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Introduction 

One of the main goals of community ecology is to understand the determinants

species diversity at different spatial scales. Based on the inspiring work of Skell

(1952), Preston (1962), MacArthur & Wilson (1967) and Shmida & Wilson (198

metacommunity theory has emerged as a strong framework to investigate the spa

distribution of species and the dynamics of spatially structured ecosystems (Leib

et al. 2004, Loreau & Holt 2004 ; Massol et al. 2011, Guichard 2017). Metacommun

theory has been originally proposed to revolve around four main paradig

explaining the coexistence of species on patchy habitat landscapes (Leibold et 

2004, Shoemaker & Melbourne 2016, Fournier et al. 2017; but see also criticism

Brown et al. 2017), which can be better understood as “templates” or typical case

which a few processes dominate metacommunity assembly and functioning. T

patch-dynamic paradigm focuses on the processes of competition, colonization a

extinction in networks of patches that can be released due to intrinsic or extrin

causes. In this paradigm, a particular emphasis is put on trade-offs to explain spec

coexistence at a large spatial scale, e.g. through the competition-colonization tra

off (Hastings 1980, Tilman 1994, Calcagno et al. 2006) or the tolerance-competit

trade-off (Muller-Landau 2010, Haegeman et al. 2013). The species-sorting paradi

focuses on the differential responses of species, in terms of vital rates and bio

interactions, to environmental heterogeneity across the landscape to explain lar

scale and local coexistence as the result of environmental filters and local adaptat

(Chase & Leibold 2003). The mass-effect paradigm focuses on source-sink dynam

ABSTRACT 

Although metacommunity ecology has been a major field of research in the last 

decades, with both conceptual and empirical outputs, the analysis of the temporal 

dynamics of metacommunities has only emerged recently and still consists mostly 

of repeated static analyses. Here we propose a novel analysis framework to assess 

metacommunity processes using path analyses of spatial and temporal diversity 

turnovers. We detail the principles and practical aspects of this framework and 

apply it to simulated datasets to illustrate its ability to decipher the respective 

contributions of entangled drivers of metacommunity dynamics. We then apply it 

to four real datasets. Empirical results support the view that metacommunity 

dynamics may be generally shaped by multiple ecological processes acting in 

concert, with environmental filtering being variable across both space and time. 

These results reinforce our call to go beyond static analyses of metacommunities 

that are blind to the temporal part of environmental variability. 

 
Keywords: beta-diversity; demographic stochasticity; dispersal limitation; environmental filtering; path 
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among communities, with species potentially coexisting in patches where they 

maladapted due to the important influx of dispersing individuals (Amarasekare

Nisbet 2001, Mouquet & Loreau 2003). Finally, the neutral paradigm focuses on 

interplay of stochasticity and dispersal, in a simplified approach that does 

consider differences of local adaptation between species, thus explaining lo

species coexistence as a purely stochastic process driven by species frequencies a

larger scale and immigration rates (Hubbell 2001). These four simplistic views of r

metacommunities were defined to encompass the main models and assumptions

coexistence mechanisms, both in theory and in empirical studies (Cottenie 20

Shoemaker & Melbourne 2016, Ulrich et al. 2017).    

 

Metacommunity paradigms and their associated models have mostly been u

to analyse spatial patterns of metacommunity composition at a single date, theref

assuming that metacommunities are at a dynamical equilibrium (Logue et al. 20

Heino et al. 2015), often in an indirect manner (i.e. with statistical models qu

disconnected from the theoretically grounded dynamical models; but see Azaele

al. 2006 for an exception). Specifically, when spatial environmental variation

hypothesized to play a role, the most common approach has been to perfo

variance partitioning (Borcard et al. 1992, Cottenie 2005, but see e.g., Leibold a

Mikkelson 2002, Ulrich et al. 2017). It consists in partitioning the observed spa

variation of community composition into spatial and environmental componen

measured as multivariate matrices of relevant spatial and environmental explanat

variables respectively (Borcard et al. 1992, Cottenie 2005, Peres-Neto et al. 200

The effect of the spatial component is then expected to reflect the combined eff

of dispersal and ecological drift (neutral and/or patch dynamics and/or mass effe

while the effect of the environmental component should summarize differen

species responses to environmental variation (species-sorting, see Cottenie 2005 

a classification). Such analyses of static spatial patterns of metacommunities h

produced numerous ecological insights on the processes structur

metacommunities and their variation across biomes, taxa and along environmen

gradients (Cottenie 2005, Henriques-Silva et al. 2013, Heino et al. 2015). Howev

results on simulated datasets challenge these findings and suggest that partition

alone does not allow unambiguously grasping metacommunity dynamics (Gilber

Bennett 2010, Peres-Neto & Legendre 2010). Here we address whether and h

analysing temporal patterns of diversity in metacommunities allows better inferr

their underlying processes. 

 

Ecosystems and their constituent communities are highly dynamic (e.g., Brok

1985, Tscharntke et al. 2005, Malard et al. 2006, Acuña et al. 2014, Bertrand et

2016), and this temporal variation in community processes is likely to impair 
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analysis of metacommunity diversity at a single date. Temporal data, howev

should provide key information on community processes and assembly dynam

(Anderson and Cribble 1998, Magurran and Henderson 2010, Wolkowich et al. 20

Buckley et al. 2018), provided a method is able to process signal from noise

metacommunity time series. As a starting point, Box 1 summarizes how disper

ecological drift and ecological filtering should influence species turnover and lead

distinctive signatures (Massol and Petit 2013).  Box 1 presents simple hypothe

that may apply to many ecological systems (but see some counter-examples in B

1). While Box 1 is very general and does not provide a statistical framework per se

points out predictable patterns that could be used to assess metacommun

processes from metacommunity time series.  To date, few studies have examined 

temporal dynamics of metacommunities (Datry et al. 2016). We here argue that t

limited emphasis on the temporal dynamics of metacommunities reflects (i) a lack

a general quantitative framework to analyse temporal changes (but see e

Nuvoloni et al. 2016) and (ii) the scarcity of proper empirical datasets involving ti

series.  

