 vectors (Supp. Table S6). 588 

All effects could be interpreted as affinity effects since both tests proved significant (Table 6). Thus, 589 

communities of the gut microbiota network, diet and genotype had an affinity effect on the structure of 590 

bacterioplankton communities. When taking into accounts 30 vectors of the approximation of the 591 

bacterioplankton network, the effect of the gut microbiota network was only significant when tested 592 



against one other factor, and not when conditioned by both diet and genotype (Supp. Table S6), but 593 

this was obtained with a forward selection procedure opting for retaining only one vector from the gut 594 

microbiota matrix. This suggests that the correspondence between both network structures might be 595 

restricted to relatively fine scales. 596 

 597 

 598 

 599 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] gut 7 0.22 0.0001 0.0001 

[bdeg] diet 1 0.10 0.0001 0.0001 

[cefg] genotype 8 0.23 0.0001 0.0001 

[abdefg] gut+diet 8 0.27 0.0001 0.0001 

[acdefg] gut+genotype 15 0.36 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.36 0.0001 0.0001 

[abcdefg] gut+diet+genotype 16 0.42 0.0001 0.0001 

[a] gut | diet+genotype 7 0.07 0.0084 0.0025 

[b] diet | gut+genotype 1 0.06 0.0001 0.0001 

[c] genotype | gut+diet 8 0.15 0.0001 0.0001 

[d] - - 0.06 - 0.0006 

[e] - - -0.01 - 0.9491 

[f] - - 0.10 - 0.0001 

[g] - - -0.01 - 0.9795 

[h] residuals - 0.58 - - 

[ad] gut | genotype 7 0.13 0.0001 0.0001 

[af] gut | diet 7 0.17 0.0001 0.0001 

[bd] diet | genotype 1 0.12 0.0001 0.0001 

[be] diet | gut 1 0.05 0.0002 0.0001 

[ce] genotype | gut 8 0.14 0.0001 0.0001 

[cf] genotype | diet 8 0.26 0.0001 0.0001 

Table 6 – Results of the redundancy analysis / singular value decomposition (RDA-SVD) analysis 600 

applied to the bacterioplankton-based network with the first 11 vectors retained, trying to explain 601 

network communities using the SVD-reduced matrix for the gut microbiota network (“gut” ”, with 7 602 

vectors chosen using the forward selection procedure of Blanchet et al. 2008), diet (Scenedesmus diet 603 

vs. mixed Microcystis and Scenedesmus diet), and Daphnia genotype. See table 4 caption for further 604 

details. 605 

 606 

607 



Discussion 608 

The methodological framework we propose was successfully applied to results of an experiment 609 

aimed at uncovering the potential reciprocal effects of Daphnia gut microbiota and bacterioplankton in 610 

the face of diets of heterogeneous edibility. In an earlier study (Macke et al., 2020), we suggested that 611 

the gut microbiome was different from the surrounding bacterioplankton and that both microbial pools 612 

showed a dependency on Daphnia genotype and diet, on the basis of statistical analyses (GLM, 613 

PERMANOVA, Mantel tests) performed directly on the taxonomic composition and relative 614 

abundances of microbial samples. The present study confirms the difference between the two sample 615 

types (Figs. 2-3, Tables 1 and 4), but clarifies their dependency on diet and genotype.  616 

 617 

The gut microbiota evinced a very low non-significant modularity, with communities only mildly 618 

matching diet and genotype (Fig. 4, Table 2). However, delving more into the details of the gut 619 

microbiota structure using the SVD approximation highlighted affinity effects of all tested components 620 

(bacterioplankton network structure, Daphnia genotype and diet; Table 5), thus suggesting that the 621 

dependencies found in our earlier study depend on relatively fine-grained structures (non-systematic 622 

associations of very few bacterial ASVs with certain Daphnia populations), and not on mesoscale 623 

structures such as network communities. This was confirmed by analyzing communities within the 624 

sub-networks corresponding to diet and sample type, with the Microcystis × gut microbiota sub-625 

network being significantly modular and congruent with the classification by Daphnia genotypes 626 

(Supp. Table S1). The bacterioplankton communities matched diet well, with an affinity of certain 627 

bacterioplankton species for one diet over another (Fig. 4). The CCA also suggested an affinity effect 628 

due to Daphnia genotype (Table 3), and both effects were further confirmed by the RDA-SVD method 629 

