
HAL Id: hal-02942202
https://hal.science/hal-02942202v3

Submitted on 1 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A simple extension of FFT-based methods to strain
gradient loadings - Application to the homogenization of

beams and plates with linear and non-linear behaviors
Lionel Gélébart

To cite this version:
Lionel Gélébart. A simple extension of FFT-based methods to strain gradient loadings - Application to
the homogenization of beams and plates with linear and non-linear behaviors. Journal of Theoretical,
Computational and Applied Mechanics, 2022, pp.1-27. �10.46298/jtcam.6790�. �hal-02942202v3�

https://hal.science/hal-02942202v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Identifiers

doi 10.46298/jtcam.6790

oai hal-02942202v3

History

Received Sep 18, 2020

Accepted May 19, 2021

Published Jun 16, 2022

Associate Editor

Julien Réthoré

Reviewers

Anonymous

Sébastien Brisard

Open Review

oai hal-03667777

Licence

CC BY 4.0

©The Authors

Journal of Theoretical,
Computational and
Applied Mechanicso

v
e

r
l
a
y

diamond open access

A simple extension of FFT-based methods to strain

gradient loadings ś Application to the homogenization

of beams and plates with linear and non-linear

behaviors

Lionel Gélébart

Université Paris-Saclay, CEA, ISAS/DMN/SRMA, 91191, Gif/Yvette, France

Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive in

the context of numerical periodic homogenization, especially when compared to standard FE codes used in

the same context. They allow applying to a unit-cell a uniform average strain with a periodic strain

fluctuation that is an unknown quantity. Solving the problem allows to evaluate the complete stress-strain

fields. The present work extends straightforwardly the method from uniform loadings (i.e. uniform

applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) and proposes

an application to the homogenization of beams and plates, while keeping the simplicity of the original

method. It is observed that, due to the use of periodic boundary conditions, among the 18 strain gradient

components, only 9 can be really prescribed. However, they are sufficient to consider the homogenization

of beams and plates, taking into account stress-free boundary conditions through enlarged unit-cells with

null stiffness. A first application validates the approach and compares it to another FFT-based method

dedicated to the homogenization of plates. The second application concerns the homogenization of beams,

for the first time considered (to author’s knowledge) with an FFT-based solver. The method applies to

different beam cross-sections and the proposition of using composite voxels drastically improves the

numerical solution when the beam cross-section is not conform with the spatial discretization, especially

for torsion loading. Finally, the method is applied to non-linear behaviors, considering a beam unit-cell

with an elastic inclusion within an elasto-plastic matrix, perfectly plastic. As a result, the massively

parallel AMITEX_FFTP code has been slightly modified and now offers a new functionality, allowing the

users to prescribe torsions and flexions to beam or plate heterogeneous unit-cells, with both linear and

non-linear behaviors.

Keywords: numerical homogenization; FFT; strain gradients; beams; plates; flexion; torsion; composite voxels;

elasto-plasticity

1 Introduction

The present paper lies in the overall framework of numerical homogenization of heterogeneous

materials for which the mechanical behavior at the upper scale derives from spatial averages of

stress-strain fields simulated on heterogeneous unit-cells. The first developments and most

common applications focus on first order homogenization, the homogenized behavior relating the

displacement gradient tensor to a stress tensor, or more specifically, under the small perturbations

assumption, the linearized strain to the Cauchy stress. The type of boundary conditions applied to

the unit-cell is quite important in that context. First, they must satisfy the Hill-Mandel condition

so that the average microscopic strain energy is equal to the macroscopic one. Then, various

choices satisfying this condition are available: Kinematic Uniform Boundary Conditions (BC),

Stress Uniform BC, periodic BC or even normal-mixed BC (Gélébart et al. 2009). If the choice

of periodic BC is obvious for periodic microstructures, it also provides the best estimate for

random microstructures (Kanit et al. 2003; Chateau et al. 2015) compared to KUBC or SUBC, that
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provide upper and lower bounds, at least for linear material (Huet 1990). If applying PBC is not

straightforward in Finite Element codes and can deteriorate the computation performance, it is

natural for the FFT-based methods proposed in the 1990’s (Moulinec and Suquet 1998).

These methods have been extensively used and improved during the last decade, reducing

the initial drawbacks such as convergence issues for highly contrasted materials, spurious

oscillations or sensitivity of the convergence to the reference material behavior (an algorithm

parameter). Among significant improvements: modified discrete Green operators reducing

spurious oscillations and improving the convergence (Brisard and Dormieux 2010; Willot

2015; Schneider et al. 2017), algorithms replacing the initial fixed-point algorithm to improve

convergence (Zeman et al. 2010; Gélébart and Mondon-Cancel 2013; Kabel et al. 2014; Chen

et al. 2019b) or composite voxels accounting for multi-phase materials, for voxels crossed by

an interface, to improve the numerical solution and reduce spurious oscillations (Brisard and

Dormieux 2010; Gélébart and Ouaki 2015; Kabel et al. 2015). The list is not exhaustive and

numerous theoretical works reinforce the mathematical basis of the method.

