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Introduction

The complexity of the action of a connected reductive group is a very important birational invariant in studying the geometry of the action. This is the minimal codimension of an orbit of a Borel subgroup. The normal algebraic varieties of complexity zero are the spherical varieties, they constitute a natural generalization of toric varieties and have a well understood geometry [START_REF] Timashev | Homogeneous spaces and equivariant embeddings[END_REF]Chap. 5]). The next step is the study of varieties of complexity one, which is not so well developed, except for the case of actions by tori ( [START_REF] Kempf | Toroidal embeddings[END_REF], [START_REF] Arzhantsev | Log terminal singularities, Platonic tuples and iteration of Cox rings[END_REF], [START_REF] Liendo | Normal singularities with torus actions[END_REF]). In general, two cases are possible for a normal variety of complexity one: either it is almost homogeneous (i.e. there exists a dense orbit), or it admits a one-parameter family of spherical orbits. The first examples of the former case consist of almost homogeneous SL 2 -threefolds, that is, normal SL 2 -varieties of dimension three with a dense orbit. Various aspects make this class of examples especially important, and one can view their study as a preliminary step toward a better understanding of general almost homogeneous varieties of complexity one. For example, these examples yield all homogeneous spaces of complexity and rank one via "parabolic induction", as shown by Panyushev in [START_REF] Panyushev | On homogeneous spaces of rank one[END_REF].

An almost homogeneous SL 2 -threefold X can be viewed as a normal embedding of a homogeneous space of the form SL 2 /F where F is a finite subgroup. This means that the orbit morphism associated to a point in the dense orbit factors through a SL 2 -equivariant open immersion SL 2 /F -→ X. This point of view is interesting because one can take advantage of the combinatorial data defining the embedding to approach various questions. The setup of this combinatorial framework goes back to the seminal work of Luna and Vust ([22]). It has been considerably clarified in the complexity zero case by Brion, Knop, Luna, Vust, and by Timashev in the complexity one case ( [START_REF] Timashev | Classification of G-varieties of complexity one[END_REF]). In fact Timashev's description doesn't restrict to almost homogeneous spaces but allows to classify varieties in any fixed equivariant birational class in terms of objects of convex geometry. The combinatorial description of normal SL 2 /F -embeddings has been obtained by Luna and Vust ([22]) when F is trivial, Moser-Jauslin ( [START_REF] Moser-Jauslin | Normal embeddings of SL 2 /Γ[END_REF]) who extended the classification of Luna-Vust for arbitrary F , and Timashev ( [START_REF] Timashev | Classification of G-varieties of complexity one[END_REF]) who put these results in his framework.

In the present work, we mainly focus on Cox rings of normal SL 2 /F -embeddings. The Cox ring of a normal variety X, denoted Cox(X), is an important invariant that encodes a lot of geometric information, see [START_REF] Arzhantsev | Cox Rings[END_REF] for a comprehensive reference on this rich subject. It is the ring of global sections of the Cox sheaf, which is, roughly speaking, the direct sum

R X := [F ]∈Cl(X) F
indexed by elements of the class group of X, i.e. the group of isomorphism classes of divisorial sheaves on X. Under mild assumptions, R X can be endowed with a structure of quasi-coherent Cl(X)-graded O Xalgebra, whence a structure of Cl(X)-graded ring on Cox(X). When R X is of finite type as an O X -algebra, its relative spectrum X is a normal Γ Cl(X) -variety over X, where Γ Cl(X) is the diagonalizable group with character group Cl(X). This is called the characteristic space of X, and the structural morphism X → X is a good quotient by Γ Cl(X) . For a finitely generated Cox ring, its spectrum X is called the total coordinate space of X, and the affinization morphism X → X is a Γ Cl(X) -equivariant open immersion whose image has a complement of codimension 2 in X. When X is smooth, the characteristic space is a Γ Pic(X) -torsor over X called the universal torsor.

Let X be a normal SL 2 /F -embedding. In fact, we consider the equivariant Cox ring of X introduced and studied in [START_REF] Vezier | Equivariant Cox ring[END_REF]. For the case of SL 2 , it is canonically isomorphic to the ordinary Cox ring ([33, 2.3.4]). However, we take advantage of the structure of graded SL 2 -algebra provided by the construction of the equivariant Cox ring. Also, we occasionally use general results from [START_REF] Vezier | Equivariant Cox ring[END_REF]. In particular, Cox(X) is a finitely generated normal domain, and we use the description of the k-subalgebra of U -invariants Cox(X) U , where U is the unipotent part of the standard Borel subgroup B of SL 2 . For the convenience of the reader, we recall in Section 2 useful facts on normal rational varieties of complexity one and their (equivariant) Cox ring. In Section 3, we describe the class group of X by generators and relations. Then, we provide a combinatorial criterion for X to have log terminal singularities, extending a previous result of Degtyarev ([11]).

The study of the Cox ring of X starts in Section 4.1. As an application of [33, 3.4.3], we obtain a criterion of combinatorial nature for the total coordinate space X to have log terminal singularities. This is an interesting question, particularly since the work of Gongyo, Okawa, Sannai and Takagi characterizing varieties of Fano type via singularities of Cox rings ( [START_REF] Gongyo | Characterization of varieties of Fano type via singularities of Cox rings[END_REF]).

In Section 4.2, we put to light some interesting new phenomena with regard to the special fiber, i.e. the schematic fiber at zero of the quotient morphism

X // SL2
----→ A N k , where N is the number of SL 2 -invariant prime divisors in X ( [33, 2.8.5]). The general fibers of this morphism are isomorphic to the total coordinate space of the dense orbit ([33, 2.8.1]). For a spherical variety, the quotient morphism is faithfully flat, and the special fiber is a normal affine variety which is moreover horospherical, in the sense that the product of two irreducible representations, say V λ , V µ , in its coordinate algebra is their Cartan product V λ+µ ([8, 3.2.3]). These nice geometric properties are important ingredients for the determination of a presentation of the Cox ring of a spherical variety in loc. cit. We show by examples that these properties do not extend to the complexity one world. Nevertheless, we give a criterion for the special fiber to be a normal variety, in terms of the basic geometry of X.

Pursuing our investigation, we turn to the study of the iteration of Cox rings for X in Sections 4.3 and 4.4. Roughly, iteration of Cox rings consists in studying the sequence of total coordinate spaces ... → X(n) → X(n-1) → ... → X(2) → X, where X(n) denotes the total coordinate space of X(n-1) . A basic question is whether this sequence is finite, in which case X is said to have finite iteration of Cox rings, and the last obtained Cox ring is called the master Cox ring. By virtue of [33, 3.5.1], X has finite iteration of Cox rings with a factorial master Cox ring. More precisely, we obtain Proposition. The length of the iteration of Cox rings sequence of X is bounded by 4.

See the statement 4.4.13 where more precise bounds are given depending on the finite subgroup F ⊂ SL 2 . Also, we obtain a commutative diagram

X(m) ... X(2) X Ỹ (m) ... Ỹ (2) Ỹ ,
where the horizontal arrows are structural morphisms of characteristic spaces, the vertical arrows are almost principal U -bundles, and all squares are cartesian. Moreover, X(m) , Ỹ (m) are factorial and Ỹ is the total coordinate space of a certain variety of complexity one under the standard maximal torus of SL 2 . Finally, we develop in Section 4.5 an approach for the description of the Cox ring by generators and relations. In the same way as it is important for projective geometry to have explicit homogeneous coordinates, it is an important problem to find an explicit description by generators and relations of the Cox Let X be a normal variety. We say that X has rational singularities if there exists a proper birational morphism

ϕ : Z → X,
where Z is a smooth variety (a resolution of singularities), and such that R i ϕ * O Z = 0, ∀i > 0. This last property doesn't depend on the choice of a resolution. We say that X has log terminal singularities if the following conditions are satisfied:

• X is Q-Gorenstein.
• There is a resolution of singularities ϕ : Z → X such that

K Z = ϕ * K X + α i E i , α i > -1,
where the sum runs over the exceptional divisors E i of ϕ.

Normal rational varieties of complexity one

Let G be a connected reductive group, and (X, x) be a pointed normal G-variety of complexity one. Suppose moreover that X is a rational variety, so that its Cox ring is finitely generated ([33, 3.1.4]; this is verified e.g. when X is almost homogeneous). Fix a Borel subgroup B, a maximal torus T in B, and denote by U the unipotent part of B. Suppose that G has trivial Picard group, so that any divisorial sheaf on X admits a G-linearization (see [33, 2.2.2]; this can always be achieved by replacing G with a finite cover). In this section, we recall facts on the geometry of X following [START_REF] Timashev | Homogeneous spaces and equivariant embeddings[END_REF], [START_REF] Ponomareva | Invariants of the Cox rings of low-complexity double flag varieties for classical groups[END_REF], and [START_REF] Vezier | Equivariant Cox ring[END_REF]. Definition 2.1.1. [START_REF] Ponomareva | Invariants of the Cox rings of low-complexity double flag varieties for classical groups[END_REF][START_REF] Batyrev | On the geometry of SL 2 -equivariant flips[END_REF] The prime divisors in X lying in the image of π * are the parametric divisors. The finite set of B-stable prime divisors that are not parametric is the set of exceptional divisors. For an exceptional divisor E, the image of π |E is either dense or a point in P 1 k . In the former case, we say that E dominates P 1 k , in the latter case, the image point is called exceptional.

B-stable divisors

2.2

The algebras Cox G (X) U and Cox(X) U Suppose that O(X) * k * , so that both Cox G (X) and Cox(X) are well defined and finitely generated ( [33, 3.1.4]). We recall the description of the k-algebra Cox G (X) U of U -invariants obtained by Ponomareva in [START_REF] Ponomareva | Invariants of the Cox rings of low-complexity double flag varieties for classical groups[END_REF]Thm. 4] and generalized in [33, 3.2.3]. Also, considering the canonical structure of U -algebra on Cox(X), we recall an interpretation of Cox(X) U as the Cox ring of a complexity one T -variety ( [33, 3.3.2]). Notation 2.2.1. Let (x i ) i∈I be the finite family of exceptional points with respective homogeneous coordinates [α i : β i ]. For all i ∈ I, let (E xi j ) j be the finite family of exceptional divisors that are sent to x i by π. Let (E k ) k be the finite family of exceptional divisors dominating

P 1 k . Equip O(E xi j ) x (resp. O(E k ) x
) with arbitrary G-linearizations, and let s ij (resp. s k ) denote the canonical sections of these sheaves associated with the divisors E xi j (resp E k ), and let h ij denote the (integral) coefficient of E xi j in the divisor π * (x i ).

Theorem 2.2.2. [33, 3.2.3] The k-algebra Cox G (X) U is generated as a k[ Ĝ]-algebra by the elements a, b, (s ij ) ij , (s k ) k . The ideal of relations contains the following identities

β i a -α i b = λ i j s hij ij
, where for all i ∈ I, λ i is a certain character of G. If moreover, the condition ( ) the common degree of the sections a and b is Z-torsion free in Cl G (X) × T is satisfied, then the above relations generate the whole ideal. • almost homogeneous varieties of complexity one.

In [2, 3.4.2], are studied the coordinate algebras of certain trinomial varieties, that is, affine varieties which are the intersection in an affine space of hypersurfaces defined by trinomial equations. These algebras are obtained via a construction taking in input certain matrices A and P 0 storing the coefficients and exponents of the trinomials. Their spectrum defines normal affine varieties of complexity one under the action of (the connected component) of a diagonalizable group, and such that the invariant regular functions are constant. Moreover, these algebras turn out to be Cox rings of varieties of complexity one under the action of a torus [2, 3.4.3]. Construction 2.2.4. [2, 3.4.2.1] Fix integers r ∈ Z 1 , m ∈ Z 0 , a sequence of integers n 0 , ..., n r ∈ Z 1 , and let n := n 0 + ... + n r . Consider as inputs • A matrix A := [a 0 , ..., a r ] with pairwise linearly independent column vectors a 0 , ..., a r ∈ k 2 .

• An r × (n + m) block matrix P 0 := [L 0 r,m ], where L is an r × n matrix built from the n i -tuples

l i := (l i1 , ..., l ini ) ∈ Z ni 1 , 0 i r, called exponent vectors, as below L =     -l 0 l 1 . . . 0 . . . . . . . . . . . . -l 0 0 . . . l r     Now consider the polynomial algebra k[T ij , S k ],
where 0 i r, 1 j n i , and 1 k m. For every 0 i r, define a monomial

T li i := T li1 i1 ...T lin i
ini , whence the name "exponent vector". Denote I the set of triples (i 1 , i 2 , i 3 ) with 0 i 1 < i 2 < i 3 r, and for all I ∈ I , consider the trinomial

g I := det T li 1 i1 T li 2 i2 T li 3 i3 a i1 a i2 a i3 .
We introduce a grading on k[T ij , S k ] by the abelian group K 0 := Z n+m / Im( t P 0 ), where t P 0 is the transpose of P 0 . Let Q 0 : Z n+m → K 0 be the projection, and set

deg T ij := Q 0 (e ij ), and deg S k := Q 0 (e k ),
where (e ij , e k ) is the standard basis of Z n+m . Finally consider the K 0 -graded k-algebra

R(A, P 0 ) := k[T ij , S k ]/(g I ) I∈I .
Proposition 2.2.5. [33, 3.3.2] Suppose that the condition ( ) of 2.2.2 is satisfied. Then, the k-algebra Cox(X) U is isomorphic to an algebra R(A, P 0 ) constructed as in 2.2.4.

