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Structural Risk Minimization for Switched System Identification

Louis Massucci, Fabien Lauer, Marion Gilson

Abstract— This paper deals with the identification of hybrid
dynamical systems that switch arbitrarily between modes. In
particular, we focus on the critical issue of estimating the
number of modes. A novel method inspired by model selection
techniques in statistical learning is proposed. Specifically, the
method implements the structural risk minimization principle,
which relies on the minimization of an upper bound on
the expected prediction error of the model. This so-called
generalization error bound is first derived for static switched
systems using Rademacher complexities. Then, it is extended to
handle non independent observations from a single trajectory of
a dynamical system. Finally, it is further tailored to the needs
of model selection via a uniformization step. An illustrative
example of the behavior of the method and its ability to recover
the true number of modes is presented.

I. INTRODUCTION

Hybrid systems are dynamical systems that include both
interacting continuous and discrete dynamical behaviors.
This results in systems that switch, according to the value
of the discrete variables, between different operating modes
with continuous dynamics. This paper focuses on switched
linear systems, for which the continuous dynamics are linear
and the switching mechanism is arbitrary, i.e., the discrete
variable arbitrarily triggering the switch from a mode to an
other is an unobserved external input. The identification of
such systems, i.e., their estimation from input-output data,
is a complex problem whenever the active mode associated
to every data point is unknown [1]. A number of efficient
methods have been devised over the last 15 years, but a
critical issue remains: the estimation of the number of modes.
Indeed, as reviewed in [2], switched system identification
methods can be classified into two groups: those that work
with a fixed number of modes (such as [3], [4], [5]), and
those that estimate the minimal number of modes satisfying
a predefined threshold on the error (such as [6], [7], [8] or [9]
which uses a penalized minimization form of this principle
rather than a strict constraint). Therefore, in all cases, the
methods require the value of a hyperparameter that directly
implies the number of modes for the model.

In this paper, we propose to tackle the model selection
problem of estimating the number of modes with a structural
risk minimization (SRM) approach inspired from statistical
learning [10]. This approach relies on the minimization of
an upper bound on the expected error of the model, called
the risk or generalization error. Much of learning theory is
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FL is with the Université de Lorraine, CNRS, LORIA, F-54000 Nancy,
France fabien.lauer@loria.fr
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devoted to the derivation of such generalization error bounds,
however most often with an independence assumption on the
data, which is not compatible with the system identification
context where data points come from a single (or a few)
system trajectory. Alternatively, most works related to error
bounds for dependent data are based on measures of depen-
dence called mixing coefficients [11] and the independent
block sequence construction due to [12]. These ideas were
exploited to produce non-asymptotic error bounds for system
identification in [13], [14]. In line with more recent work in
learning theory, [15] derived error bounds for dependent data
based on Rademacher complexities.

In this paper, we combine the general framework of [15]
with recent results on Rademacher complexities of static
switched models [16] to derive the first generalization error
bound for switched system identification. Then, we derive an
SRM approach to estimate the number of modes on the basis
of this bound. This requires to produce another uniform error
bound suitable for the practical setting of model selection for
most switched system identification algorithms. To the best
of our knowledge, this is the first time that such statistical
learning techniques are applied in this switched system
identification context.

Paper organization: Section II introduces the hybrid sys-
tem framework and formally exposes the identification prob-
lem. Section III gives the necessary background on learning
theory and derives the error bound for switched systems.
Then, Section IV details the proposed model selection ap-
proach, which is illustrated on a numerical example in
Section V. Section VI concludes the paper and discusses
open issues.

Notation: For any positive integer n, [n] denotes the set of
integers from 1 to n. An upright bold letter with a subscript,
e.g., tn, denotes a sequence (ti)1≤i≤n of length n, which
should not be confused with the vector ti of index i. Capital
letters are used for random variables. Given two sets X and
Y , YX denotes the set of functions from X to Y .