 

Box 1. Relationships between processes driving metacommunity dynamic

and spatiotemporal diversity patterns 

The plain boxes represent different components of spatiotemporal diversity patter

at both local scale (α diversity) and as turnover in diversity among sites (βspa divers

and within a site in time (βtemp diversity). The turnover among sites βspa

decomposed into two components representing turnover between sites in same

different environment, respectively. The dashed boxes represent two components

environmental variation affecting metacommunity dynamics, namely, hab

variation and varying community size. The solid arrows represent expec

Local diversity (α) Spatial turnover (βspaTemporal turnover (βtemp)
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influences of the processes driving metacommunity dynamics on diversity patter

The processes at play are labelled on each arrow, and the end of arrow represe

expected increase while the origin represent expected decrease (the origin of 

arrow) in patterns of corresponding boxes. For instance, dispersal is expected

decrease spatial turnover and to increase local diversity and temporal turnov

Dashed lines indicate how environmental variation mediates these effec

community size negatively affects ecological drift while habitat heterogene

increases the effect of ecological filtering. Figure improved from an earlier vers

presented in Massol & Petit (2013). 

 

Greater dispersal should entail higher local diversity (Shmida and Wilson 198

higher temporal turnover (Nuvoloni et al. 2016) and generally lower spatial turno

(Shmida and Wilson 1985). Ecological drift should lower local diversity (Hubb

2001), increase spatial turnover (Chave and Leigh 2002) and increase tempo

turnover (Leigh et al. 1993). The strength of ecological drift should further 

negatively related to the number of individuals in the local community (Hubb

2001). Positive frequency-dependent selection should lower local diversity a

increase temporal turnover (May 1973), the reverse being true for negat

frequency-dependent selection (Janzen 1970). Ecological filtering should lower lo

diversity (Hutchinson 1957) and temporal turnover (Magurran and Henderson 200

and increase spatial turnover between communities located in differ

environmental conditions (Whittaker 1967). Finally, habitat variability in space a

time should increase the effects of ecological filtering (Chesson 2000). 

 

Counter-examples to these general relationships may appear in specific system

For instance, Vannette and Fukami (2017) studied nectar-inhibiting microb

communities and demonstrated that dispersal may enhance priority effects a

spatial beta-diversity in this transient system that establishes in a previously em

habitat; Shmida and Wilson (1985) explained how dispersal (coupled to ecolog

filtering) may actually increase spatial turnover between communities experienc

similar environmental conditions if they are in peculiar landscape settings (see th

Fig. 5); Molofsky et al. (2001) demonstrated how positive frequency-depende

may actually stabilize communities of sessile organisms with short interaction rang

 

Nuvoloni et al. (2016) proposed to analyse the temporal turnover of commun

composition and to relate local turnover to environmental variables. We h

propose to generalize this approach with two novel ingredients. First, we sugg

jointly analysing spatial and temporal turnovers of community compositi

spatiotemporal turnover encompasses (i) temporal turnover of the different lo

communities, (ii) spatial turnover between different communities sampled at a giv
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date, and (iii) turnover between different communities sampled at different dates

key argument is that these three components taken together can help tease ap

ecological processes acting on communities through richer signatures than separ

analyses of spatial and temporal turnovers (Box 1). Second, we propose to perfo

path analyses to study the influence of environmental, dispersal and commun

context on the three components simultaneously, so as to fully grasp the comp

direct and indirect relationships among the drivers. 

 

The comprehensive scheme of the expected influences of processes 

spatiotemporal patterns (Box 1) provides the basis for a heuristic path model (Fig.

We predict that dispersal limitation and environmental filtering should cause

positive correlation between community dissimilarity and, respectively, geograph

distance and environmental distance (Borcard et al. 1992). Second, demograp

stochasticity should cause a negative correlation between mean community size a

community dissimilarity, and a positive correlation between temporal distance a

community dissimilarity (Lande et al. 2003). Third, differences in community s

should be positively linked to differences in species richness (the more-individu

hypothesis, Srivastava & Lawton 1998), which in turn should cause an increase

community dissimilarity (due to its effect on nestedness, see Baselga 2010). Fina

we consider that environmental distance may be correlated with temporal a

geographical distance. Our heuristic understanding of spatio-temporal commun

dissimilarity patterns makes use of both direct and indirect relationships betwe

explanatory variables. Path analyses therefore constitute a natural way to perform

exploratory analysis of these putative drivers of metacommunity dynam

(Kingsolver & Schemske 1991). In particular systems deviating from the gene

relationships predicted by Box 1 (e.g., Shmida & Wilson 1985, Molofsky et al. 20

Vannette & Fukami 2017), alternative heuristic path models can be used for such

analysis. 