Remark 2.2.6. By [33, 3.3.2], the input data to be used in Construction 2.2.4 in order to obtain Cox(X) U can interpreted geometrically:

• m is the number of exceptional divisors in X dominating P 1 k , • a 0 , ..., a r are homogemeous coordinates on P 1 k of the exceptional points x 0 , ..., x r . • the exponent vectors are the vectors formed by the multiplicities of the exceptional divisors in the pullbacks π * (x i ), i = 0, ..., r.

Remark 2.2.7. Consider the spectrum Ỹ of an algebra R(A, P 0 ) viewed as the total coordinate space of a normal rational variety Y of complexity one under a torus action. The geometries of Ỹ and Y highly depend on the exponent vectors l i , i = 0, ..., r, involved in the equations. In [START_REF] Arzhantsev | Log terminal singularities, Platonic tuples and iteration of Cox rings[END_REF], the study of singularities on Y leads to the following notion that will be used later: a ring R(A, P 0 ) is a Platonic ring either if r 1, or if every tuple (l 0i0 , ..., l rir ) is Platonic, i.e. after ordering it decreasingly, the first triple is one of the Platonic triples

(5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), (x, y, 1), x y 1, and the remaining integers of the tuple equal one.

Combinatorial classification

In this section, we present the combinatorial framework for the classification of complexity one normal rational G-varieties lying in a fixed G-birational class. Our reference for this material is [START_REF] Timashev | Homogeneous spaces and equivariant embeddings[END_REF]. Let K be the field of rational functions of X. Recall that a geometric valuation of K is a discrete valuation K * → Q of the form αv D , where α ∈ Q + , and v D is the normalized discrete valuation associated to a prime divisor D in a normal variety Z whose field of fractions is identified with K. Notation 2.3.1. We set D = D(K) for the set of prime divisors of X that are not G-stable, and D B the subset of B-stable ones. This last subset consists of the so-called colors of K. These sets don't depend on X up to G-birational equivalence and we identify them with the corresponding sets of normalized geometric valuations of K. Let V denote the set of G-valuations of K, that is, the geometric G-invariant valuations of K. Let V(X) denote the subset of normalized G-valuations corresponding to G-stable prime divisors of X. The element of V(X) corresponding to a G-stable prime divisor D is denoted v D .

There is an exact sequence of abelian groups

1 → (K B ) * k(P 1 k ) * → K (B) → Λ(X) → 1, where K (B)
is the multiplicative group of rational B-semi-invariant functions and Λ(X) is the associated group of weights. The abelian group Λ(X) is the weight lattice of the G-variety X. It is a subgroup of T whose rank is the rank of the G-variety X. After choosing a splitting λ → f λ of the above sequence, we view Λ(X) as a submodule of K (B) . Then, considering a geometric valuation v of K, the restriction v |K (B) is determined by a triple (x, h, l), where x ∈ P 1 k , h ∈ Q + , and l ∈ E := Hom(Λ(X), Q). Indeed, the restriction of v to k(P 1 k ) is again a geometric valuation [32, B.8], hence of the form hv x , where x ∈ P 1 k . On the other hand, v |Λ(X) yields an element l ∈ E. Definition 2.3.2. For all x ∈ P 1 k , consider the closed half-space E x = Q + × E. The hyperspace Ȇ associated to K is the union of the E x glued together along E.

The set V embeds in Ȇ, and V x := V ∩ E x is a simplicial convex polyhedral cone for all x ∈ P 1 k . Also, the natural map : D B → Ȇ is not injective in general. Notice that from the preceding section, all but a finite number of B-stable prime divisors are sent in Ȇ to a vector of the form ε x := (x, 1, 0) ∈ E x for a certain x ∈ P 1 k .

Definition 2.3.3. The pair (V, D B ) is the colored equipment of K. We say that ( Ȇ, V, D B , ) is the colored hyperspace of K.

Definition 2.3.4. A cone in Ȇ is a cone in some E x , x ∈ P 1 k . A hypercone in Ȇ is a union C = ∪ x∈P 1 k C
x of convex cones, each generated by a finite number of vectors, and such that

1. C x = K + Q + ε x for all x ∈ P 1
k but a finite number, where K := C ∩ E. 2. One of the following cases occurs

(A) ∃x ∈ P 1 k , C x = K. (B) ∅ = B := B x ⊂ K, where ε x + B x = C x ∩ (ε x + E).
The hypercone is said of type (A) (resp. (B)) depending on the alternative of condition 2. The hypercone is said strictly convex if each C x is, and 0 / ∈ B.

Definition 2.3.5. Let Q ⊂ Ȇ a subset all of whose elements but a finite number are of the form ε x for some x ∈ P 1 k . Let ε x + P x the convex hull of intersection points of the half-lines Q + q, q ∈ Q with ε x + E. We say that the hypercone C = C(Q), where the C x are generated by Q ∩ E x and P := P x , is generated by Q.

The fundamental result is that strictly convex hypercones (C, R) := C(W ∪ (R)), where W ⊂ V, R ⊂ D B , and 0 / ∈ (R), classify affine B-stable open subvarieties of normal G-models of K (the so-called B-charts). These hypercones are called colored hypercones.

Remark 2.3.6. Let X 0 be a B-chart defined by a colored hypercone (C, R). Then O(X 0 ) B k if and only if (C, R) is of type (B).

A finite set of colored hypercones (C, R) defines B-charts Xi and G-models X i := G Xi . These G-models can be glued together into a G-model if and only if these colored hypercones defines a colored hyperfan. In turn, the colored hyperfans classify normal G-models of K. To make this last notion precise we need the notion of a hyperface of a hypercone, which is defined through the notion of a linear functional on the hyperspace. We can think of the abelian group K (B) as the dual object to the hyperspace. Indeed, every f = f 0 f λ ∈ K (B) defines a so-called linear functional on Ȇ, namely the restriction to each E x is a Q-linear form ((h, γ) → hv x (f 0 ) + γ(λ)). Conversely, considering a linear functional on Ȇ, a multiple of it is given by a rational B-semi-invariant function.

Definition 2.3.7. A face of a hypercone C is a face C of a certain cone C x such that C ∩ B = ∅. A hyperface of C is a hypercone C = C ∩ ker ϕ, where ϕ is a linear functional on C such that ϕ(C) 0. If C is of type B, its interior is by definition int C := ∪ x∈P 1 k int C x ∪ int K. Definition 2.3.8. A colored hypercone (C, R) of type (B) is supported if int C ∩ V = ∅. A (hyper)face of (C, R) is a colored (hyper)cone (C , R ),
where C is a (hyper)face of C, and R = R ∩ -1 (C ). A colored hyperfan is a set of supported colored cones and hypercones of type (B) whose interiors are disjoint inside V, and which is obtained as the set of all supported colored (hyper)faces of finitely many colored hypercones.

An interesting feature of this classification framework is that the lattice of G-stable subvarieties of X can be read from the combinatorial representation of X as a colored hyperfan. Indeed, consider a G-stable subvariety Y ⊂ X, and a B-chart X intersecting Y which is defined by a hypercone 

C(W ∪ (R)). Denote V Y ⊂ W, D B Y ⊂ R

Structure of B-charts

The local structure theorem of Brion, Luna and Vust ([10, Thm 1.4]) is a very useful tool for the study of varieties with group action, the following variant is due to Knop.

Theorem 2.4.1. [18, 1.2] Let G a connected reductive group, X a G-variety equipped with an ample Glinearized invertible sheaf L, and s ∈ L(X) (B) a B-semi-invariant section. Let P the parabolic subgroup stabilizing s in P(L(X)), with Levi decomposition P u L, T ⊂ L. Then the open subvariety X s is P -stable, and there exists a closed L-stable subvariety Y ⊂ X s such that the morphism induced by the P -action

P u × Y → X s is a P -equivariant isomorphism.
Consider a B-chart V ⊂ X, the G-variety X 0 := GV , and the B-stable effective divisor D := X 0 \ V . By [START_REF] Timashev | Cartier divisors and geometry of normal G-varieties[END_REF]Lemma 2], O X0 (D) is an ample (G-linearized) line bundle on X 0 . The canonical section associated with D is B-semi-invariant. Thus, its projective stabilizer P is a parabolic subgroup containing B. Then, the above theorem yields a P -equivariant isomorphism

P u × Y → V . Corollary 2.4.2. Suppose that G = SL 2 and V is not G-stable. Then, there is a B-equivariant isomorphism U × Y → V ,
where Y is a normal affine T -variety of complexity one.

3 Almost homogenous SL 2 -threefolds

Generalities

Consider the algebraic group G := SL 2 identified with its group of rational points, namely the matrices

g = g 1 g 2 g 3 g 4
such that g i ∈ k and det(g) = 1. By abuse of notation, we also let g i denote the corresponding matrix coordinates on G. Consider also the Borel subgroup B whose elements are upper triangular matrices, and the maximal torus T ⊂ B whose elements are diagonal matrices. The character group of T is free of rank one generated by

ω := ( t 0 0 t -1 → t).
In the sequel, we fix a normal embedding i : G/F → X, where F is a finite subgroup of G. This means that there exists a point x in the G-variety X such that the associated orbit morphism factors through a G-equivariant open immersion i : G/F -→ X. In the sequel, we identify G/F with this dense orbit. It is well known that F is conjugate either to a cyclic subgroup µ n ⊂ T of order n 1, or to one of the famous binary polyhedral groups ( [29, 4.4]):

• F Dn := Binary dihedral group of order 4n, n > 1,

• F T := Binary tetrahedral group,

• F O := Binary octahedral group,

• F I := Binary icosahedral group.
The pointed normal G-variety (X, x := i(F/F )) is rational of complexity one, and the rational quotient π : X

P 1 k by B induces a geometric quotient π |G/F : G/F → P 1 k . The situation is summarized in the commutative diagram G B\G P 1 k G/F P 1 k /F P 1 k X B\ /F /F B\ i π
where B acts on G/F by left multiplication. Denote F x the unique G-linearized rigidified divisorial sheaf associated to

[π * O P 1 k (1)],
and a, b ∈ F x (X) (B) the two global sections corresponding to the pullbacks of (a choice) of coordinates on P 1 k . Also, let n 0 ω be the common B-weight of a, b. The colored equipment associated to k(G/F ) has been described by Timashev in [START_REF] Timashev | Classification of G-varieties of complexity one[END_REF]Sec. 5] for the various finite subgroups. For convenience, we recall the associated basic facts in Appendix 5. When F = µ n , n 3, the morphism π |G/F defines exactly two exceptional colors E x0 , E x∞ corresponding to the two µ n -fixed points x 0 , x ∞ of P 1 k . When F is binary polyhedral, π |G/F defines exactly three exceptional colors E xv , E xe , and E x f . The subscripts are aimed to suggest (when k = C) vertices, edges and faces of the corresponding Platonic solids inscribed in P 1 k identified with the Riemann sphere. These exceptional colors correspond exactly to the degenerate F -orbits in P 1 k (see [29, 4.4]). The homogeneous space G/F being affine, the complement of G/F in X is a finite union of G-stable prime divisors and every G-stable prime divisor lies in this complement. By Section 2.3, there is at most one G-stable prime divisor X ∞ in X dominating P 1 k . It consists of infinitely many G-orbits, all isomorphic to P 1 k .

Class group of X

Because the divisor class group of X is the grading group of the Cox ring, a good understanding of its structure is a preliminary to the approach of the structure of Cox(X). In this section, we give a description of Cl(X) by generators and relations. There are two classes of embeddings where this description is easy: Proposition 3.2.1. Suppose that F = F I or is trivial. Then, Cl(X) is freely generated by the classes of the G-stable prime divisors. Proof. Let (D i ) i denote the family of G-stable prime divisors in X. In our situation, the localization exact sequence [33, 2.2.4] 

reads 0 → (D)i ZD i → Cl G (X) → Pic G (G/F ) → 0.
Using the exact sequence [33, 2.2 (1)], the remark [33, 2.2.2], and the fact that G is a semisimple simply connected algebraic group, we obtain an isomorphism Cl G (X) Cl(X). Also, there is an isomorphism

Pic G (G/F ) F ([2, 4.5.1.2]
). Finally, it suffices to remark that F is trivial (5.4).