II. GENERAL FRAMEWORK

In this paper, we focus on discrete-time Single Input Single
Output (SISO) Autoregressive with external input (ARX)
hybrid systems of the form

yi = x
T
i θqi + ei (1)

with yi ∈ R the output, xi ∈ Rd the regression vector,
qi ∈ {1, . . . , C} the discrete state or mode, C the number
of modes, θj with j = 1, . . . , C the parameter vector of the
jth mode and ei ∈ R a noise term. The regressor xi ∈ Rd,



d = na + nb, with the model orders na and nb, is given by:

xi = [−yi−1, . . . ,−yi−na , ui−1, . . . , ui−nb ]
T
, (2)

where the ui−k’s denote the delayed inputs.
The goal of switched system identification is to find a

model f = {fj}Cj=1 made of C component submodels fj
that estimate the continuous behaviors of the system in the
different modes. The problem can be set as follows.

Problem 1. Given a data set D = {(xi, yi)}ni=1 and a set of
possible submodels F , estimate the number of submodels C,
the submodels f = {fj}Cj=1, f ∈ FC , with FC = F ×F ×
· · · × F and the switching sequence q = (qi)1≤i≤n ∈ [C]n.

In this paper, we concentrate on the model selection sub-
problem of determining the number C of submodels. More
precisely, we consider the general scheme in Algorithm 1, in
which we assume that we have access to a generic switched
system identification algorithm working with a fixed C to
estimate f ∈ FC and q ∈ [C]n. In this scheme, the generic
algorithm is applied for all number of modes C within a
predefined range. Then, the “best” model is selected on
the basis of a criterion J(C).1 Here, we develop a model
selection method based on a criterion J(C) inspired by the
SRM principle in statistical learning. This criterion, derived
below, will basically take the form of a generalization error
bound.

Algorithm 1 General model selection scheme
Require: The data set D = {(xi, yi)}ni=1 and a maximum

number of modes C
for C = 1 to C do

Run the generic algorithm to estimate a model f with
C modes
Compute a criterion J(C)

end for
Select the “best” number of modes

Ĉ = argmin
C∈[C]

J(C)

return the selected model with Ĉ modes

III. ERROR BOUNDS FOR SWITCHED SYSTEM
IDENTIFICATION

A short introduction to learning theory and regression error
bounds is presented in Sect. III-A, before the exposition of
error bounds dedicated to static switched systems in Sect. III-
B. Then, we discuss the non-independent case in Sect. III-C
and finally derive a bound applicable to switched dynamical
systems in Sect. III-D.

A. Preliminaries

Let X be the input space and Y the output space with Y =
[−M,M ] for some M > 0. A relationship between inputs

1J(C) also depends on the estimated model f ∈ FC , but we keep the
notation short to put the emphasis on the number of modes C.

and outputs is characterized by an unknown probability
distribution of a random pair Z = (X,Y ) ∈ X × Y = Z ,
of probability density function p(x, y). Given a realization
of a sample Zn = (Zi)1≤i≤n = ((Xi, Yi))1≤i≤n of n
independent copies of Z, the aim of regression is to learn
the model f : X → Y that minimizes, over a certain model
class F , the generalization error (or risk)

L(f) = EX,Y `(f,X, Y ), (3)

defined as the expected value

EX,Y `(f,X, Y ) =

∫
X×Y

`(f, x, y)p(x, y) dxdy (4)

of the loss function `(f,X, Y ). This loss function measures
the pointwise error in predicting f(x) instead of y and is
typically of the form `(f,X, Y ) = |y − f(x)|p with p ∈
{1, 2}.

As the probability distribution of Z is unknown, we cannot
compute the expected value and many methods minimize
instead the empirical risk

L̂(f) =
1

n

n∑
i=1

`(f,Xi, Yi), (5)

for a realization of Zn = zn. So-called generalization error
bounds are upper bounds on the risk (3) that typically involve
the empirical risk (5) and hold in the non-asymptotic case
with high probability and uniformly over the model class F ,
i.e., bounds of the form:

P
{
∀f ∈ F , L(f) ≤ L̂(f) + ε(n,F , δ)

}
≥ 1− δ. (6)

A large part of learning theory is devoted to the character-
ization of the tightest confidence interval ε(n,F , δ) in (6),
which typically depends on the capacity of the model class
F . More precisely, the capacity of the loss class

L = {`(z) = `(f, x, y), f ∈ F} (7)

must be considered, and can be measured for instance with
the Rademacher complexity, as initiated by [17], [18].