 

Here, we aim at testing this new analytical framework allowing a combin

analysis of the spatial and temporal dynamics of metacommunities. We first use t

framework to analyse simulated data, and demonstrate that it enables us to det

the signature of simulated processes. We then apply this framework to four real c

studies. We find that multiple ecological processes are simultaneously influenc

community dynamics and that the environmental conditions that influen

community dynamics are generally both spatially and temporally structured. 
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Figure 2. Heuristic path model to test the signature of ecological processes 

spatiotemporal diversity patterns 

A dashed (resp. plain) arrow represents a negative (resp. positive) correlation. 

stands for the average community size in the metacommunity, t for time, x for spa

E for the local environment and S for species richness. Δ values represent differe

of statistics in space and time. For instance, because it controls the intensity

ecological drift, the average community size is expected to negatively affect spa

and temporal diversity turnovers (negative arrow between <J> and β diversity). 

Methods 

Assessing the path analysis framework with simulated data 

We first devised an individual-based simulation algorithm of metacommun

dynamics in a discrete virtual landscape where communities are distributed acros

two-dimensional grid. We simulated varying kinds of metacommunity dynamics

discrete time and analysed the simulated patterns to assess the performance of 

proposed framework. We here first describe the simulation algorithm and th

explain the simulated scenarios. 

   

The metacommunity simulator 

• Regional species pool 

We consider a fixed regional species pool of S species (S=100), each species i havin

fixed regional frequency χi and a fixed trait value τi. In the following, all species h

the same regional frequency (χi =0.01) and trait values are regularly spaced betwe

0 and 1 (τi =i/100). 
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• Landscape 

We consider a gridded landscape of 400 cells (20 x 20) with fixed null bound

conditions. Abiotic environmental conditions within each cell k are assum

homogeneous within the cell and are measured with a single environmental varia

Ek(t) that can vary in time (t). This environmental variable will influence the proces

of adult mortality and propagule establishment in each cell. There are Jk(t) individu

per cell, this number varying across space and time, depending on the bala

between recruitment/immigration and mortality in each cell. 

 

• Environmental dynamics 

The environmental variable Ek(t) in cell k at time t is decomposed into th

components: 

 Ek(t) = gk + at + ak(t)       (Eq. 1) 

where gk represents an average environmental context in cell k, at represent

temporal trend common to all cells, and ak(t) represents a cell-specific tempo

anomaly.  

 

More specifically, we consider in the following a linear environmental gradi

from the left to the right of the two-dimensional grid, so that gk regularly varies fr

0.5 – e1/2 to 0.5 + e1/2 according to the column of the cell, gk being constant on ea

column; at is uniformly drawn between - e2/2 and e2/2 at each time step t; ak(t

uniformly drawn between - e3/2 and e3/2 at each time step t and for each cell k.  

 

Environmental dynamics are parameterized with the three parameters e1, e2 a

e3 controlling the magnitude of the spatial environmental gradient, of the spati

synchronous temporal environmental variability and of the spatially asynchrono

temporal environmental variability, respectively. Note that with these modell

choices, we are able to simulate a spatial environmental gradient, but we do 

consider a directional temporal trend in environmental conditions. Besides, 

control the magnitude of temporal variations, but we do not control th

autocorrelation (equal to zero in all simulations). Valuable information on 

temporal autocorrelation of both at and ak(t) could also be extracted from tempo

diversity patterns and in turn inform about ecological processes (Jabot & Loh

2016), but here we will instead focus on the magnitude of these variables. 

 

• Community dynamics 

In each cell and during each time step, the dynamics of the community is govern

by four processes taking place sequentially: 1) reproduction, 2) propagule disper
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3) adult mortality and 4) propagule establishment. All cells are simultaneou

updated. 

 

1) Reproduction 

Each individual of the community produces propagules at a constant rate r so t

the number of propagules produced by each individual during one time step i

random draw from a Poisson distribution with parameter r (with r ≤1). 

 

2) Dispersal 

A proportion (1-m) of the propagules stays in their home cell, while a proportion

disperses in the eight neighbouring cells (uniform random draws). On top of this lo

dispersal, additional propagules arrive from the regional species pool (describ

above) at a constant rate I in each cell, so that the number of such long-dista

dispersal propagules is computed as a Poisson draw with parameter I. 

 

3) Mortality 

Each individual of species i has a local fitness fi(k,t) in cell k at time t that depends

the match between its trait value τi and the environmental variable Ek(t) in cell k

time t. More precisely, fi(k,t) is given by the equation: 

 fi(k,t) = 1 + A × exp [ - (τi - Ek(t))²/(2σ²)]    (Eq. 2) 

where parameter A controls the strength of environmental filtering (compl

maladaptation leads to a local fitness of 1 while perfect adaptation to a local fitn

of 1 + A) and parameter σ controls its specificity (a relatively good local adaptatio

obtained when |τi - Ek(t)| is less than σ). 

The survival of adult individuals of species i is modelled at each time step t in ce

as a Bernoulli draw with probability (1-r) × fi(k,t) / (1+A). This implies that e

individual has a probability of dying that is at least equal to r, this death probabi

increasing as individual fitness decreases. 

 

4) Establishment 

We consider that each cell has a carrying capacity of J individuals. We theref

model the number of recruited individuals Nr(k,t) in a cell k at time t as a rand

variable having a Poisson distribution with mean equal to J-Nk(t), where Nk(t) is 

number of surviving adults in the cell after the mortality step. If Nk(t) is already lar

than J, then no individual is recruited. This modelling choice enables the number

individuals per cell to vary temporally. The Nr(k,t) recruited individuals are chos

through a multinomial draw with species probabilities of being drawn proportiona

their number of propagules that have reached the focal cell. This modelling does 

therefore consider cases in which propagules would be in insufficient numbers to

available recruitment opportunities. 
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• Initialization of the metacommunity, burn-in period and sampling 

The metacommunity is initialized with a multinomial random draw of J individu

from the regional species pool in each cell. A burn-in period of 10,000 time step

used, which was empirically found to be sufficient to reach a dynamical equilibri

of species richness (Fig. S5). Afterwards, metacommunity dynamics continues for

time steps and the local community composition of 50 randomly selected cells (ou

the 400) is recorded at each time step for subsequent analyses. The C++ code of t

metacommunity simulator is provided in Supplementary material S1. 