For the description of Cl(X) in the general case, the ideas in [START_REF] Brion | Groupe de Picard et nombres caractéristiques des variétés sphériques[END_REF] apply well (see also [START_REF] Petersen | Torus invariant divisors[END_REF] for a similar approach in the context of T-varieties of complexity one). The fundamental remark is that in virtue of the G-module structure on the spaces of sections of divisorial sheaves on X, every Weil divisor is linearly equivalent to a B-stable one. From this we get an isomorphism

Cl(X) D∈D B V(X) ZD PDiv(X) B ,
where PDiv(X) B is the group of B-invariant principal divisors. These divisors are the divisors of B-semiinvariant rational functions. After the choice of a section

Λ(X) = α 0 Zω → k(X) (B) , kα 0 ω → f k α0ω of the exact sequence 1 → k(P 1 k ) * → k(X) (B) → Λ(X) → 1
, every such semi-invariant rational function can be written uniquely as a product gf k α0ω for a certain g ∈ k(P 1 k ) * , and k ∈ Z. The divisor of this function is then

div(gf k α0ω ) = z∈P 1 k v z (g)π * (z) + D∈D B V(X) kl D D, (3.1) 
where

l D := v D (f α0ω ) is the coordinate on E Q of v D seen in Ȇ,
and π * is the pullback of Weil divisors associated to the rational quotient π : X P 1 k by B. Proposition 3.2.2. The class group of X is generated by the classes of exceptional divisors, and the classes of parametric divisors whose projection on E is non-zero. Moreover, after choosing an exceptional point x 0 ∈ P 1 k , the relations are generated by

   [π * (x 0 )] = [π * (x)], ∀x ∈ P 1 k exceptional, D∈D B V(X) l D [D] = 0.
Proof. For any parametric divisor Z, and exceptional point x, we have

[Z] = [π * (x)] in Cl(X). Also, π * (x)
is a linear combination of exceptional divisors. It follows that Cl(X) is indeed generated by the elements listed in the statement. By the general form (3.1) of a principal divisor, every relation between these generators is a Z-linear combination of the relations of the statement.

Singularities of X

In this section, we give a combinatorial criterion for the singularities of X to be log terminal. In fact we extend a previous result from Degtyarev for the case of a normal G-embedding ([11, Thm 1]). Our method is however quite different, namely we reduce to studying singularities of normal rational affine T -varieties of complexity one using the particular structure of B-charts. This allows us to take advantage of a previous work of Liendo and Süss ([21]), and of the description of the T -equivariant Cox ring for these varieties.

Consider a G-orbit O in X. To study the singularities along O, it suffices to consider a B-chart X O intersecting O because the translates by elements of G of this chart cover O and are isomorphic. We examine the different types of orbits case by case, and use the classification and terminology for orbits by Luna and Vust in [START_REF] Luna | Plongements d'espaces homogènes[END_REF]Section 9], that is, we consider orbits of type A l (l 1), AB, B + , B -, B 0 , and C.

Consider the colored hyperspace ( Ȇ, V, D B , ) associated with X, and choose coordinates on Ȇ as defined in Appendix 5. In general, a G-orbit is characterized by the colors and G-stable prime divisors containing it ([32, 16.19]). For example, an orbit O of type A l (l 1) is defined by the G-valuations v X x i = (x i , h i , l i ) ∈ Ȇ, i = 1, ..., l corresponding to the G-stable exceptional divisors X xi containing O (all the colors but the exceptional colors E xi contain O, and the exceptional points x i , i = 1, .., l are pairwise distinct). We say that an orbit of type A l (l 1) is Platonic if either l 2 or the associated tuple (h 1 , ..., h l ) is Platonic. Furthermore, X can contain at most one orbit of type A l . Proposition 3.3.1. The singularities of X are log terminal if and only if it has no G-fixed point and the orbit of type A l , if it exists, is Platonic.

Proof. For O a fixed point (type B 0 ), F is necessarily a cyclic group µ n , and any B-chart X O intersects all the colors, so is G-stable ([30, Sec. 5]). Hence, X O is a normal affine G/µ n -embedding. By [24, Thm 2 and Prop 4], the canonical class is torsion-free in Cl(X O ), and Pic(X O ) is trivial. From this, we conclude that X O is not Q-Gorenstein. In particular, its singularities are not log terminal.

For orbits of type C, AB and B + , the chart X O is given by a colored hypercone of type (A). By 2.4.2, there is a (trivial) U -torsor X O → Y O , and Y O is toroidal ( [32, 16.21]) in the sense of [START_REF] Kempf | Toroidal embeddings[END_REF]Chap IV]. As we consider an isolated singularity of a toroidal surface, we can suppose that Y O is toric ([16, Thm 4.2.4]). We conclude by using the fact that toric surface singularities are log terminal ([16, 7.4.11 and 7.4.17]). Now suppose that O is an orbit of type A l , l 1. Then, there are finitely many G-stable exceptional divisor X x1 , ..., X x l containing O, with x 1 , ..., x l pairwise distinct exceptional points. We consider the Bchart X O of O given by the colored hypercone of type (B) generated by the X xi and the colors associated to the points of P 

Cox ring of an almost homogeneous SL 2 -threefold

Keep the notation of section 3.1. By [33, 2.3.4 and 3.1.4], the G-equivariant Cox ring of X is well-defined, finitely generated and canonically isomorphic to the ordinary Cox ring. We slightly modify the notation of 2.2.2 in order to distinguish G-stable prime divisors and colors. It is natural to make this distinction as colors don't depend on the embedding, whereas G-stable prime divisors do. We choose homogeneous coordinates on P 1 k /F P 1 k , and let • (x i = [α i : β i ]) i be the family of exceptional points of π |G/F → P 1 k /F . Possible families are ∅ when F is cyclic of order n 2, (x 0 , x ∞ ) when F is cyclic of order n 3, and (x v , x f , x e ) for the others F ,

• (x i = [α i : β i ]) i be the family whose elements are the others exceptional points of π :

X P 1 k /F , • π * (x i ) = n i E xi + j h ij X xi j , n i > 1, • π * (x i ) = E x i + j h ij X x i j ,
• (s i ) i (resp. (s i ) i ) the family of canonical sections corresponding to the family

(E xi ) i (resp. (E x i ) i ), • (r ij ) ij (resp. (r ij ) ij ) the family of canonical sections corresponding to the family (X xi j ) ij (resp. (X x i j ) ij ), • N := (X xi j ) ij if v X ∞ / ∈ V(X), N := (X xi j ) ij + 1 otherwise, • N := (X x i j ) ij , • (D x ) x∈P 1
k \{(xi),(x i )} the family of parametric colors of X. With this notation, the number of G-stable prime divisors in X is N + N , and we identify the subgroup of WDiv(X) generated by these divisors with Z N +N . By 2.2.2, we have the following presentation of Cox(X) U :

• Generators: a, b, (s i ) i , (s i ) i , (r ij ) ij , (r ij ) ij . • Relations: (β i a -α i b -s ni i j (r ij ) hij ) i , 1 i (x i ) i , and (β i a -α i b -s i j (r ij ) h ij ) i , 1 i (x i ) i .

Characterizing log terminality in the total coordinate space

In this section, we provide a condition of combinatorial nature for the total coordinate space X to have log terminal singularities. This is an interesting question, for example a Q-factorial normal projective variety Z is of Fano type (i.e. there exists an effective Q-divisor ∆ such that -(K Z + ∆) is ample and the pair (Z, ∆) is Kawamata log terminal) if and only if its Cox ring is finitely generated with log terminal singularities ([12, Thm 1.1]). In the following proposition, the condition on Cox(X) U translates into a condition on a geometric data attached to X (see 2.2.6, 2.2.7). 

Geometry of the special fiber

The good quotient

f : X //G --→ A N +N k , is a Γ Cl(X) -equivariant morphism, where Γ Cl(X) acts on A N +N k through the surjective morphism Γ Cl(X) → G N +N m
dually defined by the natural injective morphism Z N +N -→ Cl(X) which sends a G-stable divisor in X to its class. The morphism f pulls back the standard coordinates of the affine space to the canonical sections associated with the corresponding G-stable prime divisors. It follows from [33, 2.8.1] that the general schematic fibers of f are normal varieties isomorphic to the total coordinate space of the open orbit G/F .

In this section, we study the geometry of the special fiber, that is, the schematic zero fiber X0 := f -1 (0). By virtue of the permanency of a lot of properties when taking U -invariants ([32, D.5]), we in fact study the zero fiber Ỹ0 := X0 //U of the induced morphism

f U : Ỹ → A N +N k ,
where Ỹ := X//U . We suppose that X doesn't admit an exceptional divisor dominating P

1 k (v X ∞ / ∈ V(X)
). This is indeed harmless for our purpose as if v X ∞ ∈ V(X), then one has to add the associated canonical section to the generating set of Cox(X) U from 2.2.2, but this generator doesn't appear in any relation.

4.2.1 F = µ n , n 2
In this case, we have N = 0 and the presentation of Cox(X) U reads

• Generators: a, b, (s i ) i , (r ij ) ij . • Relations: (β i a -α i b -s i j (r ij ) h ij ) i , 1 i (x i ) i . If (x i ) i 2, then Cox(X)
U is a polynomial k-algebra. Indeed, each relation can be used to remove a generator (first a and then possibly b) from the generating set, so that we end up with a polynomial algebra. If (x i ) i > 2, each new exceptional point starting from the third defines a new relation between the remaining generators. In any case, denote Σ the new generating set. The coordinate algebra of Ỹ0 is Cox(X) U /((r ij ) ij ), and is freely generated by the elements of the set Σ \ {(r ij ) ij }. Indeed, all the relations become trivial in this quotient. This yields the Proposition 4.2.1. The special fiber X0 is a normal variety. Moreover, Ỹ0 = X0 //U is an affine space. Remark 4.2.2. For a spherical variety Z under a connected reductive group G 1 , the quotient morphism ZG1 → ZG1 //G 1 is faithfully flat, and the special fiber is a normal horospherical variety ( [START_REF] Brion | The total coordinate ring of a wonderful variety[END_REF]). Both results does not extend to varieties of complexity one. Indeed, the general fibers of f are isomorphic to G, thus of dimension three. On the other hand, when (x i ) i 2, the quotient by U of the special fiber is an affine space of dimension (x i ) i , thus f is not flat when (x i ) i 3. For a non-horospherical example, consider the case where X = G. Then X = X0 = X which is not horospherical. 

• Generators: s 0 , s ∞ , (r 0j ) j , (r ∞j ) j , (s i ) i , (r ij ) ij . • Relations: (β i s n 0 j r h0j 0j -α i s n ∞ j r h∞j ∞j = s i j (r ij ) h ij ) i , 1 i (x i ) i .
Consider the coordinate algebra Cox(X) U /((r 0j ) j , (r ∞j ) j , (r ij ) ij ) of Ỹ0 . The elements s 0 , s ∞ , (s i ) i generate this algebra, and we obtain the following criterion via a case by case analysis.

Proposition 4.2.3. We have the following equivalences:

X0 is a normal variety ⇐⇒ Ỹ0 is a normal variety ⇐⇒ Ỹ0 is an affine space ⇐⇒ ((X x0 j ) j = ∅ and (X x∞ j ) j = ∅) or (x i ) i = ∅ Example 4.2.4. Suppose that (X x0 j ) j = ∅, (X x∞ j ) j = ∅, and (x i ) i consist of a unique point

x 1 = [α 1 : β 1 ].
Then, the ideal of relations is principal, generated by the relation β 1 s n 0 -α 1 s n ∞ = 0. It follows that the special fiber is a reducible reduced non-normal algebraic scheme. Indeed, Ỹ0 is the union of n planes intersecting along the line of equation s 0 = s ∞ = 0 in k 3 with coordinates s 0 , s ∞ , s 1 .

Example 4.2.5. Suppose that (X x0 j ) j = ∅, (X x∞ j ) j = ∅, and (x i ) i consists of at least two points. Then, the ideal of relations is generated by s n 0 = 0 and s n ∞ = 0. It follows that the special fiber is an irreducible non-reduced algebraic scheme.

F is binary polyhedral

As a typical example, we give the generators and relations when F = F T is the binary tetrahedral group. We can assume that the three exceptional points x v , x e , x f have homogeneous coordinates

[0 : 1], [1 : 0], [-1 : -1],
and obtain the following presentation of Cox(X) U :

• Generators: s v , s e , s f , (r v,j ) j , (r e,j ) j , (r f,j ) j , (s i ) i , (r ij ) ij .