(Table 6). The absence of correspondence between gut microbiota and bacterioplankton communities 630 

(Fig. 4a) was confirmed by CCAs (Tables 2 and 3), but a reciprocal affinity effect was evinced at finer 631 

scales through RDA-SVD (Tables 5 and 6), with a stronger effect of bacterioplankton on gut 632 

microbiota than the reverse, thus suggesting that the exact association of Daphnia populations with 633 

their gut microbes within certain communities (selected by diet and genotype) might be partially 634 



determined by the surrounding bacterioplankton, itself partially shaped by Daphnia genotype and diet. 635 

Overall, present results are coherent with those of our earlier studies, but could pinpoint differences in 636 

effect size due to differences in considered grain, especially when varying the number of vectors 637 

retained for the RDA-SVD approach (Table 4 vs. Supp. Tables S2-S4, Table 5 vs. Supp. Table S5, 638 

Table 6 vs. Supp. Table S6). 639 

 640 

In methodological terms, our approach has several advantages over existing methods. First, working 641 

on approximations of the network rather than on the network directly circumvented the problem of 642 

node degree dependency on one another. This is a serious issue with methods based e.g. on 643 

generalized linear model directly explaining interaction or interaction strength based on node 644 

properties (e.g. Gravel et al., 2019). Such limitations can also be partially removed by using node-wise 645 

random effects to account for heterogeneity in node degrees (e.g. de Manincor et al., in press). Second, 646 

the approximation-based nature of the methods we propose allows an assessment of effects acting at 647 

different network scales, from community scale down to finer ones. Although communities do 648 

represent informative structures to understand networks, there are indeed limits to what they can 649 

capture, in particular due to theoretical resolution limits (Fortunato & Barthélemy, 2007) and to nodes 650 

belonging to multiple communities (Palla et al., 2005). Current block model approaches also allow the 651 

incorporation of external variables (Leger, 2016), and could thus theoretically be used to decipher 652 

effects acting within and among communities. However, these approaches only consider external 653 

variables assigned to dyads (i.e. pairs of nodes), thus preventing the assessment of effects linked to 654 

e.g. Daphnia genotype in the present study. Finally, one major advantage of our method is that it is not 655 

computationally as extensive as the other approaches able to both measure the effect of external 656 

variables on networks and account for intrinsic dependencies within networks (e.g. exponential 657 

random graph models, latent block models with covariates, or Bayesian structural equation models).  658 

 659 

The approaches we advocated in the present study can possibly be extended in various ways. One 660 

major extension is to allow the use of weighted incidence matrices. To do so, at least two issues need 661 



to be dealt with. First, the congruence and CCA approach is based on network communities. 662 

Following Leger et al. (2015), communities should be discovered using latent block modelling (LBM), 663 

which takes us back to the computation time problem – LBMs are known to be notoriously long to 664 

obtain (see computation times given by Leger et al. 2015), and thus might be temporarily unsuitable 665 

for large datasets such as host-microbial ASVs association networks. Second, the ‘curveball’ 666 

algorithm used for the second test does not have an equivalent for weighted networks. There, the 667 

challenge lies in finding a null model randomizing edge among nodes while both keeping total weights 668 

and number of non-zero weights per node constant. R method ‘quasiswap_count’ in the ‘vegan’ 669 

function ‘commsim’ and the ‘swap.web’ function in package ‘bipartite’ propose potential algorithms 670 

for this, but do not guarantee uniformity of the space of sampled matrices. 671 

 672 

The present methodological framework can allow other types of network approximations. For 673 

instance, using normalized role vectors obtained from the decomposition of node positions within 674 

motifs, as advocated by Simmons et al. (2019), might provide another entry point into the structure of 675 

networks. However, contrary to community memberships or SVD vectors, role vectors are not 676 

orthogonal (i.e. there are correlations between positions obtained from motifs of different sizes), which 677 

has to be accounted for in order to develop a useful statistical approach based on these vectors, 678 

probably by filtering role vector correlations through principal component analysis or similar 679 

approaches. Another possibility is to modify the SVD approximation by working on the Laplacian of 680 

the adjacency matrix (Griffith & Li, 2017), or a simple transformation of the Laplacian such as the one 681 

used for Moran Eigenvector Maps [MEM] (Dray, Legendre & Peres-Neto, 2006). Eigenvectors 682 

obtained by such methods have more direct interpretations than those obtained by SVD of the 683 

incidence matrix – the value of MEM eigenvectors, for instance, change more or less rapidly from one 684 

node to the next depending on their associated eigenvalues (Thioulouse, Chessel & Champely, 1995; 685 

but this is not true of the eigenvectors of Laplacian matrices, see Griffith & Li, 2017). However, 686 