 

Simulated scenarios 

We devised 6 different scenarios representing archetypical assembly situations: t

neutral scenarios, two scenarios with environmental filtering and no disper

between neighbouring cells, and two scenarios with both environmental filtering a

dispersal (Table 1). Our aim was 1) to qualitatively assess whether our heuri

predictions were confirmed in archetypical situations and 2) to examine situations

which temporal data on metacommunity dynamics bring additional insights 

assembly processes compared to analyses solely based on snapshot data. 

 

More precisely, the first scenario represents a case of neutral assembly with

dispersal between neighbouring cells very similar to Hubbell’s metacommun

model (Hubbell 2001). The second scenario represents a case of neutral assem

with dispersal between neighbouring cells similar to models such as Gascuel et a

(2016). The third scenario represents a case of strong environmental filtering i

temporally constant environmental gradient and without dispersal betwe

neighbouring cells. The fourth scenario represents a case of strong environmen

filtering in spatially homogeneous but temporally varying environmental conditio

and without dispersal between neighbouring cells. The fifth scenario represent

case of strong environmental filtering with both a constant environmental gradi

and spatially homogeneous temporal environmental variations, and with disper

between neighbouring cells. The sixth scenario represents a case of stro

environmental filtering with no spatial environmental gradient but w

environmental conditions that are temporally varying in a spatially inhomogeneo

way, and with dispersal between neighbouring cells. Detailed parameter settings a

some descriptive statistics of the different scenarios are given in Appendix S2. Th

parameter settings were manually determined by trials and errors so that avera

local community size was about 500 and average local richness in the cells was ab

20 in all scenarios. 
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Table 1. Ecological processes and environmental spatiotemporal variation

included in the six simulated scenarios 

 Ecological processes Environmental variables

Scenario I m A σ e1 e2 e3

1 + - - - - - + 

2 + + - - - - + 

3 + - + + + - - 

4 + - + + - + - 

5 + + + + + + - 

6 + + + + - + + 

 

Path analyses 

We computed Sorensen community dissimilarity indices for all pairs of samp

communities. In this way, pairs of communities sampled at the same date rep

purely spatial dissimilarity, pairs of communities sampled at the same site but

different dates report purely temporal dissimilarity and the remaining pairs 

communities report spatio-temporal dissimilarity. Similarly, we computed spa

distances (Δx), temporal distances (Δt) and environmental distances (ΔE) for e

pair of communities, as well as their mean community size (<J>), their absol

difference in community size (ΔJ) and in species richness (ΔS). We ran a path analy

on such datasets based on the heuristic causal model (Fig. 2) with the function “se

of the R package “lavaan” (Rosseel 2012) and reporting standardized p

coefficients. Since path analyses were based on distance matrices, we used 

permutation-based approach developed by Fourtune et al. (2018) that takes i

account the non-independence of the data points and that allows to confidently t

for the significance of each path. We followed a Benjamini-Hochberg procedure

adjust the significance criterion (of 1%) for multiple testing. We assessed mode

with the Standardized Root Mean Square Residual (SRMR) that is a standard meas

of model fit for path analyses.  

 

Empirical datasets 

A-Freshwater fishes 

We tested the applicability of our conceptual framework on four case studies. T

first case study is based on the AFB (“Agence Française pour la Biodiversité”, i.e. 

French Agency for Biodiversity) database synthesizing freshwater fish communit

from yearly samples in more than 1500 sites in France (Poulet et al. 2011). Here, 

restrain our analysis to a subset synthesizing temporal data from the Garon

Dordogne river drainage in South-Western France (see Fourtune et al. 2016 

details). This sub-dataset included 32 sites that were thoroughly monitored each y

between 1995 and 2011 and for which precise environmental variables w

available. This dataset included 51 fish species, for a total of 257,393 sampled fish
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Six environmental variables were recorded for each site: elevation, slope, avera

temperature in January 2011, average temperature in July 2011, width of the mi

bed, and width of the water slide. The first five variables were temporally consta

while the last variable varied from year to year. Geographical distance between s

was computed along the river using the Carthage dataset of the IGN (French Natio

Geographical Institute). We used log-transformed distances in the analyses repor

here, but results were qualitatively similar when using raw distances. 

 

B-Aquatic invertebrates 

The second dataset compiles aquatic invertebrate communities across the Rhô

river drainage in France. Benthic invertebrates were sampled on 6 sites of 

different watersheds for a total of 66 sites. They were sampled for six mon

consecutively from the end of autumn to the beginning of summer for two yea

2014 and 2015, for a total of 12 sampling dates. The rivers considered 

intermittent and as such, subject to temporary cessation of flow and/or absence

surface water; when some sites were dry, they were not sampled at this da

Invertebrates were identified to the genus level but information was kept at 

family level when no taxa were identified at the genus level for this family, result

in a total of 231 taxa. Five environmental variables were measured for each site

each sampling date: temperature, pH, conductivity, concentration in dioxygen a

number of days since the last rewetting event of the watershed. Log-transform

Euclidean distances between sites were used as a proxy of spatial effect. 