• Relations: s 3 v j r hv,j v,j + s 2 e j r he,j e,j + s 3 f j r h f,j f,j = 0, (β i s 3 v j r hv,j v,j + α i s 2 e j r he,j e,j = s i j (r ij ) h ij ) i .
Consider the coordinate algebra (Cox(X)) U /((r v,j ) j , (r e,j ) j , (r f,j ) j , (r ij ) ij ) of Ỹ0 . The elements s v , s e , s f , (s i ) i generate this algebra, and we obtain the following criterion by again analyzing the different cases. Proposition 4.2.6. Suppose that F is binary polyhedral. Then X0 is a normal variety if and only if one of the following conditions is satisfied:

• (X xv j ) j = ∅ and (X xe j ) j = ∅ and (X x f j ) j = ∅ • (x i ) i = ∅ and (X xv j ) j = (X xe j ) j = (X x f j ) j = ∅ Example 4.2.7. Suppose that (X xv j ) j = (X xe j ) j = (X x f j ) j = ∅, and 
(x i ) i consists of a unique point x 1 of homogeneous coordinates [α 1 : β 1 ] (distinct from [1 : 0], [0 : 1], [-1 : -1]).
Then, the coordinate algebra of Ỹ0 is generated by s v , s e , s f , s 1 with the two relations s 3 v + s 2 e + s 3 f = 0 and

β 1 s 3 v + α 1 s 2 e = 0.
We check that the special fiber is a non-normal variety.

Let

I = (s 3 v + s 2 e + s 3 f , β 1 s 3 v + α 1 s 2 e
) be the ideal of the polynomial algebra k[s v , s e , s f , s 1 ], we claim that it is a prime ideal. To prove this, we can work in k[s v , s e , s f ] and replace I by

I ∩ k[s v , s e , s f ]. Then, consider A := k[s v , s e ], and 
J := I ∩ A = (β 1 s 3 v + α 1 s 2 e ).
The algebra B := A/J is integral, and to prove the claim, it now suffices to prove that Ī = ( sv

3 + se 2 + s 3 f ) is prime in B[s f ]. But it is clear that sv 3 + se 2 + s 3 f is irreducible in Frac(B)[s f ],
hence a prime element of this polynomial algebra. As (( sv

3 + se 2 + s 3 f ) Frac(B)[s f ]) ∩ B[s f ] = ( sv 3 + se 2 + s 3 f ) we obtain that ( sv 3 + se 2 + s 3 f
) is a prime ideal. It follows that the special fiber is an affine variety. As a surface in k 4 with coordinates s v , s e , s f , s 1 having a one-dimensional singular locus, Ỹ0 is not normal. Indeed, the line of equation s v = s e = s f = 0 is the singular locus. Hence, the special fiber is not normal either.

Cox(X) U is the Cox ring of a T -variety of complexity one

By Section 2.2, Cox(X) U can be interpreted as the Cox ring of a T -variety Y of complexity one. We build such a variety Y in a natural way from X. The idea is to find a B-stable open subvariety V of X whose complement is of codimension 2 in X, and which is a U -torsor over a normal rationa T -surface Y of complexity one. Notice that we can always suppose that V (hence Y ) is smooth, up to replacing V by its smooth locus. For such V and Y , both Cox rings are well-defined, finitely generated ([33, 3. 

Cl(X) Cl U (X) Pic U (V ) Pic(Y ).
Also by [33, Sec. 2.10], we have a cartesian square

V Ŷ V Y, /U /Γ Pic(V ) /Γ Pic(Y ) /U (4.1)
where the horizontal arrows are U -torsors and the vertical arrows are universal torsors. This implies that we have Cox(Y ) Cox(X) U , as desired. Now, we proceed to the construction of V . For simplicity, denote x 1 , ..., x r ∈ P 1 k the exceptional points of X. For each G-stable prime divisor X xi j in X, we consider a B-chart

V ij intersecting the open G-orbit in X xi
j , the open G-orbit in X, and no other orbits. Such a B-chart is given by the colored hypercone of type (A) spanned by X xi j , and by all the colors but E xi and D x d , where x d is an arbitrary fixed (distinguished) non-exceptional point. If v X ∞ ∈ V(X), that is, X contains a G-stable prime divisor X ∞ dominating P 1 k , we consider the B-chart V ∞ defined by the colored hypercone of type (A) spanned by v X ∞ and all the colors but E x1 , ..., E xr , and D x d . Otherwise, we set V ∞ = ∅. By 2.4.2, we have trivial U -torsors

π ij : V ij U × Y ij → Y ij ,
where the Y ij are normal affine T -surfaces of complexity one. If V ∞ = ∅, we set Y ∞ = ∅, otherwise we also have a trivial U -torsor

π ∞ : V ∞ U × Y ∞ → Y ∞ ,
where Y ∞ is a normal affine T -surface of complexity one. Finally, the open G-orbit V 0 G/F is a U -torsor over an affine normal T -surface Y 0 of complexity one

π 0 : V 0 → Y 0 .

Indeed, F acts freely on G/U

A 2 k \ {0} with closed orbits. Alternatively, we can consider two covering B-charts of V 0 . Proceeding in this way, Y 0 is obtained by gluing two affine T -surfaces of complexity one Y 0,1 and Y 0,2 . 

π : V := ∪ ij V ij ∪ V ∞ ∪ V 0 → Y , which is a U -torsor over Y . Moreover, V is B-stable, with a complement in X of codimension 2.
Proof. Denote ( ȆT , V T ) the hyperspace of k(X) U in which live the hypercones defining the T -charts (Y ij ) ij , Y ∞ . These hypercones are obtained from the colored hypercones associated with the B-charts (V ij ) ij , V ∞ . Indeed, they are respectively spanned by the T -stable divisors in these T -charts, and these T -stable divisors are the images by π ij (resp. π ∞ ) of the respective intersections of the colors and G-stable prime divisors of X with V ij (resp. V ∞ ). We can define the varieties Y 0,1 and Y 0,2 in the following way: consider the subset D B T ⊂ V T of all the T -valuations obtained via π 0 from the colors of G/F . Then choose two distinct elements v 0,1 and v 0,2 in this set and consider the two varieties defined by the hypercones of type (A) generated respectively by D B T \ {v 0,1 } and D B T \ {v 0,2 }. The proper non-trivial supported (hyper)faces of the hypercones defining the varieties (Y ij ) ij , Y ∞ , Y 0,1 , Y 0,2 are cones which by construction don't overlap in V T . By Section 2.3, the latter varieties glue together into a normal T -variety of complexity one. The morphisms (π ij ) ij , π ∞ , π 0 coincide on intersections so that they glue together. The assertion that π : X → Y is a U -torsor has already been checked locally above, and it implies that Y is rational. For the last assertion, it suffices to notice that V contains the open G-orbit and meets every boundary divisor, whence the claim on the codimension of X \ V in X.

Iteration of Cox rings

In this section, we use the construction of the preceding section to uncover a connection between iterations of Cox rings for X and Y . We first recall the definition of an almost principal bundle under an algebraic group. Hashimoto introduced this notion in [14, Def. 0.4] where he systematically studies properties preserved by almost principal bundles. Definition 4.4.1. Let H be an algebraic group, and let Z 1 , Z 2 be normal H-varieties such that H acts trivially on Z 2 . We say that a H-equivariant morphism ϕ : In [START_REF] Arzhantsev | Log terminal singularities, Platonic tuples and iteration of Cox rings[END_REF], the authors introduce the notion of iteration of Cox rings: Let Z be a normal variety with finitely generated Cox ring. If the total coordinate space Z has non-trivial class group and satisfies O( Z) * k * , then it has a non-trivial well-defined Cox ring. If the latter is finitely generated, we get a new total coordinate space Z(2) , and so on. This iteration process yields a sequence of Cox rings which stops if and only if one of the following cases occurs at some step:

Z 1 → Z 2 is an almost principal H-bundle over Z 2 if there exists H-stable open subvarieties V 1 ⊂ Z 1 , V 2 ⊂ Z 2 whose
• we obtain a total coordinate space whose Cox ring is not well defined (i.e. there exists n 0 such that Cl( Z(n) ) has a non-trivial torsion subgroup, and O( Z(n) ) * k * ).

• we obtain a total coordinate space whose Cox ring is not finitely generated.

• we obtain a factorial total coordinate space (i.e. with trivial class group).

If we never fall in one of the cases above, Z is said to have infinite iteration of Cox rings. Otherwise, Z is said to have finite iteration of Cox rings, and the last obtained Cox ring is the master Cox ring. By virtue of [33, 3.4.1], X admits finite iteration of Cox rings with a factorial finitely generated master Cox ring X(m) , m 1. In the following proposition, Y = Ỹ (0) is the T variety of complexity one constructed in the preceding section.

Proposition 4.4.3. For 1 i m, the categorical quotient of X(i) by U identifies X(i) //U with the total coordinate space of Ỹ (i-1) . Moreover, the categorical quotient

π i : X(i) //U --→ Ỹ (i)
is an almost principal U -bundle.

Proof. By virtue of the cartesian square (4.1), the categorical quotient π 1 : X //U --→ X//U is an almost principal U -bundle, and X//U identifies with Ỹ . Consider the categorical quotient

π 2 : X(2) //U --→ X(2) //U ,
where both are affine normal varieties ([32, D.5]). We claim that X(2) //U is the total coordinate space of Ỹ . Indeed, X(2) //U is naturally a variety over Ỹ with an affine structural morphism. Moreover, the morphism π 2 can be viewed as the morphism corresponding to the graded O Ỹ -algebras morphism

(π 1 * R X ) U - → π 1 * R X .
Using the exact sequence [33, 2.2 (1)], and the Proposition [33, 2.5.2], we can write

R X = [F ]∈Cl( Ỹ ) π * 1 F, which yields an isomorphism of graded O Ỹ -algebras (π 1 * R X ) U R Ỹ ,
again by [START_REF] Vezier | Equivariant Cox ring[END_REF]Proposition 2.5.2]. This proves the claim, and we have a cartesian square (see [33, Sec. 2.10])

X(2) Ỹ (2) X Ỹ , π2 //Γ Cl( X) //Γ Cl( Ỹ ) π1
where horizontal arrows are almost principal U -bundles, and vertical arrows are structural morphisms of characteristic spaces. Iterating this construction, we obtain the result.

Corollary 4.4.4. For i = 1, ..., m, the total coordinate space Ỹ (i) is an affine normal rational variety of complexity one under a torus action, and the regular invariant functions on Ỹ (i) are constant.

Proof. Everything stems from the fact that X(i) //U --→ Ỹ (i) is an almost principal bundle, and that X(i) is almost homogeneous of complexity one under the action of a connected reductive group of the form G × T i .

Corollary 4.4.5. There is a commutative diagram

X(m) ... X(2) X Ỹ (m) ... Ỹ (2) Ỹ ,
where X(m) , Ỹ (m) are factorial, the horizontal arrows are structural morphisms of characteristic spaces, the vertical arrows are almost principal U -bundles, and all squares are cartesian.

In [START_REF] Hausen | On iteration of Cox rings[END_REF], Hausen and Wrobel prove that a trinomial variety obtained from Construction 2.2.4 admits finite iteration of Cox rings with a finitely generated factorial master Cox ring if and only if it is rational and the tuple (l 0 , ..., l r ) is Platonic, where l i is the greatest common divisor of the integers appearing in the exponent vector l i . It is immediate to check that Ỹ indeed satisfies these properties. Also by [START_REF] Hausen | On iteration of Cox rings[END_REF]Cor. 1.4], the length of the Cox ring iteration sequence of Y (hence of X) is determined by the tuple (l 0 , ..., l r ), and is bounded by 4. Below, we give another proof for the bound m 4 which gives more precise bounds depending on the finite subgroup F ⊂ G, and uses arguments of different nature (4.4.13). This yields interesting intermediate results (4.4.8, 4.4.10, 4.4.11, 4.4.12). We start by recalling a useful construction for the study of iteration (see also [START_REF] Braun | Gorensteinness and iteration of Cox rings for Fano type varieties[END_REF], and [START_REF] Vezier | Equivariant Cox ring[END_REF]Sec. 3.5]). Construction 4.4.6. Using the isomorphism Pic G (G/F ) F , and that G is semisimple and simply connected, the localization exact sequence [33, 2.2.4] applied to the open orbit in X reads

0 → Z N +N → Cl(X) → F → 0. (4.2)
From this sequence we obtain that Cl(X) tor embeds in F via restriction of divisorial sheaves to G/F . Hence, Cl(X) tor is canonically identified with a subgroup of X * (F/D(F )) F/D(F ), where D(F ) denotes the derived subgroup of F . The exact sequence

0 → Cl(X) tor → Cl(X) → M → 0 translates into the factorization X g1=/T1 -----→ X f1=/Γ Cl(X) tor ---------→ X
of the characteristic space q : X → X, where T 1 := Γ M is a torus, and X is a normal G/F 1 -embedding.