Due to their high numerical efficiency compared to finite element codes used in the same

context (periodic boundary conditions), various works intend to extend the method to various

applications. Among these applications, we can cite the extension to non-local behaviors such

as strain gradient plasticity (Lebensohn and Needleman 2016) or damage phase field (Chen

et al. 2019b), the coupling with metallurgical phase fields such as martensitic phase trans-

formation (Kochmann et al. 2015) or other physics such as magneto-electricity (Brenner and

Bravo-Castillero 2010), the coupling with Dislocation Dynamics (DD) codes (Bertin and Capolungo

2018). Once again, this short list is far from exhaustive but gives an idea of the increasing

development of the method towards new research fields.

Another kind of extension concerns higher order numerical homogenization (Tran et al. 2012;

Dietrich et al. 2019). In that case, the homogenized behavior is not only dependent of the first

gradient of the displacement but also of higher order terms. Following this idea of going beyond

the classical application of an average strain loading (i.e. first order displacement gradient) the

present paper lies in the same general context.

The first part of the paper proposes a straightforward extension of the classical FFT-based

method in order to account for strain gradient loadings. It is observed that, due to the use of

periodic boundary conditions, among the 18 strain gradient components, only 9 can be applied.

The second part of the paper demonstrates its ability to solve the question of the homogenization

of beams and plates, taking into account the traction free boundary conditions through enlarged

unit-cells with null stiffness.

Actually, the questions of beams and plates homogenization can be regarded as second order

term homogenizations (Geers et al. 2007) for which strain gradients are associated to flexion

and torsion loadings. For plates, if the classical numerical implementation relies on the finite

element method (Geers et al. 2007; Helfen and Diebels 2014), Nguyen et al. (2008) also proposes

an FFT-based method devoted to this application. It relies on a specific algorithm combined with

a dedicated Green operator to account for the traction free boundary conditions applied at the

plates’ free surfaces. On the contrary, if the finite element method has also been used is also used

for beams homogenization (Cartraud and Messager 2006), to the best of the author’s knowledge,

FFT-based methods have never been proposed in that context. One purpose of the paper is then

to demonstrate that the same slightly modified FFT-based code, used with enlarged unit-cells

with null stiffness, can be used for both classical (i.e. first gradient term), as well as beams and

plates, numerical periodic homogenization. This is made possible and quite efficient since recent

FFT-based methods (see beginning of the introduction) allow for the simulation of unit-cells

enlarged with void voxels (i.e. infinite contrast). to account for traction free boundary conditions.

To summarize, the first part of the paper (Section 2) introduces the simple extension of the

FFT-based method to a reduced set of strain gradient loadings and the second part (Section 3)

applies the method to the homogenization of beams and plates. In this part, the first sub-section

presents the application to plates homogenization and focuses on the comparison with Nguyen’s

method using exactly the same cases (Nguyen et al. 2008). Then, the second sub-section presents

the new FFT-based application to beams homogenization with an additional emphasis on the

use of composite voxels when the beam cross-section is not conform with the regular grid
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discretization. Finally, a last section is proposed to demonstrate that the method can be applied to

non-linear behaviors: a beam unit-cell with an elastic inclusion within an elasto-plastic matrix,

perfectly-plastic, is submitted to bending and torsion.

The method proposed in (Nguyen et al. 2008), based on a modified Green operator, is limited

to plates with plane free surfaces and its application was proposed in the context of linear

elasticity. However, the present work makes use of unit-cells enlarged with void voxels and

thus accounts for both plates and beams with any arbitrary cross-section. For plates, the free

surfaces do not have to be plane and corrugated plates could be simulated as well. The FFT-based

simulation of beams, which is itself a novelty, is enriched with the use of Voigt composite

voxels to improve the quality of the simulations (here, for beams with disk cross-sections). In

addition, the algorithm is extended to non-linear behaviors and validated by an application to a

heterogeneous beam with an elasto-plastic matrix. Finally, the discussion on the strain gradient

components that can be prescribed when using periodic boundary conditions (i.e. 9 components

among 18) could also be of interest for higher order numerical homogenization.

2 FFT-based method extension to strain gradient loadings

2.1 Periodicity condition

The description of the periodicity condition prescribed on a unit-cell Ω can be done equivalently

from two different points of view. In the first case, fields are defined on Ω and boundary conditions

have to be applied on its boundary 𝜕Ω. In the second case, fields are defined on an infinite space

and Ω-periodicities are assumed for the fields. The first description is more appropriate for

Finite-Element solvers, the second is well-suited for FFT-based solvers. The two equivalent

descriptions of the equilibrium condition, submitted to a periodicity condition, are given as{
div(𝜎 (𝒙)) = 0

𝜎 · 𝒏 antiperiodic on 𝜕Ω
⇔

{
div(𝜎 (𝒙)) = 0

𝜎 Ω−periodic (1)

where ł𝜎 · 𝒏 antiperiodic on 𝜕Ωž means that the traction vector 𝜎 · 𝒏 on opposite points of

opposite faces of Ω are of opposite sign. The periodicity condition of a displacement field �̃� in

�̃� periodic on 𝜕Ω ⇔ �̃� Ω-periodic ⇔


𝜀 compatible

𝜀 Ω−periodic
⟨𝜀⟩ = 0

(2)

is also equivalently formulated on Ω in terms of strain field 𝜀, adding compatibility and null

average conditions in that case. Below, ł�̃� periodic on 𝜕Ωž means that the displacements �̃�

evaluated on opposite points of opposite faces are equal.