 

C-Freshwater snails 

The third dataset concerns the malacological fauna – 27 species - of a freshwa

ponds network in the Guadeloupe Island (Lesser Antilles). 250 sites are yea

sampled since 2001 (17 years), where species densities are recorded. Spec

densities were multiplied by pond area to obtain estimated species abundances

each pond that were subsequently log-transformed. Each site is characterized by

temporally constant environmental variables (size, depth, vegetation cover, wa

quality, litter and a synthetic index of hydrological and vegetation stability, see La

et al. (2013) for additional details), and one temporally varying but spatially const

variable (annual rainfall). Geographical distances among sites were computed

Euclidean distances and were log-transformed. Missing data and empty sites w

removed prior to analyses leading to a total of ca. 2800 samples. 

 

D-Aquatic plants 

The fourth dataset compiles aquatic plant communities in shallow lakes used for f

farming. These lakes are in general dried out during one year every 3 years. Twen

four shallow lakes were sampled from 2 to 7 years between 2008 and 2015, fo
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total of 81 sampling events and 84 sampled plant species (Arthaud et al. 201

Average species cover was multiplied by lake areas to obtain estimated spec

abundances in each lake. Two environmental variables were used:  chlorophy

concentration that corresponds to water turbidity and light transmission, and 

number of years since the last drying event.  

Results 

Analysis of simulated data 

The path analysis on simulated data confirmed our heuristic predictions regard

the paths produced by each ecological process. In the two neutral scenarios

positive correlation between geographical distance and spatiotemporal commun

dissimilarity was found (Fig. 3a,b). For the first scenario without local dispersal (

3a), this correlation was modest and was solely due to smaller values of dissimila

across time within a patch, compared to values of dissimilarity among disti

communities, but without any effect of distance past this distinction (Fig. S5). T

correlation was larger in the second scenario with local dispersal since distance

expected to affect the degree of overlap of local communities (Fig. 3b). Under 

species-sorting scenarios without local dispersal among patches, environmen

filtering was found to produce a positive correlation between environmental distan

and community dissimilarity (Fig. 3c,d), as well as a positive correlation betwe

geographical distance and environmental distance in the spatially structu

environmental scenario (Fig. 3c). When all processes were simultaneously at play, 

path analysis successfully detected all the predicted paths (Fig. 3e). Finally, in the 

temporally varying environmental scenario without spatial structure, the p

analysis successfully detected the effect of environmental distance and tempo

distance on community dissimilarity (Fig. 3f). Some scenarios also led to posit

correlations between the difference in community size and the difference in lo

species richness and between the difference in local species richness and commun

dissimilarity, as initially predicted (Fig. 3a-e). Note that no simulated scena

enabled us to evidence a direct link between mean community size and commun

dissimilarity, since communities did not much vary in size in the simulations 

construction). In summary, our application of a causal modelling framework 

simulated data enabled us to validate our heuristic predictions and to show that 

modelling framework allows reliable inference of the ecological processes driv

spatiotemporal variation in community composition, for contrasted simulat

scenarios. 

 

Figure 3. Path analyses on the six simulated scenarios 
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Arrows depict significant effects. Arrow width represents the strength of 

standardized estimates. Numerical values are reported in Table S3. The avera

community size (< J >) was omitted from these figures since it never had a signific

effect in the simulations that harboured almost constant community sizes in 

landscape. 

 

 

Analysis of empirical datasets 

Applied to the four datasets, our statistical framework revealed very consist

patterns across case studies (Fig. 4). The influence of demographic stochasticity w

evidenced in all case studies (see the dashed lines from <J> to βsor). Geograp

distances Δx were found to affect community dissimilarity (βsor) in all case stud

both directly (putatively through dispersal limitation) and indirectly throu

environmental distances ΔE. Environmental distances ΔE were found to influen

community dissimilarity (βsor) in all case studies. Temporal distances Δt were fou

to impinge on environmental distances in three of the four case studies and direc

affect community dissimilarity in half of the case studies. Finally, differences in lo

species richness ΔS were found to affect community dissimilarity in all case stud

with differences in local community sizes ΔJ influencing ΔS in three of the four c

studies. This last result confirms the importance of taking this variable ΔS i

account when assessing the drivers of community dissimilarity. 
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Although we found support for the three main types of ecological driv

(demographic stochasticity, environmental variation and dispersal limitatio

environmental variation was generally the strongest driver of commun

dissimilarity. This environmental variation was both spatially and tempor

structured in three of the four case studies (see the arrows from Δx and Δt towa

ΔE). This further supports our call for an integrated spatiotemporal appraisal

metacommunity patterns. 

 

Figure 4. Path analyses for the four empirical datasets 

a: freshwater fishes. b: aquatic invertebrates. c: molluscs. d: aquatic plants. Arr

width represents the strength of the standardized estimates. Dashed lines repres

negative relationships. Paths from and towards ΔE were pooled in single arrows

summing the absolute values of the significant paths associated to e

environmental variable. Only significant paths are shown. Numerical values of 

standardized coefficients and of the associated p-values are reported in Tables S

14. Values of the Standardized Root Mean Square Residual (SRMR) are mentioned 

each dataset. Fish by Vladimir Belochkin, shrimp by Ana María Lora Macias, snail

Vega Asensio and cattail by Alex Muravev from the Noun Project. 