Similarly to [33, 2.5.12], one shows that F 1 is the intersection of the kernels of characters in F corresponding to elements of Cl(X) tor . This yields a canonical isomorphism Cl(X) tor X * (F/F 1 ). Applying [33, 2.10.1], we obtain that X( 2) is a characteristic space of both X and X . Iterating this construction, one obtains a commutative diagram

X(m) ... X(2) X X (m) ... X (2) X X G/F m ... G/F 2 G/F 1 G/F qm gm q m q3 g2 q2 q 2 q g1 fm f3 f2 f1
where the q i , q i and g m are structural morphisms of characteristic spaces, the f i are quotient presentations by the finite diagonalizable groups F i /F i-1 , and X(m) is a factorial characteristic space. Notice that X (m) = X (m-1) if Pic(X (m-1) ) is torsion-free, and X(m) = X (m) if Pic(X (m-1) ) is finite. This latter case occurs if and only if X = G/F . The sequence of subgroups F, F 1 ..., F m yields a normal series of F with abelian quotients, and each X (i) is a normal G/F i -embedding. . Consider a point x ∈ P 1 k /µ n , and a B-stable prime divisor E x in X such that π(E x ) = x. Then,

q * (E x ) =    Êx 1 , if x = x 0 or x = x ∞ , Êx 1 + ... + Êx d , otherwise,
where the Êx i are pairwise distinct B-stable prime divisors in X. Proof. Consider the commutative square

X P 1 k /µ n/d X P 1 k /µ n , π1 f1 ϕ1 π
where π 1 , π are the rational quotients by B, and ϕ 1 is the geometric quotient of P 1 k /µ n/d by µ d . In view of 5.1, we have

ϕ * 1 (x) =    dx 1 , if x = x 0 or x = x ∞ , x 1 + ... + x d, otherwise,
where the x i are pairwise distinct points of P 1 k /µ n/d . Moreover, denoting Σ x the set of B-stable prime divisors in the support of f * 1 (E x ), the morphism π 1 defines an equivariant map of transitive µ d -sets

Σ x → ϕ -1 (x).
Using this and the fact that f 1 is étale, we obtain that

f * 1 (E x ) = |ϕ -1 (x)| k=1 E x k,1 + ... + E x k,l ,
where the E x k ,i are pairwise distinct B-stable prime divisors in X satisfying respectively π 1 (E x k ,i ) = x k , and l is the cardinality of the orbit Stab µ d (x 1 ).E x k ,1 . In fact, we have l = 1 because for a given k, each E x k ,i i = 1, ..., l defines the same B-stable valuation (see Section 2.3 and notice that the map : D B → Ȇ is injective for almost homogeneous G-threefolds). Now, the statement follows from the observation that q = f 1 g 1 and that g 1 is a torsor under a torus. Lemma 4.4.8. Suppose that X is a normal G/µ n -embedding. Then, Cl( X) is free of rank ( d -1)N , where d is the order of the torsion subgroup of Cl(X), and d is defined as in Proposition 4.4.7.

Proof. By [33, 2.8.6], the open G×Γ Cl(X) -orbit X0 in X is isomorphic to G× µn Γ Cl(X) , where µ n is identified with a subgroup of Γ Cl(X) and acts on the latter by translation. Using [33, 2.5.2] and that G is semisimple and simply connected, we obtain isomorphisms

Pic( X0 ) Pic G (G × µn Γ Cl(X) ) Pic(Γ Cl(X) /µ n ) Pic(G N +N m ) = 0.
We deduce that Cl( X) is generated by the classes of the prime divisors lying in X \ X0 . Consider the free Z-module K on these prime divisors. Using the notation introduced at the beginning of Section 4, we claim that the relations in K defining Cl( X) are given by

• div(r ij ) = q * (X xi j ) = 0, ∀i, j, • div(r 0j ) = q * (X x0 j ) = 0, ∀j, • div(r ∞j ) = q * (X x∞ j ) = 0, ∀j, • div(r ∞ ) = q * (X ∞ ), if v X ∞ ∈ V(X).
Indeed, on one hand we have the exact sequence [33, 2.2.4] 

0 → O( X) * G → O( X0 ) * G div --→ (D)i ZD i D →[O X (D)] --------→ Cl G ( X) Cl( X) → 0,
where (D i ) is the family of prime divisors lying in X \ X0 . In view of Proposition 4.4.7, the cardinality of this family is dN + N . On the other hand, using [33, 2.8.5], the G-invariant units in O( X) are constant, and the G-invariant units in O( X0 ) are Laurent monomials in the canonical sections associated to the G-stable prime divisors in X (namely, the r ij , r 0j , r ∞j , r ∞ ). By Proposition 4.4.7 again, we see that the submodule of K generated by the above relations is a direct factor of rank

N + N . It follows that Cl( X) is free of rank dN + N -(N + N ) = ( d -1)N .
Remark 4.4.9. Proposition 3.2.2 provides an effective method for the description of the class group of an almost homogeneous G-threefold X. Hence, the order d of the torsion subgroup of Cl(X) can be computed in practice. Also, for the computation of Cl( X) in the general case, recall that we have Cl( X) Cl( Ỹ ) because X → Ỹ is an almost principal U -bundle. Now it suffices to use Wrobel's computations of class groups of affine trinomial varieties in term of arithmetic data from the exponent vectors ( [START_REF] Wrobel | Divisor class groups of rational trinomal varieties[END_REF]).

Lemma 4.4.10. With the notation of Construction 4.4.6, there is a natural identification of Cl(X ) tor with a subgroup of Cl( X) tor .

Proof. Using [33, 2.5.2] and [33, 2.2 (1)], we obtain an exact sequence

0 → T1 → Cl T1 ( X) Cl(X ) → Cl( X) → 0,
from which we deduce that the torsion subgroup of Cl(X ) embeds in that of Cl( X). Then, Cl(X ) tor is identified with a subgroup of Z/nZ.

Proof. As X → X is a quotient presentation, we can suppose that X, X are smooth, and consider Picard groups instead of class groups. By [33, 2.8.6], the open G × Γ Pic(X) -orbit X0 in X can be identified with G/µ n × µ2×µ2 Γ Pic(X) , where µ 2 × µ 2 is identified with a subgroup of Γ Pic(X) and acts on the latter by translation. By [33, 2.5.2], we have Pic( X0 ) Pic µ2×µ2 (G/µ n × Γ Pic(X) ), and we show that the forgetful morphism

φ : Pic µ2×µ2 (G/µ n × Γ Pic(X) ) → Pic(G/µ n × Γ Pic(X) ) Z/nZ
has a trivial kernel. By [19, Lemma 2.2], this kernel is identified with the group of classes of algebraic cocycles

H 1 alg (µ 2 × µ 2 , O(G/µ n × Γ Pic(X) ) * ). Now, it follows from [9, 4.1.3] that O(G/µ n × Γ Pic(X) ) * O(Γ Pic(X)
) * . This last fact allows to view ker φ as a subgroup of

Pic µ2×µ2 (Γ Pic(X) ) Pic(Γ Pic(X) /µ 2 × µ 2 ) = 0.
As a consequence, ker φ is trivial and we obtain an injective morphism Pic( X0 ) → Z/nZ.

On the other hand, the localization exact sequence [33, 2.2.4] reads in our situation

0 → O( X) * G → O( X0 ) * G div --→ (D)i ZD i D →[O X (D)] --------→ Pic( X) → Pic( X0 ) → 0,
where (D i ) i denotes the family of prime divisors lying in the complement of X0 in X. By [33, 2.8.5], the G-invariant units in O( X) are constant, and the G-invariant units in O( X0 ) are Laurent monomials in the canonical sections associated to the G-stable prime divisors in X. Because q is the composition of torsor by a torus followed by a torsor by a finite diagonalizable group, the divisor of such a canonical section r (seen as a regular function on X) is a sum of pairwise distinct elements of (D i ) i . Moreover, the intersection of the supports of any two such divisors is empty. It follows that the cokernel of the morphism O( X0 ) * G div --→ (D)i ZD i is a free abelian group. This implies that Pic( X) tor embeds as a subgroup of Pic( X0 ), thus of Z/nZ. By Lemma 4.4.10, the same holds for Pic(X ) tor . Lemma 4.4.12. With the notation of Construction 4.4.6, suppose that Cl(X) tor is cyclic. Then Cl(X ) tor is not cyclic of even order.

Proof. As before we can suppose that X, X are smooth, and consider Picard groups instead of class groups. By contradiction, suppose that Pic(X ) tor is cyclic of even order. Then, there exists a unique subgroup of order two generated by a non-trivial element [L] ∈ Pic(X ) tor . Consider the natural action of Γ := Γ Pic(X)tor µ n on X . Let L be the line bundle over X associated with L, and let g 1 denote a generator of Γ(k) viewed as an automorphism of the variety X . As the pullback by g 1 induces an automorphism of Pic(X ) tor , we have g * 1 L L. By [9, 3.4.1 (ii)], there exists an automorphism g1 of L viewed as a variety such that g1 commutes with the G m -action on fibers, and restricts on X to g 1 . By [9, 3.4.1 (ii)] again, gn 1 is the multiplication in the fibers of L by a non-zero scalar (recall that O(X ) * k * because X is almost homogeneous under G). Hence, up to compose g1 with an automorphism of L viewed as a line bundle, we can suppose that gn 1 = Id L . By abuse, we also let Γ denote the subgroup of the automorphism group of the variety L spanned by g1 . This is a finite group acting on L compatibly with the G m -action on the fibers and the Γ-action on the base. By definition, we have built a Γ-linearization of L, and we now prove that this yields a contradiction. Using [19, 2.3] and the fact that O(X ) * k * , we obtain an exact sequence

1 → Γ → Pic Γ (X ) φ -→ Pic(X ),
where the image of the morphism Γ → Pic Γ (X ) is the subgroup of the (classes of) linearizations of O X , and φ is defined by forgetting the linearization. On the other hand, we have Pic Γ (X ) tor Pic(X) tor Γ ([33, 2.5.2]). It follows that the image of φ is a free abelian subgroup of Pic(X ). This is a contradiction as [L] is of order two in Pic(X ) and linearizable. Proposition 4.4.13. We have the following upper bounds for the length m of the iteration of Cox rings:

• m = 0 (i.e. X is factorial) exactly when X = G or X = G/F I , • m 1 if F is binary icosahedral or cyclic of order 2, • m 2 if F is cyclic of order 3, • m 3 if F is binary dihedral or binary tetrahedral, • m 4 if F is binary octahedral.
Moreover, X(m) is the characteristic space of a normal almost homogeneous G-threefold X (m) with torsionfree class group.

Proof. Except for the upper bounds on m, the statement is clear from Construction 4.4.6. We have m = 0 if and only if X is factorial (i.e. Cl(X) = 0). In view of the exact sequence (4.2), this amount to X = G/F with F = 0, whence F is trivial or icosahedral. If F is trivial or icosahedral, then Cl(X) is torsion-free by 3.2.1. This in turn implies that X is factorial by [2, 1.4. Now suppose that F = F O . Then, either X has torsion-free class group and m = 1, or we obtain a normal G/F T -embedding X . Indeed, there is no other possibility as F T is the derived subgroup of F O and

ϕ : S := Sym k (V E x 0 ⊕ V E x∞ ⊕ ( r i=1 V E x i )) ⊗ k k[(r ij ) i∈{0,∞,1,...,r};j ] → Cox(X), where k[(r ij ) i∈{0,∞,1,...,r};j ] ⊂ Cox(X) is a polynomial k-algebra, V E x 0 V E x∞ V 1 and V E x i V n.
We view Cox(X) as a graded k-subalgebra of the coordinate algebra of the open G × Γ Cl(X) -orbit X0 in X, and use the description of this orbit provided by [33, 2.8.6]

X0 G × µn Γ Cl(X) .
This implies an isomorphism of graded k-algebras

O( X0 ) (kω,[D])∈ T ×Cl(X), k mod n=[D] |G/µn O(G) (T )
kω e [D] ,

where e [D] denote the character of Γ Cl(X) associated with [D], and Cl(G/µ n ) is identified with Z/nZ. The canonical sections s 0 , s ∞ , s i , r ij are respectively identified with

g 3 e [E x 0 ] , g 4 e [E x∞ ] , (β i g n 3 -α i g n 4 )e [E x i ] , e [X x i j ] .
We consider respectively the following k-bases of T -eigenvectors

• (s 0 , t 0 ) := (g 3 e [E x 0 ] , g 1 e [E x 0 ] ) • (s ∞ , t ∞ ) := (g 4 e [E x∞ ] , g 2 e [E x∞ ] )
of the simple G-modules V E x 0 and V E x∞ . To start with, we have the simple case where the only exceptional points are x 0 and x ∞ :

Proposition 4.5.2. If r = 0, the ideal ker ϕ is principal, generated by the G-invariant relation

s ∞ t 0 -s 0 t ∞ = j r m0j 0j j r m∞j ∞j
, where (m 0j ) j ,(m ∞j ) j are the families of non-negative integers defined by

[E x0 ] + [E x∞ ] = j m 0j [X x0 j ] + j m ∞j [X x∞ j ].
Proof. In this situation, S is a polynomial k-algebra of dimension 4+ ((r 0j ) j )+ ((r ∞j ) j ), and the dimension of Cox(X) is 3 + ((r 0j ) j ) + ((r ∞j ) j ). It follows that ker ϕ is a principal ideal generated by a G-invariant relation. The determinant [33, 2.8.5], we obtain a G-invariant irreducible relation as in the above statement which necessarily generates ker ϕ.

s ∞ t 0 -s 0 t ∞ = e [E x 0 ]+[E x∞ ] is a non-zero G-invariant homogeneous element in Cox(X). Using
We now treat the case where r 1 (i.e. X admits at least three exceptional points). For this, we first show that X can be assumed to satisfy the following technical conditions:

• the special fiber is a normal variety,

• the class group of X is torsion-free.