2.2 FFT-based algorithm

When considering classical (i.e. first order term) periodic homogenization under the small

perturbations assumption, the problem to solve consists of a heterogeneous unit cell Ω described

by its stiffness tensor field 𝑐 , submitted to an average displacement (first order) gradient ∇𝑼 with

periodic boundary conditions




div(𝜎 (𝒙) = 0

𝜎 (𝒙) = 𝑐 (𝒙) : 𝜀 (𝒙)
𝜀 (𝒙) = (∇𝒖)sym(𝒙)
𝒖 (𝒙) = ∇𝑼 · 𝒙 + �̃� (𝒙)

with

{
�̃� periodic on 𝜕Ω

𝜎 · 𝒏 antiperiodic on 𝜕Ω
(3)

The displacement field is written as the sum of the prescribed linear term and the unknown

fluctuation field �̃�. Using Equation (1) and Equation (2), Problem (3) written on Ω, is equivalent to



div(𝜎) = 0

𝜎 = 𝑐 : 𝜀

𝜀 = 𝐸 + 𝜀
with



𝜀 compatible

𝜀 Ω−periodic
�̃� Ω−periodic

(4)
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where the 𝒙 dependence is removed for the sake of concision, the average strain 𝐸 being equal to

the symmetrized average gradient 𝐸 = ∇𝑼 sym. Also, 𝜀 being defined as a fluctuation term, its

average vanishes, ⟨𝜀⟩ = 0. Introducing a homogeneous reference stiffness tensor 𝑐0 allows to

equivalently define



div(𝑐0 : 𝜀 + 𝜏) = 0

𝜏 = 𝑐 : 𝜀 − 𝑐0 : 𝜀
𝜀 = 𝐸 + 𝜀

with



𝜀 compatible

𝜀 Ω−periodic
𝜎 = 𝑐0 : 𝜀 + 𝜏 Ω−periodic

(5)

Temporarily assuming the so-called polarization 𝜏 as a known Ω-periodic field yields the auxiliary

problem

𝜀 = −Γ0 ∗ 𝜏 (↔ Fourier) ⇔




div(𝑐0 : 𝜀 + 𝜏) = 0

𝜀 compatible

𝜀 Ω−periodic
𝜎 = 𝑐0 : 𝜀 + 𝜏 Ω−periodic

(6)

which can be solved by the application of the Green operator Γ0, straightforward in Fourier space

as the stiffness 𝑐0 is homogeneous (see the Appendix of (Moulinec and Suquet 1998) for a detailed

description).

Finally, the initial Problem (4), equivalent to Problem (5), reduces to Problem (6) along with



𝜏 = 𝑐 : 𝜀 − 𝑐0 : 𝜀,
𝜀 = −Γ0 ∗ 𝜏 (Fourier),
𝜀 = 𝐸 + 𝜀.

(7a)

(7b)

(7c)

Note that periodicity and compatibility conditions are gathered in Problem (6) and automatically

fulfilled when applying the Green operator in Fourier space, so that Problem (7) gathers a set

of equations, which, followed step by step, defines the simple fixed-point algorithm proposed

initially by Moulinec and Suquet (1998). Initializing the strain field 𝜀 (with 𝜀 = 𝐸) allows to

evaluate the polarization field 𝜏 in Problem (7a). Then, the Green operator applies (in Fourier

space) on the polarization to evaluate the fluctuation strain field 𝜀 , Problem (7b), which, added to

the average (applied) strain field provides the strain field 𝜀, Problem (7c) (In practice, it can be

done easily in Fourier space on the null frequency). This strain field allows to begin a second

iterate and so on until convergence.

2.3 A straightforward extension to strain gradient loadings

The purpose of this section is to add a compatible non-uniform applied strain 𝜀∗ to the homoge-

neous applied strain 𝐸, modifying the initial Problem (4) in Problem (8):



div(𝜎) = 0

𝜎 = 𝑐 : 𝜀

𝜀 = 𝐸 + 𝜀∗ + 𝜀
with



𝜀 compatible

𝜀 Ω−periodic
�̃� Ω−periodic

(8)

Following the different steps introduced in Section 2.2, Problem (8) is equivalent to



𝜏 = 𝑐 : 𝜀 − 𝑐0 : 𝜀
𝜀 = −Γ0 ∗ 𝜏 (Fourier)
𝜀 = 𝐸 + 𝜀∗ + 𝜀

(9a)

(9b)

(9c)

It depicts a fixed-point algorithm (succession of steps (𝑎) → (𝑏) → (𝑐) → (𝑎) → (𝑏) . . .). The
only simple difference with Equation (7) is step (𝑐) with the addition of the applied strain field 𝜀∗.

Among the compatible non-uniform applied strain fields 𝜀∗, the simplest ones are linear fields.