Definition 1 (Rademacher complexity). Given a sequence
Zn = (Zi)1≤i≤n of random variables Zi ∈ Z , the empirical
Rademacher complexity of a class L of functions from Z to
R is defined as

R̂Zn(L) = Eσn

[
sup
`∈L

1

n

n∑
i=1

σi`(Zi)

∣∣∣∣∣Zn
]
, (8)

where σn = (σi)1≤i≤n is a sequence of Rademacher
variables, i.e., random variables uniformly distributed in
{−1,+1}. The Rademacher complexity of L is

Rn(L) = EZnR̂Zn(L). (9)

A general bound based on the Rademacher complexity is
the following:

Theorem 1 (Theorem 1 in [19]). Let L be a class of
functions from Z into [0, B] and Zn = (Zi)1≤i≤n be
a sequence of independent copies of the random variable



Z ∈ Z . Then, for any fixed δ ∈ (0, 1), with probability at
least 1− δ, uniformly over all ` ∈ L,

EZ`(Z) ≤
1

n

n∑
i=1

`(Zi) + 2R̂Zn(L) + 3B

√
log 2

δ

2n
. (10)

To derive risk bounds from Theorem 1, the loss function
must be bounded. Given a bounded output Y ∈ [−M,M ],
this can be obtained by clipping the model.

Definition 2 (Clipping). For any M > 0 and t ∈ R, we
define the clipped version t of t as

t =

 −M, if t < −M
t, if t ∈ [−M,M ]
M, if t > M.

(11)

The clipped version f of a function f : X → R is obtained
by clipping its output: ∀x ∈ X , f(x) = f(x). And F denotes
the clipped function class {f : f ∈ F}.

Indeed, since for any (x, y) ∈ X × Y , `(f, x, y) ≥
`(f, x, y), the risk (3) of the clipped model, L(f), is always
smaller than L(f) and we can consider that the final result
of the estimation is f instead of f and derive upper bounds
on L(f).

Example 1 (Linear regression). For linear regression in X =
Rd, we can consider the model class

F = {f : f(x) = wTx, w ∈ Rd, ‖w‖ ≤ Rw} (12)

and the loss class (induced by the clipped model)

L = {` ∈ [0, 4M2]Z : `(z) = (y − f(x))2, f ∈ F}.

Using a contraction argument (see [19]), the Rademacher
complexity of L can be related to that of F , with R̂Zn(L) ≤
4MR̂Xn

(F), which in turn can be bounded using standard
computations for Rademacher complexities [18] as

R̂Xn
(F) ≤

Rw
√∑n

i=1 ‖Xi‖2
n

. (13)

Thus, Theorem 1 leads to the following error bound for linear
regression: for any δ ∈ (0, 1), with probability at least 1− δ,
for all f ∈ F as in (12),

L(f) ≤ L̂(f) +
8MRw

√∑n
i=1 ‖Xi‖2

n
+ 12M2

√
log 2

δ

2n
.

(14)

B. Switching Regression Bounds

When estimating arbitrarily switching systems (in the
static context of switching regression or for hybrid dynamical
system identification), the selection of the active submodel
among the C submodels fj is embedded in the loss function:

`(f , x, y) = min
j∈[C]

|y − fj(x)|p (15)

with p ∈ {1, 2}. By minimizing the error thus defined, we
ask that at least one of the submodels fj ∈ F accurately
approximates the output y.

Error bounds for switching regression in the static case
were obtained in [16] through the decomposition of the
Rademacher complexity of the loss class based on (15) in
terms of the one of F :

R̂Zn(L) ≤ p(2M)p−1C R̂Xn
(F). (16)

Example 2 (Switching linear regression). For switching
linear regression with X ⊆ Rd, F as in (12) and the
loss (15) with p = 2, Theorem 1 and (16) combined with (13)
guarantee that, for any δ ∈ (0, 1), with probability at least
1− δ, for all f ∈ FC ,

L(f) ≤ L̂(f) +
8MCRw

√∑n
i=1 ‖Xi‖2

n
+ 12M2

√
log 2

δ

2n
.

Note that, due to the independence assumption in Theo-
rem 1, this bound cannot be used directly for switched system
identification, where xi depends on lagged outputs yi−k due
to (2).

C. Bounds for Dependent Data

The following assumes that the sample Zn is taken from
a stationary β-mixing process.