Recall that the special fiber is a normal variety if and only if n 2, or (X x0 j ) j = ∅ and (X x∞ j ) j = ∅ (Propositions 4.2.1 and 4.2.3). Consider the G-stable open subvariety V consisting of the orbits of codimension 1. We have Cox(V ) Cox(X) because V has a complement of codimension 2 in X. Thus, we can replace X by V . Also, consider an almost homogeneous G-threefold Y having three orbits, namely the open orbit and two G-stable prime divisors Y 0 and Y ∞ . We can choose

Y so that v Y 0 , v Y ∞ / ∈ V(X) and π(Y 0 ) = x 0 , π(Y ∞ ) = x ∞ .
Using the valuative criterion of separation ([32, App. B]), it is immediate to verify that X and Y glue together into an almost homogeneous G-threefold X 1 . By [33, 2.8.1], we have an isomorphism Cox(X) Cox(X 1 )/(r 0 -1, r ∞ -1), where r 0 , r ∞ are the canonical sections respectively associated to Y 0 , Y ∞ . Also, X 1 has by construction at least three exceptional points and an associated special fiber which is a normal variety. Now, if X 1 has a class group with a non-trivial torsion subgroup. Then, we can consider a smooth complete almost homogeneous G-threefold X 1 containing the smooth locus of X 1 as an open G-stable subvariety ( [33, 2.8.4]). By [33, 3.1.7], Pic(X 1 ) is free of finite rank, and it is directly checked that X 1 has at least three exceptional points, and an associated special fiber which is a normal variety. As above, we have an isomorphism Cox(X 1 ) Cox(X 1 )/((r i -1) i ),

where the r i are the canonical sections associated to the G-stable prime divisors lying in X 1 \ (X 1 ) sm .

Possibly replacing X by X 1 or X 1 , we can suppose that X has a torsion free class group, at least three exceptional points, and a special fiber which is a normal variety. In Proposition 4.5.3, we prove that certain Gsubmodules of S generate the ideal ker ϕ, we start by defining these G-submodules. For k, l ∈ {0, ∞, 1, ..., r}, consider the natural surjective morphisms of G-modules

   ϕ kl : V E x k ⊗ k V E x l → V E x k V E x l ⊂ Cox(X) [E x k ]+[E x l ] , k < l ϕ kk : Sym 2 k (V E x k ) → V 2 E x k ⊂ Cox(X) 2[E x k ] ,
obtained via restriction of ϕ. Using the Clebsch-Gordan decomposition, we obtain via a direct computation that any B-semi-invariant in a product V E x k V E x l is a non-zero scalar multiple of an element of the form

g n 0,kl 3 g n ∞,kl 4 e [E x k ]+[E x l ] ∈ Cox(X) [E x k ]+[E x l ] ⊂ O(G)e [E x k ]+[E x l ] .
As Cox(X) U is generated as a k-algebra by the elements , where the (a i,klj ) i∈{0,∞,1,...,r};j is the family of non-negative integers defined by

(s i ) i∈{0,∞
[E x k ] + [E x l ] = n 0,kl [E x0 ] + n ∞,kl [E x∞ ] + i∈{0,∞,1,...,r};j a i,klj [X xi j ].
The table below lists the B-weights occurring in the products V E x k V E x l . For each B-weight mω in the table, the third column provides an explicit B-semi-invariant x kl,mω . To shorten the notation, we let r a kl,mω := i∈{0,∞,1,...,r};j r

a i,klj ij . G-module B-weight: mω B-semi-invariant: x kl,mω V E x 0 V E x∞ 2ω s 0 s ∞ 0 r a0∞,0 V 2 E x 0 2ω s 2 0 V 2 E x∞ 2ω s 2 ∞ V E x 0 V E x i (1 i r) (n + 1)ω s 0 s i (n -1)ω s n-1 ∞ r a 0i,( n-1)ω V E x∞ V E x i (1 i r) (n + 1)ω s ∞ s i (n -1)ω s n-1 0 r a ∞i,( n-1)ω V 2 E x i (1 i r) 2nω s 2 i m p ω, m p = 2(n -2p), p = 1, ..., n 2 s n-2p 0 s n-2p ∞ r aii,m p ω V E x i V E x j (1 i<j r, αiβj +αj βi =0) 2nω s i s j m p ω, m p = 2(n -p), p = 1, ..., n s n-p 0 s n-p ∞ r aij,m p ω V E x i V E x j (1 i<j r, αiβj +αj βi=0) 2nω s i s j m p ω, m p = 2(n -(2p + 1)), p = 0, ..., n-1 2 s n-(2p+1) 0 s n-(2p+1) ∞ r aij,m p ω
For k, l ∈ {0, ∞, 1, ..., r}, 0 k l ∞, and mω a B-weight occurring in V E x k V E x l , let y kl,mω be the unique B-semi-invariant in S sent to x kl,mω by ϕ kl . Then, consider the following G-submodules of ker ϕ: M kl := ( mω < G.(x kl,mω -y kl,mω ) >) ⊕ ker ϕ kl , where x kl,mω is naturally identified with an element of S. Also, in view of the description of Cox(X) U by generators and relations (Section 4.2.2), define for i = 1, ..., r the following G-submodules of ker ϕ:

N i :=< G.(β i s n 0 ⊗ j r h0j 0j -α i s n ∞ ⊗ j r h∞j ∞j -s i ⊗ j (r ij ) hij ) > V n.
Proposition 4.5.3. The ideal ker ϕ is generated by the G-modules M kl and N i .

Proof. Consider the natural Cl(X)-grading on S induced by the canonical projection WDiv(X) → Cl(X), and let I be the homogeneous ideal generated by the G-modules M kl and N i . We prove that the surjective morphism of graded k-algebras

φ : S/I → Cox(X)
induced by ϕ is an isomorphism. This follows from the claim that (S/I) U is generated as a k-algebra by the images of the s i , r ij , i ∈ {0, ∞, 1, ..., r}. Indeed, the algebra (S/I) U can then be presented as the quotient of the polynomial k-algebra in the elements s i , r ij modulo an ideal J of relations. In view of the presentation of Cox(X) U and of the morphism φU : (S/I) U → Cox(X) U induced by φ, the ideal J is contained in the ideal generated by ⊕ r i=1 N U i . As we have the reverse inclusion by definition of I, it follows that the morphism φU is an isomorphism, thus φ is so.

We now prove the above claim. Remark that because the special fiber is a normal variety, the G-modules N i become zero modulo ((r ij ) i∈{0,∞,1,...,r};j ). The k-algebra S/(I, (r ij ) ij ) is generated by the simple Gmodules V E x i , i ∈ {0, ∞, 1, ..., r}, and it follows from Lemma 4.5.5, the preceding remark, and the definition of the G-modules M kl , that the product of any two of them in S/(I, (r ij ) ij ) is their Cartan product. As a consequence of a result of Kostant (see e.g. [6, 4.1 Lemme]), the product of any two simple G-modules in S/(I, (r ij ) ij ) is again their Cartan product or zero. This implies that (S/(I, (r ij ) ij )) U is generated as a k-algebra by the images of the s i , i ∈ {0, ∞, 1, ..., r}. Let A be the k-subalgebra of (S/I) U generated by the images of the s i , r ij , i ∈ {0, ∞, 1, ..., r}. Viewing A and (S/I) U as Cl(X)-graded k[(r ij ) ij ]-modules, the above description of (S/(I, (r ij ) ij )) U yields (S/I) U = A + ((r ij ) ij )(S/I) U . By Lemma 4.5.6, the regular functions on X are constant. This implies that S/I (hence (S/I) U and A) can be endowed with a coarser positive grading such that the elements r ij have non-zero degree. Indeed, S/I is naturally graded by the cone of effective divisors in Cl(X) Q , but this cone contains no line as O(X) k. Thus, we can choose convenient positive integers a ij such that the linear map Cl(X) → Z defined by [X xi j ] → a ij is positive on generators. Now, the graded Nakayama lemma yields (S/I) U = A, whence the claim. Corollary 4.5.4. Suppose that n 2. Then, the ideal ker ϕ is generated by the G-invariant relations

s k t l -s l t k = (α k β l -α l β k ) i∈{0,∞,1,...,r};j r m klij ij , k, l ∈ {0, ∞, 1, ..., r}, 0 k < l ∞,
where (m klij ) ij are the families of non-negative integers defined by

[E x k ] + [E x l ] = ij m klij [X xi j ],
and the simple G-modules N i .

Proof. It suffices to notice that in this case, the M kk are trivial, and the M kl , k < l are the G-invariant lines spanned by the elements

s k t l -s l t k -(α k β l -α l β k )r a kl,0 .
Lemma 4.5.5. Let Z be a normal G/µ n -embedding (n 1) whose associated special fiber is a normal variety, and admitting three or more exceptional points. Then, the special fiber is a horospherical variety.

Proof. In view of the table above, it suffices to show that the total degrees of the monomials r a kl,mω are non-zero. This is equivalent to prove that the divisors

• E x0 + E x∞ , • E x0 + E xi -(n -1)E x∞ , i = 1, ..., r, • E x∞ + E xi -(n -1)E x0 , i = 1, ..., r, • 2E xi -(n -2p)(E x0 + E x∞ ), 1 i r, p = 1, ..., n 2 , • E xi + E xj -(n -p)(E x0 + E x∞ ), 1 i < j r, p = 1, ..., n.
are not principal. We verify this for the divisor

E x1 + E x2 -k(E x0 + E x∞ ), 0 k n -1,
where n = n is assumed to be odd. We skip the proof for the other cases which are treated similarly. We look for a B-semi-invariant rational function gf γ ω , γ ∈ Z, where f ω is defined in 5.1, and g ∈ k(g n 3 /g n 4 ) * , whose divisor is the above one. Necessarily, zeroes and poles of g are located on the points x 0 , x ∞ , x 1 , x 2 , x d , and their orders are respectively α, α, 1, 1, β. In order to simplify the notation, we suppose that for each of the points x 0 , x ∞ , x 1 , x 2 , there is exactly one G-stable prime divisor sent to this point, the general case being treated the same way. Coordinates on the hyperspace are defined as in Section 5.1, and we set v

X x i = (x i , h i , l i ), i ∈ {0, ∞, 1, 2}. This gives div(gf γ ω ) = α(n(E x0 + E x∞ ) + h 0 X x0 + h ∞ X x∞ ) + E x1 + h 1 X x1 + E x2 + h 2 X x2 + βD x d + γ(D x d - n -1 2 (E x0 + E x∞ ) + l 0 X x0 + l ∞ X x∞ + l 1 X x1 + l 2 X x2 ).
It follows that we must have β = -γ, and αn -γ n-1 2 = -k, the general solution of this last equation being of the form

(α, γ) = (-k, -2k) + u( n-1 2 , n), u ∈ Z.
Recall that we must have 2α + 2 + β = 0, so that u = 2. Now, this principal divisor reads

div(gf γ ω ) = E x1 + E x2 -k(E x0 + E x∞ ) + (αh 0 + γl 0 )X x0 + (αh ∞ + γl ∞ )X x∞ + (h 1 + γl 1 )X x1 + (h 2 + γl 2 )X x2 .
It follows that we must impose l1 h1 = -1 γ = -1 2(n-k) . This condition cannot be satisfied as soon as k < n -1, because we must have l1 h1 - 1 2 . Thus, we suppose that k = n-1, and we look at the condition l0 h0 = -α γ = 0 which cannot be satisfied. Lemma 4.5.6. Let Z be a normal G/µ n -embedding (n 1) whose associated special fiber is a normal variety and with three or more exceptional points. Then, O(Z) k.