Actually, the compatibility condition that involves double derivatives of the strain components is

satisfied as the double derivatives automatically vanish for linear fields. In the following, the

heterogeneous applied strain fields are limited to such linear fields characterized by their strain

gradients 𝐺 as 𝜀∗(𝒙) = 𝐺 · 𝒙 or equivalently 𝜀∗𝑖 𝑗 = 𝐺𝑖 𝑗𝑘𝑥𝑘 , assuming 𝒙 = 0 is the center of the

unit-cell. Note that 𝐺 is symmetric with respect to its first two indices (due to the symmetry of

the strain tensor) so that it consists of 6 × 3 = 18 components.

Journal of Theoretical, Computational and Applied Mechanics
�� July 2022

�� jtcam.episciences.org 4
�� 27

https://jtcam.episciences.org


Lionel Gélébart Extension of FFT-based methods to strain gradient loadings ś Homogenization of beams and plates

2.4 Restrictions on the applied strain gradient

It must be emphasized that among the 18 components of the applied strain gradient only 9 can

really be applied in this context of periodic boundary conditions. Mathematical foundations

can be found in Appendix A. For any𝐺𝑖 𝑗 𝑗 applied strain gradient, a periodic and compatible

fluctuation displacement component �̃�𝑖 can be found that modifies its effect. For example, a

fluctuation displacement �̃�1 = �̃�122𝑥
2

2
can modify the effect of the applied strain gradient 𝐺122.

Actually, �̃�1 satisfies the periodicity condition (i.e �̃�1(ℎ2/2) = �̃�1(−ℎ2/2), with ℎ2 the cell size in
direction 2) and it is associated to a fluctuation strain field 𝜀12 = �̃�122𝑥2, so that the average

strain gradient seen by the unit-cell is not 𝐺122 but 𝐺122 + �̃�122. Hence, these strain gradient

components 𝑖 𝑗 𝑗 cannot be prescribed. Note that this property has been validated in our FFT-based

implementation, see Equation (9), on a simple homogeneous unit-cell: the resulting stress and

strain fields remain homogeneous even when introducing the strain gradient components 𝐺𝑖 𝑗 𝑗 .

The nine remaining components are associated to six bending loadings (components 𝐺𝑖𝑖 𝑗 with

𝑖 ≠ 𝑗 ) and three torsion loading (components 𝐺𝑖 𝑗𝑘 with 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘 , and 𝑗 ≠ 𝑘).

2.5 Implementation considerations

Considering an existing FFT-based code able to solve Problem (7), transforming this code to solve

Problem (9) is obvious. It consists in adding the applied strain gradient field when adding the

homogeneous applied strain field to the periodic strain fluctuation. This is done, first when

initializing the strain field (with a null fluctuation) and then, at the end of each iteration. The

impact on the memory footprint is null, as no additional field needs to be allocated, and the

additional computational cost is low compared to the complete cost of an iteration.

The implementation is detailed in Algorithm 1. Note that in the loop, 𝜀 stores the strain

Algorithm 1 Standard FFT-based algorithm with strain gradient:
linear behaviour.

1 Initialization: 𝜀 ← 𝐸 + 𝜀∗, ˆ̃𝜀 ← 0

2 for 𝑖 do

3 𝜎 ← 𝑐 : 𝜀

4 �̂� ← FFT(𝜎)
5 ˆ̃𝜀 ← −Γ0 : (�̂� − 𝑐0 : ˆ̃𝜀)
6 ˆ̃𝜀 (0) ← 𝐸

7 𝜀 ← iFFT( ˆ̃𝜀)
8 𝜀 ← 𝜀 + 𝜀∗
9 end for

fluctuation added to the average strain 𝐸 using ˆ̃𝜀 (0) = 𝐸. In addition to this fixed-point algorithm,

a convergence acceleration procedure is implemented in the code AMITEX_FFTP (Gélébart 2022).

Its description can be found in (Chen et al. 2019a). It consists of storing 𝑁 couples of solutions 𝜀𝑖

and residual 𝜀𝑖 − 𝜀𝑖−1 associated to the last four iterations, and, every 𝑛 iterations, suggests a

solution deduced from a combination of the stored solutions (in AMITEX_FFTP, 𝑁 = 4 and the

default value for 𝑛 is 3).

2.6 Extension to non-linear behaviors

The extension to non-linear behaviors is rather straightforward. The evolution of the loading as

a function of time, in terms of average strain 𝐸 and average strain gradient 𝐺 , is discretized

into time steps. The non-linear behavior of materials is classically introduced through internal

variables 𝜶 and the stress and internal variables between time steps 𝑖 and 𝑖 + 1, associated to an

applied strain increment 𝜀𝑖+1 − 𝜀𝑖 , is formally given by

[𝜎𝑖+1,𝜶 𝑖+1] = F ([𝜎𝑖 ,𝜶 𝑖 , 𝜀𝑖 , 𝜀𝑖+1]) (10)

This generic description allows for a standard implementation of behaviors law. For example,

these implementations are introduced in the Finite Element code ABAQUS through umat

procedures. A similar standard is used in our FFT-based code AMITEX_FFTP. This standard

allows for using the code generator MFRONT (Helfer et al. 2015) which greatly simplifies the

numerical implementation, sometimes tedious, of Equation (10) that generally consists of the

resolution of a non-linear system of differential equations.
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A slight modification of Algorithm 1, dedicated to linear behaviours, is used to determine

the fields 𝜎𝑖+1,𝜶 𝑖+1, 𝜀𝑖+1 from 𝜎𝑖 ,𝜶 𝑖 , 𝜀𝑖 and the average applied load 𝐸𝑖+1, 𝜀∗𝑖+1 in Algorithm 2.