Definition 3 (Stationarity). A sequence of random variables
Z = {Zt}∞t=−∞ is said to be stationary if for any t
and non-negative integers m and k, the random vectors
(Zt, . . . , Zt+m) and (Zt+k, . . . , Zt+k+m) have the same
distribution.

The time index t does not affect the distribution of a
variable Zt in a stationary sequence.

Definition 4 (β-mixing). Let Z = {Zt}∞t=−∞ be a stationary
sequence of random variables. For any i, j ∈ Z∪{−∞,∞},
let σji denote the σ-algebra generated by the random vari-
ables Zk, i ≤ k ≤ j. Then, for any positive integer k, the
β-mixing coefficient of the stochastic process Z is defined
as

β(k) = EB∈σ0
−∞

{
sup
A∈σ∞k

|P[A|B]− P[A]|

}
. (17)

If β(k)→ 0 as k →∞, then Z is said to be β-mixing.

For a sequence of independent variables, P[A|B] = P[A]
in (17) and β(k) = 0 for all k ≥ 1. For β-mixing processes,
the dependence between two events separated by k time
steps weakens as a function of k. For more details on
mixing processes, refer to [11]. In this paper, we simply rely
on Definition 4 to characterize the degree of dependence
between data.

Rademacher complexity bounds for dependent data were
obtained in [15] by applying the independent block sequence
construction of [12]. In short, the idea is to see the whole data
set as blocks of length a and by considering only a subset of
µ blocks instead of the set of n data points (see Figure 1).
By doing so, for β-mixing processes, concentration inequal-
ities can be applied to a sequence of independent blocks
distributed as those in the odd subset while controlling the



Fig. 1. Illustration of the block sequence with n = 20, a = 2 data points
per block and µ = 5 odd blocks (white) and µ even blocks (grey). The
sample Zµ = (Z1, Z2a+1, Z4a+1, . . . , Z8a+1) contains the first point of
each odd block. The dependence between the odd blocks (and the points of
Zµ) decreases with the length a of the even blocks separating them.

error thus introduced. This leads to the following adaptation
of Theorem 1.

Theorem 2 (Theorem 2 in [15]). Let L be a class of
functions from Z into [0, B] and Zn = (Zi)1≤i≤n be a
sequence drawn from a stationary β-mixing distribution. For
any µ, a > 0 with 2µa = n and δ > 4(µ − 1)β(a), with
probability at least 1− δ, uniformly over all ` ∈ L,

E`(Z1) ≤
1

n

n∑
i=1

`(Zi) + 2R̂Zµ(L) + 3B

√
log 4

δ′

2µ
, (18)

where δ′ = δ − 4(µ− 1)β(a) and Zµ = (Z2a(i−1)+1)1≤i≤µ
is a sample of length µ as in Fig. 1.

Compared with Theorem 1, Theorem 2 shows a confidence
interval that decreases with the “effective number of data”
µ = n/2a instead of the original number n. In addition, the
confidence interval also slightly increases due to the use of
δ′ instead of δ.

D. Bounds for Switched System Identification

We now have all the ingredients needed to derive a new
generalization error bound for switched system identification.

Theorem 3. Let FC be a vector valued function class with
C components from F as in (12) and the loss ` be as in (15).
Then, for any sample Zn = ((Xi, Yi))1≤i≤n ∈ (Rd × Y)n
drawn from a stationary β-mixing distribution, and for any
µ, a > 0 with 2µa = n and δ > 4(µ − 1)β(a), with
probability at least 1− δ, the following inequality holds for
all f ∈ FC:

L(f) ≤ L̂(f) +
2p(2M)p−1CRw

√∑µ
i=1 ‖X2a(i−1)+1‖2

µ

+ 3(2M)p

√
log 4

δ′

2µ
,

where δ′ = δ − 4(µ− 1)β(a).

Proof: Apply Theorem 2 and bound the Rademacher
complexity of the loss class based on (15) with (16) and
(13).

IV. MODEL SELECTION

We now turn to the model selection issue of estimating the
number of modes, for which we derive an SRM approach.
The SRM principle consists in tuning the hyperparameters by
minimizing a generalization error bound, which in our case

is given by Theorem 3. However, before we can proceed
with the practical implementation in Sect. IV-B, this bound
will be tailored to the specific needs of model selection in
Sect. IV-A.

