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eer Community In

Introduction

One of the main goals of community ecology is to understand the determinants of
species diversity at different spatial scales. Based on the inspiring work of Skellam
(1952), Preston (1962), MacArthur & Wilson (1967) and Shmida & Wilson (1985),
metacommunity theory has emerged as a strong framework to investigate the spatial
distribution of species and the dynamics of spatially structured ecosystems (Leibold
et al. 2004, Loreau & Holt 2004 ; Massol et al. 2011, Guichard 2017). Metacommunity
theory has been originally proposed to revolve around four main paradigms
explaining the coexistence of species on patchy habitat landscapes (Leibold et al.
2004, Shoemaker & Melbourne 2016, Fournier et al. 2017; but see also criticism of
Brown et al. 2017}, which can be better understood as “templates” or typical cases in
which a few processes dominate metacommunity assembly and functioning. The
patch-dynamic paradigm focuses on the processes of competition, colonization and
extinction in networks of patches that can be released due to intrinsic or extrinsic
causes. In this paradigm, a particular emphasis is put on trade-offs to explain species
coexistence at a large spatial scale, e.g. through the competition-colonization trade-
off (Hastings 1980, Tilman 1994, Calcagno et al. 2006) or the tolerance-competition
trade-off (Muller-Landau 2010, Haegeman et al. 2013). The species-sorting paradigm
focuses on the differential responses of species, in terms of vital rates and biotic
interactions, to environmental heterogeneity across the landscape to explain large-
scale and local coexistence as the result of environmental filters and local adaptation
(Chase & Leibold 2003). The mass-effect paradigm focuses on source-sink dynamics
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among communities, with species potentially coexisting in patches where they are
maladapted due to the important influx of dispersing individuals (Amarasekare &
Nisbet 2001, Mouquet & Loreau 2003). Finally, the neutral paradigm focuses on the
interplay of stochasticity and dispersal, in a simplified approach that does not
consider differences of local adaptation between species, thus explaining local
species coexistence as a purely stochastic process driven by species frequencies at a
larger scale and immigration rates (Hubbell 2001). These four simplistic views of real
metacommunities were defined to encompass the main models and assumptions on
coexistence mechanisms, both in theory and in empirical studies (Cottenie 2005,
Shoemaker & Melbourne 2016, Ulrich et al. 2017).

Metacommunity paradigms and their associated models have mostly been used
to analyse spatial patterns of metacommunity composition at a single date, therefore
assuming that metacommunities are at a dynamical equilibrium (Logue et al. 2011,
Heino et al. 2015), often in an indirect manner (i.e. with statistical models quite
disconnected from the theoretically grounded dynamical models; but see Azaele et
al. 2006 for an exception). Specifically, when spatial environmental variation is
hypothesized to play a role, the most common approach has been to perform
variance partitioning (Borcard et al. 1992, Cottenie 2005, but see e.g., Leibold and
Mikkelson 2002, Ulrich et al. 2017). It consists in partitioning the observed spatial
variation of community composition into spatial and environmental components,
measured as multivariate matrices of relevant spatial and environmental explanatory
variables respectively (Borcard et al. 1992, Cottenie 2005, Peres-Neto et al. 2006).
The effect of the spatial component is then expected to reflect the combined effect
of dispersal and ecological drift (neutral and/or patch dynamics and/or mass effect),
while the effect of the environmental component should summarize differential
species responses to environmental variation (species-sorting, see Cottenie 2005 for
a classification). Such analyses of static spatial patterns of metacommunities have
produced numerous ecological insights on the processes structuring
metacommunities and their variation across biomes, taxa and along environmental
gradients (Cottenie 2005, Henriques-Silva et al. 2013, Heino et al. 2015). However,
results on simulated datasets challenge these findings and suggest that partitioning
alone does not allow unambiguously grasping metacommunity dynamics (Gilbert &
Bennett 2010, Peres-Neto & Legendre 2010). Here we address whether and how
analysing temporal patterns of diversity in metacommunities allows better inferring
their underlying processes.