Laplacian matrices assume that each node’s degree is known a priori and MEM make heavy use of 687 

weights associated to edges in the network – two assumptions that the SVD does not make.  688 



 689 

The “analysis” step of Fig. 1 can also be modified. We chose to use classic multivariate analyses 690 

(RDA and CCA); RDA and CCA, however, are implicitly based on Euclidean and Chi-square 691 

distances between data points, respectively. Other distances can be used following the distance-based 692 

RDA (db-RDA) framework established by Legendre & Gallagher (2001) and extended by Blanchet et 693 

al. (2014). Because the SVD approach provides an approximation of the network as a matrix of real 694 

values (the L matrix), it does not suffer from the ‘double zero’ issue which classically affects distances 695 

computed on species presence/absence or abundance tables (Legendre & Legendre, 2012), and thus 696 

can safely be analyzed using most distance functions. By contrast, the community-detection approach 697 

provides a binary membership matrix suffering from the ‘double zero’ issue, which calls for a careful 698 

choice of distance to perform db-RDA. Ideally, a consensus approach based on a variety of db-RDA 699 

analyses (as advocated by Blanchet et al., 2014) could lead to a more complete picture for both the 700 

community-detection and SVD approximations, provided one focuses more on checking the 701 

agreement of fraction tests than on finding which db-RDA provides the highest values for explained 702 

sum-of-squared distances. We compared the CCA approach performed on the whole network with a 703 

Jaccard distance-based-RDA. This analysis recovered results qualitatively similar to those obtained in 704 

Table 1 (results not shown). However, the current implementation of db-RDA in the R package 705 

‘vegan’ is quite slower than that of CCA, which prevents the use of the consensus approach when 706 

combined with the double randomization tests. An efficient possibility for using such an alternative 707 

approach is given by performing RDA on pre-transformed data, using function ‘decostand’ in the R 708 

package ‘vegan’. This does not allow all the variety offered by db-RDA but nonetheless offers a few 709 

alternatives to the two paths presented here. 710 

 711 

Finally, both the RDA and CCA approaches can be improved in the context of observational studies 712 

(i.e. when external variables are not controlled) by embedding these analyses into a Structural 713 

Equation Modelling (SEM) framework. Such an extension is way beyond the scope of this study, as no 714 

implementation of such a hybrid model exists yet, but this could arguably help decipher the complex 715 



interactions between considered variables. For instance, when some variables have been measured 716 

together with assessments of one or more networks, embedding an RDA into a SEM might allow 717 

assessments of common causal pathways (X affecting network A and network B), indirect causal 718 

relationships (X affecting network A, in turn affecting network B) and other complex causal pathways 719 

within a large subset of potential causal models. Combined with the variable-scale property of the 720 

SVD-RDA approach proposed here, this embedding of the RDA into an SEM might ultimately lead to 721 

a finer assessment of possible causal relationships among networks and external variables at different 722 

network scales. 723 
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Supplementary Figures and Tables 945 

 946 

Supp. Fig. S1 – Result of the community search within the “gut microbiota network” (52 gut 947 

microbiota samples × 768 microbial ASVs). The leading-eigenvector modularity optimization 948 

algorithm evinced 16 communities, here represented by the gray lines dividing columns and rows of 949 

the incidence matrix, with dots representing existing interactions.  950 

 951 

 952 

Supp. Fig. S2 – Result of the community search within the “bacterioplankton network” (52 953 

bacterioplankton samples × 1061 microbial ASVs). The leading-eigenvector modularity optimization 954 

algorithm evinced 6 communities, here represented by the gray lines dividing columns and rows of the 955 

incidence matrix, with dots representing existing interactions.  956 

 957 



 958 

Supp. Fig. S3 – Measures of the fit of the approximation given by equation (3) for the whole network. 959 