The two minor adaptations to non-linearity are: (1) the linear behaviour 𝜎 = 𝑐 : 𝜀 is simply

replaced by the non-linear behaviour in Equation (10), (2) the initialization step is replaced by

a linear time extrapolation from the knowledge of the current and previous steps 𝑖 and 𝑖 − 1:
𝜀𝑖+1 ← 𝜀𝑖 + (𝜀𝑖 − 𝜀𝑖−1) (𝑡𝑖+1 − 𝑡𝑖)/(𝑡𝑖 − 𝑡𝑖−1).

Algorithm 2 Standard FFT-based algorithm
with strain gradient: non-linear
behaviour.

1 Initialization: 𝜀𝑖+1 ← 𝜀𝑖 + (𝜀𝑖 − 𝜀𝑖−1) (𝑡𝑖+1 − 𝑡𝑖 )/(𝑡𝑖 − 𝑡𝑖−1), ˆ̃𝜀 ← 0

2 for 𝑖 do

3 [𝜎𝑖+1,𝜶 𝑖+1] ← F ([𝜎𝑖 ,𝜶 𝑖 , 𝜀𝑖 , 𝜀𝑖+1])
4 �̂�𝑖+1 ← FFT(𝜎𝑖+1)
5 ˆ̃𝜀 ← −Γ0 : (�̂�𝑖+1 − 𝑐0 : ˆ̃𝜀)
6 ˆ̃𝜀 (0) ← 𝐸𝑖+1

7 𝜀 ← iFFT( ˆ̃𝜀)
8 𝜀𝑖+1 ← 𝜀 + 𝜀∗𝑖+1
9 end for

3 Application to the homogenization of beams and plates

The purpose of this section is to demonstrate that the slight modification proposed in the previous

section, applied to an existing FFT-based code that is able to simulate microstructures with

null elastic properties, is enough to consider the problem of thin plates or elongated beams

homogenization, considering enlarged unit-cells with zero stiffness material to account for

traction-free surfaces. Nguyen et al. (2008) has initially addressed the question of thin plate

homogenization with an FFT-based solver, but his approach relied on a dedicated Green operator,

limited to plates with plane free surfaces, whereas our approach relies on the standard Green

operator and could be applied as well to corrugated plates. The approach requires an FFT-based

solver able to account for null elastic properties. For the sake of validation and comparison,

Section 3.1 reproduces all the simulation cases proposed in (Nguyen et al. 2008). Then, Section 3.2

extends the approach to the homogenization of beams, treated for the first time, to the author’s

knowledge, with an FFT-based solver. Finally, Section 3.3 extends the applications to non-linear

behaviors, considering a heterogeneous beam with an elasto-plastic matrix.

3.1 Homogenization of plates

The purpose of this section is to demonstrate that a general FFT-based code, equipped with the

minor modification proposed in this study, extends its application domain to the homogenization

of plates. Validation comes from comparisons with analytical and numerical results obtained by

Nguyen et al. (2008). Note that an extensive and refined comparison between our simulations and

Nguyen’s simulations is not easy because of the differences between the iterative algorithms, the

discrete Green operators and the convergence criterion. Especially, the convergence criterion

used by Nguyen is a ‘macroscopic’ criterion based on the ‘relative’ difference of the strain energy

between two iterations whereas the criterion used in AMITEX_FFTP relies on the equilibrium

condition of the ‘local’ stress field at the current iteration.

3.1.1 Method

General setting We consider a thin heterogeneous plate described by a unit cell Ω periodically

repeated in the plane (𝒆1, 𝒆2), with direction 𝒆3 normal to the plate. Assuming an applied strain

field consistent with the Kirchhoff-Love modeling for plates, the problem to solve reads, according

to Nguyen et al. (2008) citing (Caillerie and Nedelec 1984):



div(𝜎) = 0

𝜎 = 𝑐 : 𝜀

𝜀 = 𝐸 + 𝜒𝑥3 + (∇�̃�)sym
with



�̃� periodic on 𝜕12Ω

𝜎 · 𝒏 antiperiodic on 𝜕12Ω

𝜎 · 𝒏 = 0 on 𝜕3Ω

(11)

where 𝜕12Ω denotes the four faces of normal directions 𝒆1 and 𝒆2, submitted to periodic boundary

conditions and 𝜕3Ω the two faces submitted to a traction-free boundary condition. The prescribed
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components of both the average strain 𝐸 and strain gradient 𝜒 are limited to the in-plane

components (see Appendix A for a detailed description of prescribed and ‘measured’ components)

indicated in boldface:

𝐸 =
©«
𝑬11 𝑬12 𝐸13
𝑬12 𝑬22 𝐸23
𝐸13 𝐸23 𝐸33

ª®¬
and 𝜒 =

©«
𝝌11 𝝌12 𝜒13
𝝌12 𝝌22 𝜒23
𝜒13 𝜒23 𝜒33

ª®¬
=
©«
𝑮113 𝑮123 𝐺133

𝑮123 𝑮223 𝐺233

𝐺133 𝐺133 𝐺333

ª®¬
. (12)

Note that, due to mechanical couplings between directions, the out-of-plane components do

not systematically vanish (i.e. even in the simplest case of an elastic, homogeneous and isotropic

material, the components 𝐸33 and 𝜒33 arise from the classical Poisson effect). These out-of-plane

components, that are not prescribed, can be evaluated as a post-treatment of the simulation.

Note that Problem (11) is exactly the same as the one proposed in (Nguyen et al. 2008, Eqs 32

and 33) where it is mentioned that the out-of-plane components of 𝐸 and 𝜒 are enforced to 0.

The author’s opinion is that prescribing these quantities is not consistent with the stress free

boundary condition applied on the upper and lower plate surfaces (i.e. 𝜎 · 𝒏 = 0 on 𝜕3Ω). For

example, the transverse strain 𝐸33 (but also 𝜒33) arising when applying a uniaxial strain 𝐸11
depends on the Poisson coefficient and cannot be set to 0. However, as observed in Section 3.2.1,

the numerical results obtained with the present approach are consistent with the analytical and

numerical results given in (Nguyen et al. 2008) for heterogeneous plates.

FFT-based resolution on an enlarged unit-cell In order to solve Problem (11), Nguyen et al.

(2008) follow exactly the reasoning described in Section 2. However, by keeping the traction-free

condition on 𝜕3Ω, they have to modify the Green operator to account for this condition in the

auxiliary problem.

In the present paper, instead of solving Problem (11) with a modified Green operator, we

solve Problem (9) with the classical periodic Green operator, built with full periodic conditions,

available in every FFT-based codes. In order to satisfy the traction-free boundary condition that

appears in Problem (11) but not in Problem (9), the fully periodic problem is not solved on the

unit-cell Ω but on an enlarged unit-cell Ω∗ adding to Ω one layer with null elastic properties

on each side of 𝜕3Ω, see Figure 1. In practice the added layers are one voxel thickness in the

M1

M2

0.1 m

0
.1

 m

0.05 m

0
.0

5
 m

e3 e3

e1 e1

(a) (b)

M1

M1

M2

M2

Figure 1 Unit-cells used in simulations of heterogeneous plates: (a) laminate plate and (b) composite plate with
cylinder (square base) inclusions. Additional void layers used in the simulations in orange.

discretized problem and using one layer on each side allows to keep the same middle surface for

Ω and Ω
∗. Due to the added void layers, the in-plane components of 𝐸∗ and 𝜒∗ applied to Ω

∗ are
the same as applied to the sub-domain Ω but the out-of-plane components of 𝐸∗ and 𝜒∗, can be

chosen arbitrarily. For the out-of-plane components of 𝜒∗, i.e. 𝐺∗𝑖33, it has been demonstrated in

Section 2.4 and Appendix A that these components cannot be prescribed with periodic boundary

conditions. Their value can be arbitrarily set to 0:

𝐸∗ =
©«
𝑬11 𝑬12 0

𝑬12 𝑬22 0

0 0 0

ª®¬
and 𝜒∗ =

©«
𝝌11 𝝌12 0

𝝌12 𝝌22 0

0 0 0

ª®¬
=
©«
𝑮113 𝑮123 0

𝑮123 𝑮223 0

0 0 0

ª®¬
. (13)

In order to clarify this aspect, let us consider the in-plane component 22 and the out-of-plane

component 33 successively. Let 𝜀∗
22
(𝑥1, 𝑥3) be the linear average strain (component 22) in direction

Journal of Theoretical, Computational and Applied Mechanics
�� July 2022

�� jtcam.episciences.org 7
�� 27

https://jtcam.episciences.org


Lionel Gélébart Extension of FFT-based methods to strain gradient loadings ś Homogenization of beams and plates

2 so that ∀𝒙 ∈ Ω∗, 𝜀∗
22
(𝑥1, 𝑥3) = 𝐸∗

22
+𝐺∗

223
𝑥3 (the linear average contribution of strain fluctuation

𝜀22 vanishes). As, the linear average in direction 2 is performed in a single domain (whether Ω or

in the void) then 𝜀22(𝑥1, 𝑥3), the linear average strain in domain Ω, follows the same relation

𝜀22(𝑥1, 𝑥3) = 𝜀∗
22
(𝑥1, 𝑥3) = 𝐸22 + 𝐺223𝑥3 with 𝐸22 = 𝐸∗

22
and 𝐺223 = 𝐺∗

223
. In other words, the

macroscopic components 𝐸22 and 𝐺223 applied to Ω are the same as the macroscopic components

𝐸∗
22
and 𝐺∗

223
applied to Ω

∗. The same idea can be followed with components 11 and 12.