Ecosystems and their constituent communities are highly dynamic (e.g., Brokaw
1985, Tscharntke et al. 2005, Malard et al. 2006, Acufia et al. 2014, Bertrand et al.
2016), and this temporal variation in community processes is likely to impair the
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analysis of metacommunity diversity at a single date. Temporal data, however,
should provide key information on community processes and assembly dynamics
(Anderson and Cribble 1998, Magurran and Henderson 2010, Wolkowich et al. 2014,
Buckley et al. 2018), provided a method is able to process signal from noise in
metacommunity time series. As a starting point, Box 1 summarizes how dispersal,
ecological drift and ecological filtering should influence species turnover and lead to
distinctive signatures (Massol and Petit 2013). Box 1 presents simple hypotheses
that may apply to many ecological systems (but see some counter-examples in Box
1). While Box 1 is very general and does not provide a statistical framework per se, it
points out predictable patterns that could be used to assess metacommunity
processes from metacommunity time series. To date, few studies have examined the
temporal dynamics of metacommunities (Datry et al. 2016). We here argue that this
limited emphasis on the temporal dynamics of metacommunities reflects (i) a lack of
a general quantitative framework to analyse temporal changes (but see e.g.,
Nuvoloni et al. 2016} and (ii) the scarcity of proper empirical datasets involving time
series.

Box 1. Relationships between processes driving metacommunity dynamics
and spatiotemporal diversity patterns

Dispersal
v v

Temporal turnover (By,) Local diversity (o) Spatial turnover (B,,)
jm——————— \ 4 same different
: Community ©€= . TR environ. environ.

. 1 * v

1 size |
o ____ ) Ecological drift Ecological drift

Frequency-dependent selection

Ecological filtering

Habitat variability in
space and time
The plain boxes represent different components of spatiotemporal diversity patterns,
at both local scale (a diversity) and as turnover in diversity among sites (Bspa diversity)
and within a site in time (Bi.mp diversity). The turnover among sites Bsp, is
decomposed into two components representing turnover between sites in same or
different environment, respectively. The dashed boxes represent two components of
environmental variation affecting metacommunity dynamics, namely, habitat
variation and varying community size. The solid arrows represent expected
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influences of the processes driving metacommunity dynamics on diversity patterns.
The processes at play are labelled on each arrow, and the end of arrow represents
expected increase while the origin represent expected decrease (the origin of the
arrow) in patterns of corresponding boxes. For instance, dispersal is expected to
decrease spatial turnover and to increase local diversity and temporal turnover.
Dashed lines indicate how environmental variation mediates these -effects:
community size negatively affects ecological drift while habitat heterogeneity
increases the effect of ecological filtering. Figure improved from an earlier version
presented in Massol & Petit (2013).

Greater dispersal should entail higher local diversity (Shmida and Wilson 1985),
higher temporal turnover (Nuvoloni et al. 2016) and generally lower spatial turnover
(Shmida and Wilson 1985). Ecological drift should lower local diversity (Hubbell
2001), increase spatial turnover (Chave and Leigh 2002) and increase temporal
turnover (Leigh et al. 1993). The strength of ecological drift should further be
negatively related to the number of individuals in the local community (Hubbell
2001). Positive frequency-dependent selection should lower local diversity and
increase temporal turnover (May 1973), the reverse being true for negative
frequency-dependent selection (Janzen 1970). Ecological filtering should lower local
diversity (Hutchinson 1957) and temporal turnover (Magurran and Henderson 2003),
and increase spatial turnover between communities located in different
environmental conditions (Whittaker 1967). Finally, habitat variability in space and
time should increase the effects of ecological filtering (Chesson 2000).

Counter-examples to these general relationships may appear in specific systems.
For instance, Vannette and Fukami (2017} studied nectar-inhibiting microbial
communities and demonstrated that dispersal may enhance priority effects and
spatial beta-diversity in this transient system that establishes in a previously empty
habitat; Shmida and Wilson (1985) explained how dispersal (coupled to ecological
filtering) may actually increase spatial turnover between communities experiencing
similar environmental conditions if they are in peculiar landscape settings (see their
Fig. 5); Molofsky et al. (2001} demonstrated how positive frequency-dependence

may actually stabilize communities of sessile organisms with short interaction ranges.

Nuvoloni et al. (2016) proposed to analyse the temporal turnover of community
composition and to relate local turnover to environmental variables. We here
propose to generalize this approach with two novel ingredients. First, we suggest
jointly analysing spatial and temporal turnovers of community composition:
spatiotemporal turnover encompasses (i) temporal turnover of the different local
communities, (ii) spatial turnover between different communities sampled at a given
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date, and (iii) turnover between different communities sampled at different dates. A
key argument is that these three components taken together can help tease apart
ecological processes acting on communities through richer signatures than separate
analyses of spatial and temporal turnovers (Box 1). Second, we propose to perform
path analyses to study the influence of environmental, dispersal and community
context on the three components simultaneously, so as to fully grasp the complex
direct and indirect relationships among the drivers.