Proof. It suffices to prove that every B-semi-invariant regular function u ∈ O(X) is necessarily constant. Let α := 1 if n is odd, and α := 2 otherwise. We can write u = gf m αω , where g ∈ k(g n 3 /g n 4 ) * , and f αω is defined in Section 5.1. Moreover the divisor of u is effective by assumption, so that we have v D (u) 0, ∀D ∈ WDiv(X) B . By summing these inequalities over the set of colors we obtain the inequality m(-1 2 + 1 2n -1 2 + 1 2n + 1) 0, which implies that m 0. In view of Proposition 4.2.3, Z admits at least three G-stable prime divisors X x0 , X x∞ , X x1 sent to pairwise distinct exceptional points x 0 , x ∞ , x 1 . Consider the set of B-stable prime divisors consisting of X x0 , X x∞ , X x1 , and all the colors except E x0 , E x∞ , and E x1 . By summing the inequalities over this set we obtain the inequality m( l0 h0 + l∞ h∞ + l1 h1 + 1) 0, where (x 0 , l 0 , h 0 ), (x ∞ , l ∞ , h ∞ ), and (x 1 , l 1 , h 1 ) are the respective coordinates in the hyperspace associated with X of the valuations v X x 0 , v X x∞ and v X x 1 . Because l0 h0 + l∞ h∞ + l1 h1 + 1 < 0 (see 5.1), the above inequality is equivalent to m 0, and we obtain that m = 0. Thus, we have that g ∈ k * because the divisor of g has to be effective. Indeed, any non-constant rational function on P 1 k /µ n admits at least one pole. We conclude that u is constant. Remark 4.5.7. Suppose that n 2. From the above description of Cox(X), we have X is a complete intersection ⇐⇒ (x i ) i 2 ⇐⇒ X is a hypersurface. Furthermore these equivalent conditions characterize when the good quotient morphism X //G --→ A N is faithfully flat. Indeed, this morphism has equidimensional fibers if and only if (x i ) i 2 (see Section 4.2.1). Moreover, X is Cohen-Macaulay under these assumptions, so that the quotient morphism is flat ([13, III, Ex 10.9]).

Example 4.5.8. Consider a normal G-embedding X with four exceptional points

x 1 = [1 : 0], x 2 = [0 : 1], x 3 = [1 : 1], x 4 = [2 : 1] ∈ P 1 k , to which are sent the exceptional divisors E x1 , X x1 , E x2 , X x2 , E x3 , X x3 , E x4 , and X x4 .
We choose the section ω → f ω of the exact sequence

1 → k(P 1 k ) * → k(X) (B) → Zω → 1, such that div(f ω ) is the color E x1 on G.
This provides coordinates on Ȇ for which we have

v X x 1 = (x 1 , 2, -1), v X x 2 = (x 2 , 3, -5), v X x 3 = (x 3 , 1, -1), and v X x 4 = (x 4 , 5, -4). By 3.2.2, the generators ([E x1 ], [X x1 ], ..., [E x4 ], [X x4 
]) of the class group give the following presentation matrix

P :=      -1 -2 1 3 0 0 0 0 -1 -2 0 0 1 1 0 0 -1 -2 0 0 0 0 1 5 1 -1 0 -5 0 -1 0 -4      .
From this presentation of Cl(X) we obtain

Example of affine almost homogeneous G-threefolds

Consider the case where X is affine. In [START_REF] Popov | Quasihomogeneous affine algebraic varieties of the group SL 2[END_REF], Popov classifies these varieties up to isomorphism by means of numerical invariants. These results can be reinterpreted in term of the combinatorial description of these varieties. Indeed, the colored hypercone defining X must have all the colors among its generators, which is only possible if F µ n ([30, 5.2]). We use coordinates on the hyperspace as defined in Section 5.1, and define u := 2 if n is even, and u := 1 otherwise. The combinatorial description of the normal affine G/µ n -embeddings shows that X admits a unique G-orbit of codimension 1 corresponding to a G-stable prime divisor X x0 , which is sent to x 0 by the rational quotient π : X P 1 k by B. Moreover, the condition

v X x 0 = (x 0 , h, l) ∈ P 1 k × Z >0 × 1 u Z, with -1 2 -1 2n < l h - 1 
2 , and h ∧ ul = 1 is satisfied. Remark that if n 2, we can still choose two distinct points x 0 , x ∞ ∈ P 1 k which play the same role as in the case n 3. In general, X admits a G-fixed point, except in the case where l/h = -1/2. Concretely, this exceptional embedding is realized as the G-linearized line bundle

G × T A 1 k → G/T , associated to the T -action on A 1 k defined by the character ω n . The generators ([E x d ], [E x0 ], [X x0 ], [E x∞ ]
) of the class group give the presentation matrix

P :=    -1 n h 0 -1 0 0 n u -u n-1 2 ul -u n-1 2    .
Transforming this matrix to its Smith normal form by means of elementary operations on the rows and columns yields an isomorphism

Cl(X) Z × Z/dZ, (4.3) 
where d := n ∧ h if n is odd or h + 2l is even, and d := (n + h) ∧ (n -h) otherwise. Panyushev computed this class group in [24, Thm 2] taking as input Popov's numerical invariants. By Proposition 4.5.2, the Cox ring is generated by the elements s 0 , t 0 , s ∞ , t ∞ , r 0 , and the relations are generated by a relation of the form r m 0 = s ∞ t 0 -s 0 t ∞ . On the other hand, computing L 1 + L 2 + 2 u L 3 on the rows of P , we obtain

[E x0 ] + [E x∞ ] = -(h + 2l)[X x0 ].
It follows that the sought relation is r

-(h+2l) 0 = s ∞ t 0 -s 0 t ∞ .
This presentation of the Cox ring is similar to the one obtained by Batyrev and Haddad in [START_REF] Batyrev | On the geometry of SL 2 -equivariant flips[END_REF].

Comparison with the results of Batyrev and Haddad

In [START_REF] Popov | Quasihomogeneous affine algebraic varieties of the group SL 2[END_REF], Popov associates to the isomophism class of X a unique pair (h P , n) where h P ∈]0, 1] is a rational number called the height of X, and n is the order of the cyclic group stabilizing a point in the open orbit. With [START_REF] Kraft | Geometrische methoden in der Invariantentheorie[END_REF]III.4.3], the height has the following useful interpretation: the algebra of U -invariant regular functions on X identifies with the algebra of the monoid M h,n = {(i, j) ∈ Z 2 >0 ; j h P i and n|i -j}. More precisely, by considering the injective graded morphism ϕ : O(X) U → O(G/µ n ) U = i,j 0,n|i-j Vect k (g i 3 g j 4 )

given by the restriction of functions, we identify elements of the monoid M h,n with the monomials in the image of ϕ. As in the preceding section, consider the G-valuation v X x 0 = (x 0 , h, l) ∈ Ȇ. By normality of X, a monomial g i 3 g j 4 ∈ O(G/µ n ) U belongs to O(X) U if and only if v X x 0 (g i 3 g j 4 ) 0 ⇐⇒ v X x 0 ( g i 3 g j Remark that together with the condition -1 2 -1 2n < l h -1 2 , we verify that 0 < α 1, with α = 1 exactly when l/h = -1/2. By unicity of the cone in Z 2 defined by the monomials of O(X) U , we have α = h P .

In [START_REF] Batyrev | On the geometry of SL 2 -equivariant flips[END_REF], Batyrev and Haddad consider in the affine space A 5 k endowed with coordinates y, t 1 , t 2 , t 3 , t 4 the hypersurface H b defined by the equation

y b = t 1 t 4 -t 2 t 3 ,
where b := q-p k , k := (q -p) ∧ n, and p/q = h P with p ∧ q = 1. Then, they set a := n k , and let G m × µ a act on A 5 k by allocating the following weights to coordinates deg(y) = (k, 0), deg(t 1 ) = (-p, -1), deg(t 2 ) = (-p, -1), deg(t 3 ) = (q, 1), and deg(t 4 ) = (q, 1).

This action stabilizes H b and realizes it as the total coordinate space of X ([3, 2.6]). We now verify that this coincides with the presentation of the Cox ring given in the last section. For simplicity, we assume that n is odd. By identification, we have    p = 1 2(n∧h) (h(n + 1) + 2nl) q = 1 2(n∧h) (h(1 -n) -2nl)

.

Then, the following identity holds

b = q -p k = -(h + 2l)n (n ∧ h)((q -p) ∧ n) = -(h + 2l)n (n ∧ h)( -n(h+2l) n∧h ∧ n) = -(h + 2l)n n(-(h + 2l) ∧ n ∧ h) = -(h + 2l) -2l ∧ n ∧ h = -(h + 2l).
Turning to the grading of the Cox ring, recall that the isomorphism Cl(X) Z × Z/(n ∧ h)Z has been obtained by considering the four generators [E x d ], [E x0 ], [X x0 ], [E x∞ ] of Cl(X), and looking for a Z-basis of the free Z-module on these generators adapted to the submodule of relations. Let u, v ∈ Z be such that In order to have a uniform description of the hyperspace, the third coordinate l v of a G-valuation (or color) v is defined by l v := v(f ω ) if n is odd, and l v := v(f 2ω )/2 if n is even. The elements of V x ⊂ E x are the vectors (x, h, l) in Ȇ whose coordinates satisfy the inequalities 2l + h 0 for x = x d and 2l -h 0 for x = x d . The colors are sent to the vectors ε x for x = x d , x 0 , x ∞ , to (x d , 1, 1) for x d , and to (x 0 , n, -(n -1)/2) (resp. (x ∞ , n, -(n -1)/2)) for x 0 (resp. for x ∞ ).

F is binary tetrahedral

The character group of F T identifies with the cyclic group of order 3, for which we choose a generator ζ. Up to a constant, there are three subregular semi-invariants f v , f e , f f whose respective weights are (4ω, ζ), (6ω, 1), (4ω, ζ -1 ). We have O(G)

(B×F T ) (n0ω,λ0) = O(G) (B×F T )
(12ω,1) generated by the three exceptional semiinvariant f 3 v , f 2 e , f 3 f with the relation f 3 v + f 2 e + f 3 f = 0. This defines three exceptional points x v , x e , x f , and three exceptional colors π * (x v ) = 3E xv , π * (x e ) = 2E xe , and π * (x f ) = 3E x f . We define a section of Λ(G/F T ) → k(G/F T ) (B) by the choice of the generator f 2ω := fvf f fe . The elements of V x ⊂ E x are the vectors (x, h, l) of Ȇ whose coordinates satisfy the inequalities l + h 0 for x = x f , x v , and l 0 for x = x f or x = x v . The colors are sent to the vectors ε x for x = x v , x e , x f , and to (x v , 3, 1), (x e , 2, -1), and (x f , 3, 1) for π * (x v ), π * (x e ) and π * (x f ).

F is binary octahedral

The character group of F O identifies with the cyclic group of order 2. Up to a constant, there are three subregular semi-invariants f v , f e , f f whose respective weights are (8ω, ζ), (12ω, 1), (6ω, ζ -1 ). We have fe . The elements of V x ⊂ E x are the vectors (x, h, l) of Ȇ whose coordinates satisfy the inequalities l + h 0 for x = x f , x v , and l 0 for x = x f or x = x v . The colors are sent to the vectors ε x for x = x v , x e , x f , and to (x v , 3, 1), (x e , 2, -1), and (x f , 4, 1) for π * (x v ), π * (x e ) and π * (x f ).

O(G) (B×F O ) (n0ω,λ0) = O(G)

F is binary icosahedral

The character group of F I is trivial. Up to a constant, there are three subregular semi-invariants f v , f e , f f whose respective weights are (12ω, ζ), (30ω, 1), (20ω, ζ -1 ). We have O(G)

(B×F I ) (n0ω,λ0) = O(G)
(B×F I ) (60ω,1) generated by the three exceptional semi-invariant f 5 v , f 2 e , f 3 f with the relation f 5 v + f 2 e + f 3 f = 0. This defines three exceptional points x v , x e , x f , and three exceptional colors π * (x v ) = 5E xv , π * (x e ) = 2E xe , and π * (x f ) = 3E x f . We define a section of Λ(G/F I ) → k(G/F I ) (B) by the choice of the generator f 2ω := fvf f fe . The elements of V x ⊂ E x are the vectors (x, h, l) of Ȇ whose coordinates satisfy the inequalities l + h 0 for x = x f , x v , and l 0 for x = x f or x = x v . The colors are sent to the vectors ε x for x = x v , x e , x f , and to (x v , 5, 1), (x e , 2, -1), and (x f , 3, 1) for π * (x v ), π * (x e ) and π * (x f ).