Now, 𝜀∗
33
(𝑥1, 𝑥2) is the linear average strain (component 33) in direction 3 so that ∀𝒙 ∈ Ω∗,

𝜀∗
33
(𝑥1, 𝑥2) = 𝐸∗

33
. In that case, 𝜀33(𝑥1, 𝑥2), the linear average strain in domain Ω, is different from

𝜀∗
33
(𝑥1, 𝑥2) as 𝜀∗33(𝑥1, 𝑥2) = 𝑓 𝜀33(𝑥1, 𝑥2) + (1 − 𝑓 )𝜀void

33
(𝑥1, 𝑥2), where 𝜀void33

(𝑥1, 𝑥2) represents the
linear average strain in the void layers and 𝑓 the volume fraction of Ω in Ω

∗. As a consequence,
𝜀33(𝑥1, 𝑥2) ≠ 𝐸∗

33
and then 𝐸33 ≠ 𝐸∗

33
. In other words, the additional void layers are free to deform

so that the average 𝐸∗
33

can be chosen arbitrarily. The same idea can be followed with components

13 and 23 .

Finally, as the out-of-plane components of 𝜒∗ cannot be prescribed on Ω
∗ (see Section 2.4

and Appendix A), they cannot be prescribed on Ω, a subset of Ω∗. To make it short, in-plane

components of 𝐸∗ and 𝜒∗, prescribed on Ω
∗, are also prescribed on Ω. On the other hand,

the out-of-plane components of 𝐸 and 𝜒 cannot be prescribed on Ω but can be evaluated as

post-treatments.

Homogenization of plates Once, the problem solved at the micro-scale (on the heterogeneous

unit-cell), the last step consists in defining appropriate averages for the macroscopic quantities

used for modeling plates. For an homogenized material, considering 𝜎𝛼𝛽 (𝛼), 𝛽 = 1 or 2) as a

function of 𝑥3, the two macroscopic ‘stress’ tensors are the linear force tensor 𝑁 , expressed in

[N/m], and the linear moment tensor𝑀 , in [Nm/m], defined by:

𝑁𝛼𝛽 =

∫ ℎ

−ℎ
𝜎𝛼𝛽 d𝑥3 and 𝑀𝛼𝛽 =

∫ ℎ

−ℎ
𝑥3𝜎𝛼𝛽 d𝑥3. (14)

Now, considering a heterogeneous unit-cell (and 𝜎𝛼𝛽 as a function of 𝑥1, 𝑥2 and 𝑥3), the following

averaging procedure is used, with 𝑆 the area of 𝑆12 the cross-sections of Ω in plane (1, 2):

𝑁𝛼𝛽 =

∫ ℎ

−ℎ

(
1

𝑆

∫ 𝑛

𝑆12

𝜎𝛼𝛽 d𝑆
)
d𝑥3 =

1

𝑆

∫
Ω

𝜎𝛼𝛽 d𝑉

𝑀𝛼𝛽 =

∫ ℎ

−ℎ

(
1

𝑆

∫
𝑆12

𝑥3𝜎𝛼𝛽 d𝑆
)
d𝑥3 =

1

𝑆

∫
Ω

𝑥3𝜎𝛼𝛽 d𝑉

(15)

From the in-plane periodicity of �̃� and the equilibrium condition (
∫
𝑆12

𝜎𝑖3 d𝑆 = 0 for all sections

𝑆12(𝑥3)), it can be shown that the average of the microscopic energy is equal to the macroscopic

energy. For plates, the energy surface density is considered and the so-called macro-homogeneity

condition of Hill-Mandel reads

1

𝑆

∫
Ω

𝜎 : 𝜀 d𝑉 =
1

𝑆

∫
Ω

𝜎 : (𝐸 + 𝜒𝑥3 + 𝜀) d𝑉 = 𝑁 : 𝐸𝑝 +𝑀 : 𝜒𝑝 . (16)

Finally, the homogenized elastic behavior relates the kinematic tensors (𝐸𝑃 , 𝜒𝑃 ), restrictions
of the tensors (𝐸, 𝜒) to their in-plane components, to the macroscopic ‘stress’ tensors (𝑁,𝑀) as

[
𝑁

𝑀

]
=

[
𝐴 𝐵

𝐵 𝐷

] [
𝐸𝑃

𝜒𝑃

]
. (17)

Superscript ł𝑃ž is associated to in-plane components. Tensor 𝐴 describes the membrane behavior,

𝐷 the bending and torsion behaviors and 𝐵 the possible coupling arising, for example, with

non-symmetric unit-cells with respect to the middle surface. From this definition, the energy

surface density reads:

1

𝑆

∫
Ω

𝜎 : 𝜀 d𝑉 = 𝐸𝑃 · 𝐴 · 𝐸𝑃 + 2𝐸𝑃 · 𝐵 · 𝜒𝑃 + 𝜒𝑃 · 𝐷 · 𝜒𝑃 . (18)
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In practice, the identification of the homogenized behavior results from six simulations corre-

sponding to six independent loadings (𝐸𝑃 , 𝜒𝑃 ) applied to the unit-cell. The mechanical approach

post-treats the stress fields to evaluate the corresponding resultant stress tensors (𝑁,𝑀) with
Equation (15) in order to identify the coefficients of Equation (17). The energetic approach

post-treats the stress-strain fields to evaluate the corresponding energies in order to identify

the coefficients of Equation (18). As soon as the macro-homogeneity Condition (16) holds, the

energetic approach followed by Nguyen et al. (2008) is strictly equivalent to the mechanical

approach followed in the present paper.