(a) Normalized Mutual Information index (NMI) measuring the congruence between the communities 960 

given to Daphnia populations (the host nodes) in the original network and the approximated network, 961 

as a function of the number of vectors retained in the approximation of equation (3). Approximated 962 

networks were obtained using a threshold on L.R values optimizing the sum of sensitivity and 963 

specificity, as described in the Materials & Methods. (b) Mean absolute error (MAE) for 964 

approximation (3) as a function of the number of vectors retained in the approximation of equation (3). 965 

The MAE was obtained as 
,

1
ij ik jk

i j k

b l r
np

  , where B is the original n × p incidence matrix, L and 966 

R are the components of equation (3) and the index k is only allowed to vary up to the number of 967 

vectors retained. 968 

 969 



 970 

Supp. Fig. S4 – Variation of the adjusted R² attributable to individual fractions [a] (effect: type | diet + 971 

genotype), [b] (effect: diet | type + genotype) and [c] (effect: genotype | type + diet) of the RDA 972 

applied to the whole network, as functions of the number of SVD vectors retained when 973 

approximating the incidence matrix of the network (here, varied between 3 and 100 vectors). Fractions 974 

[d]-[g] are omitted because they should be negative by definition, since all explanatory factors have 975 

been varied independently (and hence non-adjusted R² attributable to two factors at the same time 976 

should all be zero, see Table 4). 977 

978 



 979 

Supp. Fig. S5 – Measures of the fit of the approximation given by equation (3) for the gut microbiota 980 

network. (a) Normalized Mutual Information index (NMI) measuring the congruence between the 981 

communities given to Daphnia populations (the host nodes) in the original network and the 982 

approximated network, as a function of the number of vectors retained in the approximation of 983 

equation (3). Approximated networks were obtained using a threshold on L.R values optimizing the 984 

sum of sensitivity and specificity, as described in the Materials & Methods. (b) Mean absolute error 985 

(MAE) for approximation (3) as a function of the number of vectors retained in the approximation of 986 

equation (3). Further details in the caption of Supp. Fig. S3. 987 

 988 

 989 

Supp. Fig. S6 – Measures of the fit of the approximation given by equation (3) for the 990 

bacterioplankton network. (a) Normalized Mutual Information index (NMI) measuring the congruence 991 

between the communities given to Daphnia populations (the host nodes) in the original network and 992 

the approximated network, as a function of the number of vectors retained in the approximation of 993 

equation (3). Approximated networks were obtained using a threshold on L.R values optimizing the 994 

sum of sensitivity and specificity, as described in the Materials & Methods. (b) Mean absolute error 995 

(MAE) for approximation (3) as a function of the number of vectors retained in the approximation of 996 

equation (3). Further details in the caption of Supp. Fig. S3. 997 

998 



 999 

Sub-network Modularity # modules Mod. p-value NMI NMI p-value 

gut microbiota × M 0.333 16 0.0481 0.807 0.0001 

gut microbiota × S 0.299 13 0.3621 0.610 0.2964 

bacterioplankton × M 0.238 7 0.5327 0.502 0.5003 

bacterioplankton × S 0.184 2 0.3892 0.172 0.9324 

Supplementary Table S1 – Community search and congruence of communities with Daphnia 1000 

genotypes within each of the four sub-networks defined by treatment, i.e. for each of the combination 1001 

of sample type (gut microbiota vs. bacterioplankton) and each of the diet (Scenedesmus [S] vs. 1002 

Microcystis [M]). Modularity: modularity score obtained for this sub-network; # modules: number of 1003 

communities maximizing modularity; mod. p-value: p-value of the edge randomization test for 1004 

modularity; NMI: normalized mutual information index obtained by comparing the classification by 1005 

communities and the classification by genotypes; NMI p-value: p-value of the edge randomization test 1006 

for NMI. 1007 

1008 



 1009 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] type 1 0.32 0.0001
 

0.0002 

[bdeg] diet 1 0.11 0.0001 0.0001 

[cefg] genotype 8 0.08 0.0004 0.0003 

[abdefg] type+diet 2 0.43 0.0001 0.0001 

[acdefg] type+genotype 9 0.42 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.21 0.0001 0.0001 