A. Uniform Bounds

Since the general scheme in Algorithm 1 requires to
compute the bound for all C ∈ [C] with the same data set,
we need a bound that holds uniformly over all C. In addition,
the bound in Theorem 3 holds with a predefined radius Rw
for the model class (12), whereas most practical algorithms
for switched system identification do not impose constraints
on the parameter vectors wj . To fill this gap between theory
and practice, we would need a bound in which the radius
Rw could be computed a posteriori as

Rw = max
j∈[C]

‖wj‖ (19)

from the estimated wj’s. This can usually be obtained via
a uniformization over a well chosen discretization, as, e.g.,
in Appendix F of [16]. However, here, additional terms in
Theorem 3 due to the dependence of the data breaks the
possibility to apply the same technique and we have to rely
on a predefined grid of K discretized values,

G = {R1, . . . , RK},

with RK = Rmax. Then, we can derive a bound in which
the radius Rw is replaced by its discretized value

R̃w = min
k∈[K]

Rk, s.t Rk ≥ Rw, with Rw as in (19).

(20)

Theorem 4 (Uniform Bound). Given a constant Rmax, let F
be as in (12) with Rmax instead of Rw. Then for a sample Zn
of size n drawn from a stationary β-mixing distribution, and
for any µ, a > 0 with 2µa = n, and δ > 4CK(µ− 1)β(a),
with probability at least 1− δ:

∀C ∈ [C], ∀f ∈ FC ,

L(f) ≤L̂(f) +
2p(2M)p−1CR̃w

√∑µ
i=1 ‖X2a(i−1)+1‖2

µ

+ 3(2M)p

√
log(CK) + log 4

δ′

2µ
, (21)

with δ′ = δ − 4CK(µ− 1)β(a) and R̃w as in (20).

Note that the cost of the uniformization is merely a
log(CK) term within the second square root.

Proof: Let Fk be defined as in (12) with Rk instead of
Rw. For any fixed C, Rk and δ′0 > 0, let δ0 = δ′0 + 4(µ −
1)β(a) and

ε(C,Rk, δ
′
0) =

2p(2M)p−1CRk

√∑µ
i=1 ‖X2a(i−1)+1‖2

µ

+ 3(2M)p

√
log 4

δ′0

2µ
.



Then, Theorem 3 gives

P
{
∃f ∈ FCk , L(f) > L̂(f) + ε(C,Rk, δ

′
0)
}
≤ δ0.

Thus, by the union bound and CK applications of Theorem 3
with confidence δ0, we have

P
{
∃C∈ [C], k∈ [K],f ∈FCk , L(f) ≥ L̂(f) + ε(C,Rk, δ

′
0)
}

≤
C∑
C=1

K∑
k=1

P
{
∃f ∈ FCk , L(f) ≥ L̂(f) + ε(C,Rk, δ

′
0)
}

≤ CKδ0.

Then, for any δ = δ′ + 4CK(µ − 1)β(a) with δ′ > 0, set
δ′0 = δ′/CK. This leads to δ0 = δ/CK and thus

P
{
∀C∈ [C],k∈ [K],f ∈FCk , L(f) ≤ L̂(f) + ε(C,Rk, δ

′
0)
}

= 1− P
{
∃C ∈ [C], k ∈ [K],f ∈ FCk ,

L(f) > L̂(f) + ε(C,Rk, δ
′
0)
}

≥ 1− CKδ0 = 1− δ (22)

with

ε(C,Rk, δ
′
0) =

2p(2M)p−1CRk

√∑µ
i=1 ‖X2a(i−1)+1‖2

µ

+ 3(2M)p

√
log(CK) + log 4

δ′

2µ
.

For any C ∈ [C], we can rewrite FC with radius Rmax as
FC =

⋃
k∈[K] FCk ; and any f ∈ FC also belongs to FCk

with, by (20), k such that Rk = R̃w. Thus, (22) is equivalent
to (21) and the statement is proved.