The comprehensive scheme of the expected influences of processes on
spatiotemporal patterns (Box 1) provides the basis for a heuristic path model (Fig. 2).
We predict that dispersal limitation and environmental filtering should cause a
positive correlation between community dissimilarity and, respectively, geographical
distance and environmental distance (Borcard et al. 1992). Second, demographic
stochasticity should cause a negative correlation between mean community size and
community dissimilarity, and a positive correlation between temporal distance and
community dissimilarity (Lande et al. 2003). Third, differences in community size
should be positively linked to differences in species richness (the more-individuals
hypothesis, Srivastava & Lawton 1998), which in turn should cause an increase in
community dissimilarity (due to its effect on nestedness, see Baselga 2010). Finally,
we consider that environmental distance may be correlated with temporal and
geographical distance. Our heuristic understanding of spatio-temporal community
dissimilarity patterns makes use of both direct and indirect relationships between
explanatory variables. Path analyses therefore constitute a natural way to perform an
exploratory analysis of these putative drivers of metacommunity dynamics
(Kingsolver & Schemske 1991). In particular systems deviating from the general
relationships predicted by Box 1 (e.g., Shmida & Wilson 1985, Molofsky et al. 2001,
Vannette & Fukami 2017), alternative heuristic path models can be used for such an
analysis.

Here, we aim at testing this new analytical framework allowing a combined
analysis of the spatial and temporal dynamics of metacommunities. We first use this
framework to analyse simulated data, and demonstrate that it enables us to detect
the signature of simulated processes. We then apply this framework to four real case
studies. We find that multiple ecological processes are simultaneously influencing
community dynamics and that the environmental conditions that influence
community dynamics are generally both spatially and temporally structured.
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Figure 2. Heuristic path model to test the signature of ecological processes on
spatiotemporal diversity patterns

A dashed (resp. plain) arrow represents a negative (resp. positive) correlation. <J>
stands for the average community size in the metacommunity, t for time, x for space,
E for the local environment and S for species richness. A values represent difference
of statistics in space and time. For instance, because it controls the intensity of
ecological drift, the average community size is expected to negatively affect spatial
and temporal diversity turnovers (negative arrow between <J> and B diversity).
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Methods

Assessing the path analysis framework with simulated data

We first devised an individual-based simulation algorithm of metacommunity
dynamics in a discrete virtual landscape where communities are distributed across a
two-dimensional grid. We simulated varying kinds of metacommunity dynamics in
discrete time and analysed the simulated patterns to assess the performance of the
proposed framework. We here first describe the simulation algorithm and then
explain the simulated scenarios.

The metacommunity simulator

e Regional species pool
We consider a fixed regional species pool of S species (S=100), each species i having a
fixed regional frequency y; and a fixed trait value 7. In the following, all species have
the same regional frequency (y; =0.01) and trait values are regularly spaced between
0 and 1 (t;=i/100).
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e landscape

We consider a gridded landscape of 400 cells (20 x 20) with fixed null boundary
conditions. Abiotic environmental conditions within each cell k are assumed
homogeneous within the cell and are measured with a single environmental variable
E(t) that can vary in time (t). This environmental variable will influence the processes
of adult mortality and propagule establishment in each cell. There are Ji(t) individuals
per cell, this number varying across space and time, depending on the balance
between recruitment/immigration and mortality in each cell.

e Environmental dynamics
The environmental variable Ey(t) in cell k at time t is decomposed into three
components:
Ei(t) = g+ ac + ax(t) (Eq. 1)
where gy represents an average environmental context in cell k, a; represents a
temporal trend common to all cells, and ai(t) represents a cell-specific temporal
anomaly.

More specifically, we consider in the following a linear environmental gradient
from the left to the right of the two-dimensional grid, so that g, regularly varies from
0.5 —e1/2 to 0.5 + e1/2 according to the column of the cell, g, being constant on each
column; a; is uniformly drawn between - e,/2 and e,/2 at each time step t; ag(t) is
uniformly drawn between - e3/2 and e3/2 at each time step t and for each cell k.