F is binary dihedral of order 4n, n > 1

The group F Dn is generated by the elements e -f 2 v = 0. This defines three exceptional points x v , x e , x f , and three exceptional colors π * (x v ) = 2E xv , π * (x e ) = 2E xe , and π * (x f ) = nE x f . We define a section of Λ(G/F Dn ) → k(G/F Dn ) (B) by the choice of the generator f 2ω := fvf f f n-1 e . The elements of V x ⊂ E x are the vectors (x, h, l) of Ȇ whose coordinates satisfy the inequalities l + h 0 for x = x f , x v , and l 0 for x = x f or x = x v . The colors are sent to the vectors ε x for x = x v , x e , x f , and to (x v , 2, 1), (x e , 2, 1), and (x f , n, 1 -n) for π * (x v ), π * (x e ) and π * (x f ).

1 k

 1 By a theorem of Rosenlicht([32, 5.1]) there is a rational quotient π : X P by B. Thus, general B-orbits determine a one-parameter family of B-stable prime divisors in X. This rational map is defined by two global sections a, b of a rigidified G-linearized divisorial sheaf F x on X ([33, Sec. 3.2]). The pullback of Weil divisors on P 1 k corresponds to the usual pullback of Cartier divisors and is given byπ * : WDiv(P 1 k ) → WDiv(X), p = [α : β] → div(βa -αb), where [α : β] are homogeneous coordinates of p ∈ P 1 k . All the B-stable prime divisors in X but a finite number lie in the image of π * ([START_REF] Vezier | Equivariant Cox ring[END_REF] Sec. 3.1]).

Remark 2 . 2 . 3 .

 223 [33, 3.2.4] Examples of situations where the condition ( ) is satisfied are given by • rational normal T-varieties of complexity one such that O(X) T k.

Proposition 4 . 1 . 1 .

 411 The total coordinate space X has log terminal singularities if and only if Cox(X) U is a Platonic ring.Proof. Apply[33, 3.4.3].

4. 2 . 2 F 3 , g n 4 .

 2234 = µ n , n 3 Recall (5.1), that we defined n := n if n is odd, and n := n/2 otherwise, and that the morphism π |G/µn defines two exceptional pointsx 0 = [0 : 1], x ∞ = [-1 : 0] ∈ P 1k with respect to the homogeneous coordinates g n These points define the two relations a these relations, we remove a and b from the set of generators. This yields the following presentation of Cox(X) U :

Proposition 4 . 3 . 1 .

 431 The varieties (Y ij ) ij , Y ∞ , Y 0,1 and Y 0,2 glue together to a normal rational T -variety Y of complexity one. The morphisms (π ij ) ij , π ∞ , π 0 glue together to a morphism

Proposition 4 . 4 . 7 .

 447 Suppose that X is a normal G/µ n -embedding, and let d be the order of the torsion subgroup of Cl(X). Denote n := n/2 if n is even, and n := n otherwise. Similarly let n/d := n/2d if n/d is even, and n/d := n/d otherwise. Finally, let d := n n/d

Lemma 4 . 4 . 11 .

 4411 With the notation of Construction 4.4.6, suppose that X is a normal G/F Dn -embedding.

  1.5], whence m 1 in this case. If F = µ 2 , then m = 1 by virtue of Lemma 4.4.8. Also, if F = µ n , n 3, then m 2 by Lemma 4.4.8 and [2, 1.4.1.5].

  (i + j) 0 ⇐⇒ j αi, where α := h(n + 1) + 2ln h(1 -n) -2ln .

(, f 2 e , f 4 f with the relation f 3 v +f 2 e +f 4 f = 0 .

 240 B×F O ) (24ω,1) generated by the three exceptional semi-invariant f 3 v This defines three exceptional points x v , x e , x f , and three exceptional colors π * (x v ) = 3E xv , π * (x e ) = 2E xe , and π * (x f ) = 4E x f . We define a section of Λ(G/F O ) → k(G/F O ) (B) by the choice of the generator f 2ω := fvf f

  where ζ is a primitive 2n th root of unity. A character of F Dn is determined by a pair of values h → ζ k , r → i l , where i 2 = -1. The subregular semi-invariants are f f = g 3 g 4 , f e = g n 3 -(-ig 4 ) n , and f v = g n 3 + (ig 4 ) n of respective weights (2ω, (1, -1)), (nω, (-1, -i n )), and (nω, (-1, i n )). We have O(G)(B×F Dn ) (n0ω,λ0) = O(G) (B×F Dn ) (2nω,(1,(-1) n )) generated by the three exceptional semi-invariants f n f , f 2 e , f 2 v with the relation 4(-i) n f n f + f 2

  the respective subsets which correspond to the B-stable prime divisors in X whose closure in X contains Y , and let C Y be the (hyper)cone spanned by V Y ∪ (D B Y ). Then for any other G-stable subvariety Z, we have Y ⊂ Z if and only if (C Z , D B

Z ) is a (hyper)face of (C Y , D B Y ).

  1 k \ {x 1 , ..., x l }. Again, we have a U -torsor X O → Y O . Moreover, since Y O has an attractive fixed point for the T -action (2.3.6), its Picard group is trivial. It follows that Y O is Q-Gorenstein if and only if a multiple of K Y O is a principal divisor. By [21, Prop 4.3], this is in turn equivalent to asking for a certain system of linear equations Ax = y written in matrix form to have a solution, where A has linearly independant columns ([21, Prop 4.6]). But in our case, A is a square matrix so that Y O is Q-Gorenstein. Now, we can apply the criterion [21, Cor 5.8] to obtain that Y O (hence X O ) has log terminal singularities if and only if the tuple (h 1 , ..., h l ) is Platonic, where h i is the multiplicity of X xi in π * (x i ). Orbits of type B -can only occur when F = µ n ([30, 5]), we suppose that O is of this type. If n 3, there are two exceptional points x 0 , x ∞ associated to the dense orbit and O lies in exactly one of the two exceptional colors, say E x0 ([30, 5.2]). Consider the B-chart X O given by the colored hypercone of type (B) generated by all the colors but E x∞ , and by the G-stable exceptional divisor sent to x ∞ which contains O. As before, we are reduced to studying the singularities of a normal rational affine T -surface Y O of complexity one admitting an attractive fixed point, whence O(Y O ) * k * . By 2.2.2 and 2.2.3, the T -equivariant Cox ring Cox T (Y O ) is a polynomial ring over k[ T ]. As a consequence, Y O is toric and we conclude as above. The same method applies when n 2.

  respective complements are of codimension 2 and such that ϕ induces a H-torsor V 1 → V 2 . Z 1 is a normal variety with only constant invertible homogeneous regular functions, is precisely a quotient presentation in the sense of[2, 4.2.1.1]. For example, the structural morphism of the characteristic space Ẑ2 → Z 2 , if it exists, is a quotient presentation of Z 2 .

	•
	Example 4.4.2. In the framework of Cox rings, an almost principal bundle ϕ : Z 1 → Z 2 under a diagonal-
	izable group such that
	• Z 2 is a normal variety with finitely generated class group and only constant invertible regular functions,
	• ϕ is a good quotient,

  ,1,...,r} , (r ij ) i∈{0,∞,1,...,r};j ,

	it follows from the form of this B-semi-invariant that it equals a monomial
	s n 0,kl 0	s n ∞,kl ∞	a i,klj ij i∈{0,∞,1,...,r};j r

F O /F T µ 2 is a simple group. Then, either X has torsion-free class group and m = 2, or we obtain a normal G/F D2 -embedding X (2) . Indeed, there is no other possibility as F D2 is the derived subgroup of F T and F T /F D2 µ 3 is a simple group. The derived subgroup of F D2 is µ 2 and F D2 /µ 2 µ 2 × µ 2 . In view of Lemma 4.4.12, we now have only two possibilities 1. Cl(X (2) ) is torsion-free, whence m = 3, 2. Cl(X (2) ) Z/2Z × Z/2Z.

In the second case, we obtain a normal G/µ 2 -embedding X (3) , and Lemma 4.4.8 gives that X(4) is factorial, thus m = 4 in this case.

In the case F = F T , we have m 3 by the last paragraph. It remains to treat the case F = F Dn , n 2. We have D(F Dn )

µ n and F Dn /µ n µ 2 × µ 2 when n is even, and F Dn /µ n µ 4 when n is odd. In this last case, the proper subgroups of F Dn containing its derived subgroup are cyclic. Hence, either Cl(X) is torsion-free and m = 1, or we obtain a normal embedding X of G modulo a cyclic group, whence m 3.

If n is even, the subgroups of F Dn containing its derived subgroup are F Dn , two copies of F D n/2 , µ 2n , and µ n . Hence, either Cl(X) is torsion-free (m = 1), or we obtain a normal embedding X of G modulo a cyclic group (m 3), or we obtain a normal G/F D n/2 -embedding X . In this last case, Cl(X ) tor must be trivial, thus m = 2. Indeed, the order of Cl(X ) tor cannot be 2 by Lemma 4.4.12. Suppose by contradiction that this order is 4. By Lemma 4.4.12 again, we must have Cl(X ) tor Z/2Z × Z/2Z, but this is impossible in view of Lemma 4.4.11.

Presentation of Cox(X) by generators and relations

In this section, we develop a general strategy for the description of Cox(X) by generators and relations. In the sequel, we always suppose that X doesn't admit a G-stable divisor dominating P 1 k , and admits at least two exceptional points. These assumptions are aimed to simplify the notation, the cases left aside can be treated with the same method. To begin with, an easy consequence of Theorem 2.2.2 is the Proposition 4.5.1. The Cox ring of X is generated as a k-algebra by the simple G-modules spanned by the canonical sections of the exceptional divisors.

This result provides us with homogeneous generators for Cox(X), namely the elements of k-bases of these simple G-modules. The more difficult task is now to describe the ideal of relations between them. We use as basic tools some elementary facts from the representation theory of G. For each n 0, denote V n the space of binary forms of degree n. These spaces are naturally G-modules, G acting by linear change of variables. Moreover, they are up to isomorphism the simple G-modules (see [START_REF] Springer | Invariant Theory[END_REF]). Also, recall the Clebsch-Gordan decomposition

For a B-stable effective divisor E in X, let V E ⊂ Cox(X) denote the simple G-module spanned by the canonical section associated with E.

Normal G/µ n -embeddings, n 1

In this section, X is a normal G/µ n -embedding (n 1). Remark that if n 2, we can still choose two distinct exceptional points x 0 , x ∞ ∈ P 1 k which play the same role as in the case n 3. Indeed, we can suppose up to a G-equivariant automorphism of X that the pairwise distinct exceptional points on B\G/µ n P 1 k are

with respect to the homogeneous coordinates g n 3 , g n 4 (5.1). The last proposition provides a surjective morphism of graded k-algebras

Finally, we find

with ideal of relations generated by the following

Example 4.5.9. Consider a normal G/µ 3 -embedding X with three pairwise distinct exceptional points

k , to which are sent the following exceptional divisors:

, and X x1 .

We choose coordinates on the hyperspace as described in Section 5.1, and the G-valuations associated to the G-invariant exceptional divisors have the following coordinates in Ȇ:

The class group of X is free of rank 3 and the special fiber is a normal variety, so the preceding proposition applies. We consider the following k-bases for the simple G-modules generating Cox(X):

We have

where k[r 0 , r ∞ , r 1 ] is a polynomial k-algebra, and I is generated by the simple G-modules of relations given in the following table:

By the above isomorphism, the elements

and [E x∞ ] are sent respectively to (-p, ub -v), (k, u), and (q, v), where the second coordinate is computed in Z/(n ∧ h)Z. This gives us the corresponding degrees for the generators of the Cox ring. This degrees correspond to the degrees of Batyrev and Haddad up to an automorphism f of Z × Z/(n ∧ h)Z. Indeed, it suffices to set f ((1, 0)) = (1, k -1 u) and f ((0, 1)) = (0, k -1 ).

5 Appendix: Colored equipment of k(G/F )

In this appendix, we recall from [START_REF] Timashev | Classification of G-varieties of complexity one[END_REF] the colored equipment of k(G/F ) for F either cyclic or one of the binary polyhedral groups in G = SL 2 . There is a natural bijection between the monoid of effective B-stable divisors in G/F , and the monoid O(G) (B×F ) /k * . Indeed, it suffices to consider the well-defined morphism

Via this bijection, B-stable prime divisors in G/F correspond to indecomposable elements of O(G) (B×F ) /k * . Remark that we can again see these elements as indecomposable homogeneous elements of Cox(G/F ) (B) /k * . There exists a linear system O(G) k × Q + × Q, where x and h are defined by the restriction of v to k(P 1 k ), and the coordinate l is obtained by evaluating v at a fixed generator of the weight group Λ(G/F ) viewed in k(G/F ) (B) via the choice of a section λ → f λ (2.3).

F is cyclic of order n 1

We identify the character group of F = µ n with Z/nZ. If n 2, there is no exceptional semi-invariant. If n 3, there are, up to non-zero scalar multiple, two subregular semi-invariants g 3 and g 4 whose respective weights are (ω, 1 mod n), (ω, -1 mod n). Let