[abcdefg] type+diet+genotype 10 0.55 0.0001
 

0.0001 

[a] type | diet+genotype 1 0.35 0.0001 0.0002 

[b] diet | type+genotype 1 0.13 0.0001 0.0001 

[c] genotype | type+diet 8 0.12 0.0001 0.0003 

[d] - - -0.01 - 0.9991 

[e] - - -0.01 - 1.0000 

[f] - - -0.03 - 0.9984 

[g] - - 0.00 - 0.0010 

[h] residuals - 0.45 - - 

[ad] type | genotype 1 0.34 0.0001 0.0002
 

[af] type | diet 1 0.32 0.0001 0.0002
 

[bd] diet | genotype 1 0.12 0.0001 0.0001 

[be] diet | type 1 0.12 0.0001 0.0001 

[ce] genotype | type 8 0.11 0.0001 0.0004 

[cf] genotype | diet 8 0.09 0.0003 0.0003 

Supplementary Table S2 – Results of the redundancy analysis / singular value decomposition (RDA-1010 

SVD, with the first five vectors retained) analysis applied to the whole network (comprising both gut 1011 

microbiota and bacterioplankton samples), trying to explain network communities using sample type 1012 

(gut microbiota vs. bacterioplankton), diet (Scenedesmus diet vs. mixed Microcystis and Scenedesmus 1013 

diet), and Daphnia genotype. All else as in Table 4. 1014 

1015 



 1016 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] type 1 0.14 0.0001 0.0002 

[bdeg] diet 1 0.05 0.0001 0.0001 

[cefg] genotype 8 0.14 0.0001 0.0001 

[abdefg] type+diet 2 0.19 0.0001 0.0001 

[acdefg] type+genotype 9 0.29 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.20 0.0001 0.0001 

[abcdefg] type+diet+genotype 10 0.35 0.0001
 

0.0001 

[a] type | diet+genotype 1 0.15 0.0001 0.0002 

[b] diet | type+genotype 1 0.06 0.0001 0.0001 

[c] genotype | type+diet 8 0.16 0.0001 0.0001 

[d] - - 0.00 - 0.9993 

[e] - - -0.01 - 1.0000 

[f] - - -0.01 - 0.9999 

[g] - - 0.00 - 0.0007 

[h] residuals - 0.65 - - 

[ad] type | genotype 1 0.15 0.0001 0.0002 

[af] type | diet 1 0.14 0.0001 0.0002 

[bd] diet | genotype 1 0.06 0.0001 0.0001 

[be] diet | type 1 0.06 0.0001 0.0001 

[ce] genotype | type 8 0.15 0.0001 0.0001 

[cf] genotype | diet 8 0.14 0.0001 0.0001 

Supplementary Table S3 – Results of the redundancy analysis / singular value decomposition (RDA-1017 

SVD, with the first 13 vectors retained) analysis applied to the whole network (comprising both gut 1018 

microbiota and bacterioplankton samples), trying to explain network communities using sample type 1019 

(gut microbiota vs. bacterioplankton), diet (Scenedesmus diet vs. mixed Microcystis and Scenedesmus 1020 

diet), and Daphnia genotype. All else as in Table 4. 1021 

 1022 

1023 



 1024 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] type 1 0.02 0.0001 0.0001 

[bdeg] diet 1 0.01 0.0001 0.0001 

[cefg] genotype 8 0.02 0.0001 0.0001 

[abdefg] type+diet 2 0.03 0.0001 0.0001 

[acdefg] type+genotype 9 0.05 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.03 0.0001 0.0001 

[abcdefg] type+diet+genotype 10 0.06 0.0001 0.0001 

[a] type | diet+genotype 1 0.03 0.0001 0.0001 

[b] diet | type+genotype 1 0.01 0.0001 0.0001 

[c] genotype | type+diet 8 0.02 0.0001 0.0001 

[d] - - 0.00 - 1.0000 

[e] - - 0.00 - 1.0000 

[f] - - 0.00 - 1.0000 

[g] - - 0.00 - 0.0007 

[h] residuals - 0.94 - - 

[ad] type | genotype 1 0.03 0.0001 0.0001 

[af] type | diet 1 0.02 0.0001 0.0001 

[bd] diet | genotype 1 0.01 0.0001 0.0001 

[be] diet | type 1 0.01 0.0001 0.0001 

[ce] genotype | type 8 0.02 0.0001 0.0001 

[cf] genotype | diet 8 0.02 0.0001 0.0001 

Supplementary Table S4 – Results of the redundancy analysis / singular value decomposition (RDA-1025 