Environmental dynamics are parameterized with the three parameters e4, e, and
e3 controlling the magnitude of the spatial environmental gradient, of the spatially
synchronous temporal environmental variability and of the spatially asynchronous
temporal environmental variability, respectively. Note that with these modelling
choices, we are able to simulate a spatial environmental gradient, but we do not
consider a directional temporal trend in environmental conditions. Besides, we
control the magnitude of temporal variations, but we do not control their
autocorrelation (equal to zero in all simulations). Valuable information on the
temporal autocorrelation of both a; and ai(t) could also be extracted from temporal
diversity patterns and in turn inform about ecological processes (Jabot & Lohier
2016), but here we will instead focus on the magnitude of these variables.

e Community dynamics
In each cell and during each time step, the dynamics of the community is governed
by four processes taking place sequentially: 1) reproduction, 2) propagule dispersal,
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3) adult mortality and 4) propagule establishment. All cells are simultaneously
updated.

1) Reproduction
Each individual of the community produces propagules at a constant rate r so that
the number of propagules produced by each individual during one time step is a
random draw from a Poisson distribution with parameter r (with r <1}).

2) Dispersal
A proportion (1-m) of the propagules stays in their home cell, while a proportion m
disperses in the eight neighbouring cells (uniform random draws). On top of this local
dispersal, additional propagules arrive from the regional species pool (described
above) at a constant rate | in each cell, so that the number of such long-distance
dispersal propagules is computed as a Poisson draw with parameter .

3) Mortality
Each individual of species i has a local fitness fi(k,t) in cell k at time t that depends on
the match between its trait value T; and the environmental variable E(t) in cell k at
time t. More precisely, fi(k,t) is given by the equation:

filk,t) =1+ Axexp [ - (T - Ex(t))*/(267)] (Eqa. 2)
where parameter A controls the strength of environmental filtering (complete
maladaptation leads to a local fitness of 1 while perfect adaptation to a local fitness
of 1 + A) and parameter G controls its specificity (a relatively good local adaptation is
obtained when |T; - E¢(t}] is less than G).

The survival of adult individuals of species i is modelled at each time step tin cell k
as a Bernoulli draw with probability (1-r} x fi(k,t) / (1+A). This implies that each
individual has a probability of dying that is at least equal to r, this death probability
increasing as individual fitness decreases.

4) Establishment

We consider that each cell has a carrying capacity of J individuals. We therefore
model the number of recruited individuals N,(k,t) in a cell k at time t as a random
variable having a Poisson distribution with mean equal to J-Ni(t), where N,(t) is the
number of surviving adults in the cell after the mortality step. If Ni(t) is already larger
than J, then no individual is recruited. This modelling choice enables the number of
individuals per cell to vary temporally. The N(k,t} recruited individuals are chosen
through a multinomial draw with species probabilities of being drawn proportional to
their number of propagules that have reached the focal cell. This modelling does not
therefore consider cases in which propagules would be in insufficient numbers to fill
available recruitment opportunities.
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e |Initialization of the metacommunity, burn-in period and sampling

The metacommunity is initialized with a multinomial random draw of J individuals
from the regional species pool in each cell. A burn-in period of 10,000 time steps is
used, which was empirically found to be sufficient to reach a dynamical equilibrium
of species richness (Fig. S5). Afterwards, metacommunity dynamics continues for 20
time steps and the local community composition of 50 randomly selected cells (out of
the 400) is recorded at each time step for subsequent analyses. The C++ code of this
metacommunity simulator is provided in Supplementary material S1.

Simulated scenarios

We devised 6 different scenarios representing archetypical assembly situations: two
neutral scenarios, two scenarios with environmental filtering and no dispersal
between neighbouring cells, and two scenarios with both environmental filtering and
dispersal (Table 1). Our aim was 1) to qualitatively assess whether our heuristic
predictions were confirmed in archetypical situations and 2) to examine situations in
which temporal data on metacommunity dynamics bring additional insights on
assembly processes compared to analyses solely based on snapshot data.