Discussion 

The benefits of analysing spatiotemporal community turnover 

Our analyses of simulated metacommunities demonstrate that the causal analysis

spatiotemporal turnover indices allows detecting the influences of disper

demographic stochasticity and environmental filtering on metacommunity dynam
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(Fig. 3). We are confident that the proposed framework is robust and general si

we examined strongly contrasted simulated scenarios that all lead to path analy

results that were consistent with simulation choices. These analyses also point 

that a spatiotemporal analysis is more powerful than purely spatial or pur

temporal analyses for detecting the effect of environmental filtering, especially 

spatially heterogeneous and temporally varying environmental conditions (Fig. 3e

In such conditions, knowing both the previous and current compositional states

the local community is indeed likely to be key to understand its driving forces, hen

the power of analysing temporal turnover rather than solely spatial turnover. S

even in such cases, the spatial structure in terms of mean environmental conditio

is likely to contain valuable signal indicative of metacommunity processes 

particular dispersal limitation and environmental filtering), hence the larger powe

a spatiotemporal analysis compared to a purely temporal one. 

 

Detecting the contributions of entangled ecological processes 

In the proposed causal modelling framework, the relative strengths of the paths c

be interpreted as reflecting the respective impacts of the underlying ecolog

processes on community turnover: the path from geographical distance (Δx) to β
represents the effect of dispersal on community turnover, the one fr

environmental distance (ΔE) encapsulates the effect of environmental filtering a

the ones from mean community size (<J>) and temporal distance (Δt) encapsul

the effect of demographic stochasticity (ecological drift). Indirect paths from Δx a

Δt through ΔE encapsulate the spatiotemporal structure of environmental variabil

that is, whether environmental variation is mainly spatial or temporal. Fina

differences in community size (ΔJ) can affect differences in species richness (

through the so-called more-individuals hypothesis (Srivastava & Lawton 1998; Sto

et al. 2018), and this may in turn affect community turnover (Fig. 2). Spec

hypotheses on the drivers of these differences could be easily included in t

framework, by adding other paths and driving variables to represent th

hypotheses. 

 

Applied to the fish metacommunity data, this spatiotemporal framework revea

that the turnover in fish community composition at yearly and regional scales

mainly driven by environmental filtering, although demographic stochasticity a

dispersal do contribute to community turnover (Fig. 4a). Another main driver

community turnover is the heterogeneity in richness among local communities (Δ
which we interpret as a nuisance variable here, since we do not have spec

hypotheses on what may drive this heterogeneity beyond differences in commun

size (ΔJ). Alternative – yet non-exclusive – explanations for the observed variability

local species richness include the presence of a natural upstream-downstre
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gradient in species richness with more species near the outlet of the river netwo

(Muneepeerakul et al. 2008, Blanchet et al. 2014) and the introduction of non-nat

species that may not be homogeneous across the river network. Our analysis reve

that such potential drivers may have a dominant impact on the overall f

metacommunity structure at the regional scale. 

 

Applied to the invertebrate metacommunity data, the main driver of commun

turnover was also the heterogeneity in richness among local communities (Fig. 4

This may result from the fact that this dataset comprises perennial and intermitt

sites, and the latter ones generally harbour species-poor, original communities w

taxa especially adapted to recover from disturbances (Datry et al. 2014). The ot

main drivers were demographic stochasticity and dispersal which may be explain

by the intensity of local disturbances and regional disconnections caused by dry

events. Temporal and spatial distances also have a strong effect on environmen

distances as expected for intermittent rivers, as the stochasticity of drying eve

leads to a high spatiotemporal variability of the environment. 

 

For the last two datasets, environmental variation was found to be the m

driver of community dissimilarity. This environmental variation was found to be b

spatially and temporally structured. This highlights the fact that environmen

filtering is both varying across space and time. This further supports our call for

integrated spatiotemporal approach to analyse metacommunity patterns and

better decipher the ecological drivers that shape metacommunity dynamics.  

 

More generally, we found very consistent results among the four case stud

despite the variety of sampled taxonomic groups (plants, aquatic invertebrat

molluscs and fishes) and habitats (lakes, ponds, perennial streams and intermitt

rivers). This may indicate the generality of the significance of the spatiotempo

variation of environmental conditions for metacommunity dynamics. Ecolog

should therefore urgently embrace a more dynamical view of metacommun

assembly and look beyond the predominant perspective which consid

communities as assembled through temporally fixed environmental filters. T

present contribution offers a pragmatic way forward in this direction. 

 

Applying the proposed framework to metacommunity data 

The proposed framework requires temporal data of metacommunity composit

and temporal environmental variables that are thought to be influential for 

system studied. Since the approach is exploratory, it does not require a minim

amount of sampled dates nor of sampled locations (beyond 2) to be operational

the studied datasets, the number of sampled dates varied from 2 to 17, while 
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number of sampled locations varied from 24 to 250. Our approach relies on 

analysis of community dissimilarity indices, so that it can be applied to species-r

communities that contain a substantial amount of rare species with low occurren

frequencies. The proposed approach is easy to conduct, since it does not require a

advanced statistical training. It allows performing a first exploratory analysis

empirical data to assess the respective influences of complementary drivers 

metacommunity dynamics (see Kingsolver & Schemske 1991 and Shipley 2000 

related discussions).  

 

As explained in Box 1, some ecological systems may deviate from our gene

predictions for a variety of reasons. For such systems, users should consider build

alternative heuristic path models that may be biologically more relevant. Su

alternative path models may assume a different set of paths between the variab

depicted in Fig. 2, or they may assume opposite signs for the predicted relationsh

or they may even make use of alternative variables in the analysis. For instan

environmental variables may display cyclic temporal dynamics. In such cases, it m

be more pertinent to consider phase difference rather than absolute time differe

(Δt). Another example is the one of disease or population outbreaks that tra

through space and sometimes constitute a genuine environmental perturbation 

entire communities (e.g., a polyphagous moth defoliator for tree communit

Tenow et al. 2013). In this case again, absolute time may not be a pertinent varia

and may be fruitfully replaced by the state of outbreak (x-vt) where v is the speed

the travelling wave and x is the position of the site considered. Our proposition 

simple and versatile approach to analyse standardized path coefficients, althou

this may not always be the choice to be favoured (Grace & Bollen 2005), so t

researchers should evaluate the pros and cons of this choice for their particular c

study.  