B. Proposed Method
The proposed model selection method for switched system

identification is now detailed. In Sect. IV-A, we derived a
uniform generalization error bound that holds uniformly over
any number of modes C ≤ C. Thus, a criterion J(C) can
be devised on the basis of this bound to work in the general
model selection framework of Algorithm 1. More precisely,
the structural risk minimization principle amounts in this case
to selecting the “best” number of modes Ĉ as the one that
minimizes the bound (21) on the generalization error. By
leaving aside constant terms that do not depend on C nor
on the estimated model f in the bound, the model selection
procedure can be written as

Ĉ = argmin
C∈[C]

J(C), (23)

where

J(C) = L̂(f) + ε(f , C), (24)

ε(f , C) =
2p(2M)p−1CR̃w

√∑µ
i=1 ‖x2a(i−1)+1‖2

µ

with a and µ such that 2µa = n. Note in particular that the
precise value of β(a) in the bound of Theorem 3 does not
influence the model selection procedure and the values of
J(C).

V. NUMERICAL EXAMPLE
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Fig. 2. Top: the empirical error L̂n(f) decreases as a function of the
number C of modes. Middle: The second term in J(C) (24), i.e., ε(f , C),
increases with C. Bottom: the sum of the two terms, i.e., J(C), has a
minimum at Ĉ = 3 which coincides with the true number of modes.

In this section, we illustrate the method proposed in
Sect. IV on an example taken from [7]: the identification
of a switched system composed of C = 3 linear subsystems
of orders na = nb = 2 with parameter vectors

θ1 = [−0.4 0.25 − 0.15 0.08]T , (25)

θ2 = [1.55 − 0.58 − 2.1 0.96]T ,

θ3 = [1 − 0.24 − 0.65 0.30]T .

This system is used to generate a data set of n = 400 000
points with (1)–(2) under the following conditions. The
excitation input ui is a zero-mean Gaussian signal of unit
variance. The noise ei is a white Gaussian noise whose
magnitude is such that the Signal to Noise Ratio (SNR) is



Fig. 3. Histogram of the estimated number of modes Ĉ over 100 trials
with true C = 3.

equal to 10 dB with respect to the output signal. The active
mode qi is uniformly distributed in {1, 2, 3}.

Algorithm 1 is applied with J(C) computed as in (24) for
p = 1, a = 2 and C = 10. The K-LinReg algorithm [5],
which remains particularly efficient on large data sets with a
satisfactory accuracy, is used to estimate a model f with C
modes at each iteration. Figure 2 illustrates the behavior of
Algorithm 1 and J(C) together with its two constituents: the
empirical error L̂n(f) and the term ε(f , C) inherited from
the bound (21). On the one hand, as submodels are added
to f and the number C of modes is increased, the error
naturally decreases (top plot). On the other hand, the model
complexity increases with C, which implies an increase of
ε(f , C) (middle plot). Finally, the minimum of J(C) at Ĉ =
3 (bottom plot) offers the optimal trade-off between the two
terms and leads to the correct estimation of the number of
modes.

To evaluate the robustness of the method over several data
sets, another set of experiments is conducted. One hundred
new data sets are generated under the same conditions as
before, but with colored noise ẽi such that ẽi − 0.35ẽi−1 =
ei + 0.5ei−1 and a signal-to-noise ratio of 5dB. Figure 3
shows the histogram of the estimated number of modes Ĉ. As
can be seen from these results, the method correctly estimates
the number of modes (with Ĉ = 3) in 65% of the trials
and remains close to the true value otherwise, even in this
situation with a large and colored noise.

VI. CONCLUSIONS

This paper investigated a model selection method inspired
by the structural risk minimization principle from statistical
learning to estimate the number of modes in switched system
identification. For this method, new generalization error
bounds for switched dynamical systems were derived.

Preliminary results showed that the proposed approach
can recover the true number of modes in the considered
experimental setting. However, the error bounds on which
our model selection method is based inherently depend on
the number of data. Currently, the method is effective only

when this number is sufficiently large in order to make
the confidence interval of the bound of the same order of
magnitude as the empirical risk L(f) and correctly balance
the two terms. This is in part due to the dependence in the
data, which degrades the confidence interval through the use
of the number of blocks µ = n/2a instead of the number of
data n. Tightening the bound thus appears as an important
issue to make the method applicable to a broader range of
problems, especially for the case p = 2.

Future work will also concentrate on the characterization
of the β-mixing coefficient for switched systems, for instance
by extending results available for linear systems [13], [14].
Though the value of this coefficient does not directly influ-
ence the proposed model selection strategy, its computation
would be needed in practice to apply our generalization
bounds as guarantees on the prediction error.
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