More precisely, the first scenario represents a case of neutral assembly without
dispersal between neighbouring cells very similar to Hubbell’'s metacommunity
model (Hubbell 2001). The second scenario represents a case of neutral assembly
with dispersal between neighbouring cells similar to models such as Gascuel et al.’s
(2016). The third scenario represents a case of strong environmental filtering in a
temporally constant environmental gradient and without dispersal between
neighbouring cells. The fourth scenario represents a case of strong environmental
filtering in spatially homogeneous but temporally varying environmental conditions
and without dispersal between neighbouring cells. The fifth scenario represents a
case of strong environmental filtering with both a constant environmental gradient
and spatially homogeneous temporal environmental variations, and with dispersal
between neighbouring cells. The sixth scenario represents a case of strong
environmental filtering with no spatial environmental gradient but with
environmental conditions that are temporally varying in a spatially inhomogeneous
way, and with dispersal between neighbouring cells. Detailed parameter settings and
some descriptive statistics of the different scenarios are given in Appendix S2. These
parameter settings were manually determined by trials and errors so that average
local community size was about 500 and average local richness in the cells was about
20 in all scenarios.
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Table 1. Ecological processes and environmental spatiotemporal variations
included in the six simulated scenarios

Ecological processes Environmental variables
Scenario | m A o e e, e;
1 + - - - - - +
2 + + - - -
3 + - + + + - -
4 + - + + - + -
5 + + + + + -
6 + + + - + +

Path analyses

We computed Sorensen community dissimilarity indices for all pairs of sampled
communities. In this way, pairs of communities sampled at the same date report
purely spatial dissimilarity, pairs of communities sampled at the same site but at
different dates report purely temporal dissimilarity and the remaining pairs of
communities report spatio-temporal dissimilarity. Similarly, we computed spatial
distances (Ax), temporal distances (At) and environmental distances (AE) for each
pair of communities, as well as their mean community size (<J>}, their absolute
difference in community size (AJ) and in species richness (AS). We ran a path analysis
on such datasets based on the heuristic causal model (Fig. 2) with the function “sem”
of the R package “lavaan” (Rosseel 2012) and reporting standardized path
coefficients. Since path analyses were based on distance matrices, we used the
permutation-based approach developed by Fourtune et al. (2018) that takes into
account the non-independence of the data points and that allows to confidently test
for the significance of each path. We followed a Benjamini-Hochberg procedure to
adjust the significance criterion (of 1%) for multiple testing. We assessed model fit
with the Standardized Root Mean Square Residual (SRMR) that is a standard measure
of model fit for path analyses.

Empirical datasets

A-Freshwater fishes

We tested the applicability of our conceptual framework on four case studies. The
first case study is based on the AFB (“Agence Frangaise pour la Biodiversité”, i.e. the
French Agency for Biodiversity) database synthesizing freshwater fish communities
from yearly samples in more than 1500 sites in France (Poulet et al. 2011}. Here, we
restrain our analysis to a subset synthesizing temporal data from the Garonne-
Dordogne river drainage in South-Western France (see Fourtune et al. 2016 for
details). This sub-dataset included 32 sites that were thoroughly monitored each year
between 1995 and 2011 and for which precise environmental variables were
available. This dataset included 51 fish species, for a total of 257,393 sampled fishes.
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Six environmental variables were recorded for each site: elevation, slope, average
temperature in January 2011, average temperature in July 2011, width of the minor
bed, and width of the water slide. The first five variables were temporally constant,
while the last variable varied from year to year. Geographical distance between sites
was computed along the river using the Carthage dataset of the IGN (French National
Geographical Institute). We used log-transformed distances in the analyses reported
here, but results were qualitatively similar when using raw distances.

B-Aquatic invertebrates

The second dataset compiles aquatic invertebrate communities across the Rhone
river drainage in France. Benthic invertebrates were sampled on 6 sites of 11
different watersheds for a total of 66 sites. They were sampled for six months
consecutively from the end of autumn to the beginning of summer for two years,
2014 and 2015, for a total of 12 sampling dates. The rivers considered are
intermittent and as such, subject to temporary cessation of flow and/or absence of
surface water; when some sites were dry, they were not sampled at this date.
Invertebrates were identified to the genus level but information was kept at the
family level when no taxa were identified at the genus level for this family, resulting
in a total of 231 taxa. Five environmental variables were measured for each site at
each sampling date: temperature, pH, conductivity, concentration in dioxygen and
number of days since the last rewetting event of the watershed. Log-transformed
Euclidean distances between sites were used as a proxy of spatial effect.

C-Freshwater snails

The third dataset concerns the malacological fauna — 27 species - of a freshwater
ponds netwo