SVD, with the first 100 vectors retained) analysis applied to the whole network (comprising both gut 1026 

microbiota and bacterioplankton samples), trying to explain network communities using sample type 1027 

(gut microbiota vs. bacterioplankton), diet (Scenedesmus diet vs. mixed Microcystis and Scenedesmus 1028 

diet), and Daphnia genotype. All else as in Table 4. 1029 

 1030 

1031 



 1032 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] bpk 6 0.06 0.0001 0.0001 

[bdeg] diet 1 0.02 0.0001 0.0001 

[cefg] genotype 8 0.08 0.0001 0.0001 

[abdefg] bpk+diet 7 0.07 0.0001 0.0001 

[acdefg] bpk+genotype 14 0.14 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.10 0.0001 0.0001 

[abcdefg] bpk+diet+genotype 15 0.15 0.0001 0.0001 

[a] bpk | diet+genotype 6 0.05 0.0020 0.0054 

[b] diet | bpk+genotype 1 0.01 0.0391 0.0751 

[c] genotype | bpk+diet 8 0.08 0.0001 0.0001 

[d] - - 0.01 - 0.0032 

[e] - - 0.00 - 0.1652 

[f] - - 0.01 - 0.0165 

[g] - - 0.00 - 0.9819 

[h] residuals - 0.85 - - 

[ad] bpk | genotype 6 0.05 0.0001 0.0001 

[af] bpk | diet 6 0.05 0.0002 0.0001 

[bd] diet | genotype 1 0.02 0.0002 0.0001 

[be] diet | bpk 1 0.01 0.0105 0.0021 

[ce] genotype | bpk 8 0.08 0.0001 0.0001 

[cf] genotype | diet 8 0.09 0.0001 0.0001 

Supplementary Table S5 – Results of the redundancy analysis / singular value decomposition (RDA-1033 

SVD, with the first 30 vectors retained) analysis applied to the gut microbiota-based network, trying to 1034 

explain network communities using the SVD-reduced matrix for the bacterioplankton network (“bpk”, 1035 

forward selection of 6 vectors), diet (Scenedesmus diet vs. mixed Microcystis and Scenedesmus diet), 1036 

and Daphnia genotype. All else as in Table 5. 1037 

 1038 

 1039 

1040 



 1041 

Fraction Effect df adjusted 

R² 

Row perm. p-

value 

Edge perm. p-

value 

[adfg] gut 1 0.02 0.0001 0.0001 

[bdeg] diet 1 0.03 0.0001 0.0001 

[cefg] genotype 8 0.09 0.0001 0.0001 

[abdefg] gut+diet 2 0.05 0.0001 0.0001 

[acdefg] gut+genotype 9 0.11 0.0001 0.0001 

[bcdefg] diet+genotype 9 0.13 0.0001 0.0001 

[abcdefg] gut+diet+genotype 10 0.13 0.0001 0.0001 

[a] gut | diet+genotype 1 0.00 0.2973 - 

[b] diet | gut+genotype 1 0.03 0.0001 0.0001 

[c] genotype | gut+diet 8 0.09 0.0001 0.0001 

[d] - - 0.01 - 0.0001 

[e] - - 0.00 - 0.9175 

[f] - - 0.01 - 0.0016 

[g] - - -0.01 - 0.9988 

[h] residuals - 0.87 - - 

[ad] gut | genotype 1 0.01 0.0038 0.0002 

[af] gut | diet 1 0.01 0.0001 0.0024 

[bd] diet | genotype 1 0.04 0.0001 0.0001 

[be] diet | gut 1 0.03 0.0001 0.0001 

[ce] genotype | gut 8 0.09 0.0001 0.0001 

[cf] genotype | diet 8 0.10 0.0001 0.0001 

Supplementary Table S6 – Results of the redundancy analysis / singular value decomposition (RDA-1042 

SVD, with the first 30 vectors retained) analysis applied to the bacterioplankton-based network, trying 1043 

to explain network communities using the SVD-reduced matrix for the gut microbiota network (“gut” 1044 

forward selection of 1 vector), diet (Scenedesmus diet vs. mixed Microcystis and Scenedesmus diet), 1045 

and Daphnia genotype. All else as in Table 6. 1046 

 1047 