 

Although the proposed framework appears powerful and robust, it is important

keep in mind that only simple linear relationships are modelled in the path analy

Our analysis of simulated datasets supports this simple assumption (Fig. S5-10) a

variable transformation procedures can be used to correct obvious non-linearities

done here for some empirical case studies using log-transformation of geograph

distances. Still, results should be solely interpreted as rough estimates of 

respective influences of dispersal, demographic stochasticity and environmen

filtering on community dynamics. Explored path models are therefore not meant

be predictive. For such an endeavour, process-based dynamical models 

metacommunity dynamics may be a much more suited way forward. 

 

Linking the proposed framework to process-based dynamical models 
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To go beyond the exploratory analysis enabled by the present approach, m

detailed inferences need to be grounded on more mechanistic modelling tailored

the particular case study (Evans et al. 2013, Mouquet et al. 2015). Such proce

based dynamical models, however, require much more data on the system studied

be relevant. By enabling the identification of important drivers of metacommun

dynamics, the proposed framework can help design relevant process-based mod

that focus on the most influential processes.  

 

Several types of process-based models can be distinguished in this respe

Ovaskainen et al. (2017) recently proposed to devise community models 

hierarchical models of individual species dynamics. Such an approach is best sui

for communities with a modest number of species that have sufficiently la

occurrence frequencies to inform the model parameters. This approach is still to

extended to deal with temporal abundance data (Ovaskainen et al. 2017). Other ev

more demanding approaches rely on detailed individual-based models 

metacommunity dynamics that can be compared to field data thanks to comput

intensive statistical techniques such as approximate Bayesian computation (A

Beaumont 2010, Jabot et al. 2013, Overcast et al. 2019). Although seve

metacommunity simulators have been developed and distributed (e.g., Münkemü

& Gallien 2015, Keyel et al. 2016, Sokol et al. 2017, Munoz et al. 2018), tailorin

spatially explicit metacommunity simulator to a specific case study to perform

genuine model-based ABC inference from metacommunity time series is stil

challenge ahead.  

Data accessibility 

Data are available online:  

http://doi.org/10.5281/zenodo.3381338 (freshwater fishes dataset). 

http://doi.org/10.5281/zenodo.3377490 (aquatic invertebrates dataset) 

http://doi.org/10.5281/zenodo.3379615 (molluscs dataset) 

http://doi.org/10.5281/zenodo.3383940 (aquatic plants dataset) 

http://doi.org/10.5281/zenodo.3381340 (simulated datasets) 

Supplementary material 

The C++ code to simulate the spatiotemporal dynamics of metacommunities

available at https://github.com/franckjabot/metacommunity_simulator; the R scri

to perform the path analysis of metacommunity spatio-temporal data and a tuto
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for data formatting are available 

https://github.com/franckjabot/metacommunity-analysis-script 
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Appendices 

Appendix S2: Additional information on the simulated scenarios. 

We here provide some details on the simulated scenarios: the parameter sets us

(Table S2), the numerical results of the path analyses (Table S3) and some descript

patterns of the various scenarios (Fig. S5-S10). These supplementary figures dep

for each of the six scenarios the response of community dissimilarity to the vario

simulated drivers: temporal distance, spatial distance and environmental distance.

 

Table S2. Model parameters used in the simulated scenarios  

In addition, all simulations were performed with a value of r equal to 0.2. 

Scenario I m A σ e1 e2 e3 

1 1.4 0 0 - 0 0 1 

2 0.1 0.03 0 - 0 0 1 

3 80 0 10 0.05 0.2 0 0 

4 5000 0 1000 0.01 0 0.1 0 

5 500 0.5 1000 0.04 0.1 0.1 0 

6 10 0.1 1000 0.06 0 0.3 0.1 
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Table S3. Standardized estimates and p-values for the path analyses on 

simulated scenarios (Fig.4)  

p-values equal to 0 actually mean <0.001. Significant effects at the 1% level wit

Benjamini-Hochberg correction are depicted in bold. The last line reports 

Standardized Root Mean Square Residual (SRMR) that is a standard measure

model fit for path analyses. 

Scenario 1 2 3 4 5 6 

βsor ← <J> -0.003 –  

0.39 

0.006 –  

0.35 

2.10
-4

 – 

0.50 

-0.02 –  

0.23 

-0.01 –  

0.28 

-0.01 

0.25

βsor ← ΔS 0.12 –  0 0.17 –  0 0.03 – 

0.002 

0.17 – 0 0.05 – 0 0.01 

0.11

βsor ← Δt 0.002 –  

0.35 

4.10
-4

 –  

0.49 

-0.003 – 

0.36 

0.01 –  

0.05 

0.006 –  

0.22 

0.04 –

βsor ← ΔE -0.001 –  

0.35 

-0.002 –  

0.38 

0.86 – 0 0.65 – 0  0.87 – 0 0.73 –

βsor ← Δx 0.20 –  0 0.54 –  0 0.01 – 0.11 0.003 –  

0.33 

0.07 – 0 0.01 

0.05

ΔS ← ΔJ 0.005 –  

0.47 

0.005 –  

0.42 

0.08 – 0 0.008 –  

0.29 

0.04 – 0.01 0.07 –

ΔE ← Δt -0.002 –  

0.37 

-0.002 –  

0.38 

3.10
-5

 – 

0.50 

-0.01 –  

0.05 

-0.02 –  

0.01 

0.06 –

ΔE ← Δx -0.003 –  

0.27 

0.009 –  

0.13 

0.71 – 0 -0.003 –  

0.36 

0.43 – 0 2.10
-4

0.49

SRMR 0.009 0.019 0.009 0.023 0.021 0.042
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Fig. S4. Mean local species richness during the burn-in period in the six 

simulated scenarios 

Note that there is no directional trend that would indicate that the transi

dynamics from the initial conditions are not terminated. Note also that in the seco

scenario (b), the temporal dynamics is slower, but without trend. 
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Fig. S5. Descriptive plots for the first scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/480335doi: bioRxiv preprint first posted online Nov. 29, 2018; 

http://dx.doi.org/10.1101/480335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. S6. Descriptive plots for the second scenario 
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Fig. S7. Descriptive plots for the third scenario 
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Fig. S8. Descriptive plots for the fourth scenario 
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Fig. S9. Descriptive plots for the fifth scenario 
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Fig. S10. Descriptive plots for the sixth scenario
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Appendix S3: Additional information on empirical analyses. 

We here provide the numerical results of the path analyses conducted for the fo

datasets (Tables S5-8). 

 

Table S11. Standardized estimates and p-values for the path analysis of th

AFB freshwater fish dataset 

p-values equal to 0 actually mean <0.001. Significant effects at the 5% level wit

Benjamini-Hochberg correction are depicted in bold. SRMR = 0.178. 
Environmental 

variables 

 Width 

of the 

water 

slide 

Width 

of the 

minor 

bed 

Elevation Slope Average 

temperature 

in January 

2011 

Average

temperatu

in July 20

βsor ← <J> -0.06 

–  0 

      

βsor ← ΔS 0.70 

–  0 

      

βsor ← Δt 0.02 

–  

0.01 

      

βsor ← ΔE  0.04 –  

0.006 

0.08 – 

0  

0.19 – 0  0.13 

– 0  

0.04 – 0.004 0.03 – 0.

βsor ← Δx 0.13 

–  0 

      

ΔS ← ΔJ 0.03 

–  

0.11 

      

ΔE ← Δt  0.007 

– 0.32 

     

ΔE ← Δx  0.06 – 

0 

0.07 – 

0 

0.25 – 0  0.17 

– 0  

0.26 – 0  0.12 – 0
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Table S12. Standardized estimates and p-values for the path analysis of th

Irstea aquatic invertebrate dataset  

p-values equal to 0 actually mean <0.001. Significant effects at the 5% level wit

Benjamini-Hochberg correction are depicted in bold. 

Environmental 

variables 

 Temperature pH Conductivity Concentration 

in dioxygen  

Numbe

days sin

the la

rewett

event 

the 

watersh

βsor ← <J> -

0.31 

– 0 

     

βsor ← ΔS 0.47 

– 0 
     

βsor ← Δt 0.01 

– 

0.17 

      

βsor ← ΔE 
 0.07 – 0 

0.11 

– 0 
0.10 – 0 -0.06 – 0 0.03 – 0

βsor ← Δx 0.25 

– 0 
     

ΔS ← ΔJ 0.28 

– 0 
     

ΔE ← Δt 
 0.08 – 0 

0.11 

– 0 
0.04 – 0 0.02 – 0.08 0.18 –

ΔE ← Δx 
 0.02 – 0.01 

0.27 

– 0 
0.31 – 0 0.04 – 0 0.02 –

 

  

e 

th a 

r of 

nce 

st 

ing 

of 

hed 

0.02 

– 0 

– 0 
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Table S13. Standardized estimates and p-values for the path analysis of th

mollusc dataset 

p-values equal to 0 actually mean <0.001. Significant effects at the 5% level wit

Benjamini-Hochberg correction are depicted in bold. 
Environmental 

variables 

 Pond 

size 

Vegetation 

cover  

Litter 

amount 

Pond 

depth 

Water 

quality 

Stability Ann

rain

βsor ← <J> -

0.10 

– 0 

       

βsor ← ΔS 0.12 

– 0  

       

βsor ← Δt 0.08 

– 0  

       

βsor ← ΔE  0 – 

0.28 

0.15 – 0  -0.02 – 

0.003 

0.10 – 

0  

0.06 – 

0 

0.05 – 

0  

0.0

0.0

βsor ← Δx 0.06 

– 0  

       

ΔS ← ΔJ 0.06 

– 0  

       

ΔE ← Δt        0.0

0

ΔE ← Δx  0.07 

– 0  

0.01 – 

0.11 

0.13 – 0  0.02 – 

0.006  

0.07 – 

0 

0.15 – 

0 
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th a 

nual 

nfall 

 

 

 

2 – 

02 

 

 

7 – 
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Table S14. Standardized estimates and p-values for the path analysis of th

aquatic plant dataset 

p-values equal to 0 actually mean <0.001. Significant effects at the 5% level wit

Benjamini-Hochberg correction are depicted in bold. 

Environmental 

variables 

 Chlorophyll a 

concentration 

Number of ye

since the las

drying even

βsor ← <J> -0.24 –  0   

βsor ← ΔS 0.47 –  0   

βsor ← Δt 0.01 –  0.33   

βsor ← ΔE  0.16 –  0 -0.06 –  0.04

βsor ← Δx 0.09 –  0.01   

ΔS ← ΔJ 0.29 –  0   

ΔE ← Δt  0.09 –  0.02 -0.03 –  0.29

ΔE ← Δx  0.002 –  0.44 0.13 –  0.001
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