3.1.2 Laminate plate

Following the validation test used by Nguyen et al. (2008), we consider the case of a two phases

laminate plate for which a closed form solution exists. The unit-cell Ω represented in Figure 1, is

symmetric so that the coupling tensor 𝐵 vanishes. The volume fractions of phases are equal (50%),

and their elastic properties (Young’s modulus, Poisson’s coefficient) are respectively (46GPa, 0.3)

and (10GPa, 0.3) for phases 1 and 2. According to Nguyen et al. (2008), the spatial resolution

used for the simulations are 2𝑛 × 2𝑛 (×1) voxels (the code is three-dimensional) for the unit cell Ω

and two additional layers enlarge the unit-cell to simulate traction-free boundary condition in Ω
∗,

see Section 2. The non-vanishing components (𝐸22, 𝜒22) of 𝐸𝑃 and 𝜒𝑃 define the two applied

loadings: (1, 0) for the tensile loading and (0, 1) for the bending loading. They directly allow to

evaluate 𝐴22 = 𝑁22/𝐸22 and 𝐷22 = 𝑀22/𝜒22. The corresponding loadings applied to the enlarged

unit-cell Ω∗ are:

tension: 𝐸∗ =
©«
0 0 0

0 𝑬22 0

0 0 0

ª®¬
, 𝜒∗ = 0 and bending: 𝐸∗ = 0, 𝜒∗ =

©«
0 0 0

0 𝝌22 0

0 0 0

ª®¬
. (19)

The choice made for the reference material’s Lamé coefficients (𝜆0, 𝜇0) is 𝜆0 = (𝜆min + 𝜆max)/2
with 𝜆min = 0 (for the void layers) and 𝜇0 = (𝜇min + 𝜇max)/2 with 𝜇min = 0 (for the void layers).

For the tensile loading, the algorithm reaches convergence after 6 iterations with a convergence

criterion on the local equilibrium of 10−15 far below the threshold of 10−4 used in the simulation.

It seems that the solver reaches the exact solution, up to the double precision round-off error.

Actually, the exact solution being constant per layer, it can be observed that the FFT-based

method is able to find it if the discretization grid is parallel to the layers. From the macroscopic

point of view, Table 1 compares the analytical results and numerical results from (Nguyen

et al. 2008). The comparison with analytical result is exact up to the 8th digit. The comparison

Table 1 Axial stiffness 𝐴22 for laminate case:
comparison between analytical results
and two FFT-based methods.

Resolution Analytical Present work (Nguyen et al. 2008)

8 × 8 3.07692307 3.07692303 3.077
4 × 4 3.07692307 3.07692303

with (Nguyen et al. 2008) is perfect up to the number of available digits. However, the converged

value is obtained after ten iterations to converge on a macroscopic criterion (10−4 on the average

energy between two iterations), compared to 6 for this study on a more stringent criterion

(local equilibrium). Finally, as the solution is constant per layer, it does not depend on the mesh

resolution and exactly the same result is obtained with a resolution 4 × 4 (i.e. with one voxel per

layer in the thickness).

For the bending loading, the algorithm reaches convergence after 15 iterations with, once

again, a convergence criterion on the local equilibrium of 10−10 far below the threshold of 10−4.
In the case of bending, the stress field is not constant per phase so that the stress field and

consequently the resultant ‘stress’ tensor𝑀 , depends on the mesh size. Table 2 compares the

analytical results with the numerical results in (Nguyen et al. 2008) and the present study, for

various spatial resolutions. Both results are in excellent agreement with the analytical case and

the error becomes very low as soon as resolution reaches 32 × 32. For resolution 16 × 16, results

are still in good agreement (relative error ∼ 0.26 %) and Nguyen’s method provides a similar

precision (a bit less but with a lower number of iterations, i.e. 10).
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Resolution Analytical [GPa/m] Present study Rel. error (Nguyen et al. 2008) Rel. error

16 × 16 0.0038003663 0.0037903502 26 × 10−4 0.00382 52 × 10−4
32 × 32 0.0038003663 0.0037978623 7 × 10−4 0.003805 13 × 10−4
64 × 64 0.0038003663 0.0037997403 2 × 10−4 0.003802 5 × 10−4
128 × 128 0.0038003663 0.0038002098 4 × 10−5
256 × 256 0.0038003663 0.0038003272 1 × 10−5
512 × 512 0.0038003663 0.0038003566 2 × 10−6
1024 × 1024 0.0038003663 0.0038003638 7 × 10−7

Table 2 Bending stiffness 𝐷22 for laminate case: comparison between analytical results and two FFT-based methods.

An additional example demonstrating that our FFT-based approach converges towards

analytical results can be found in Appendix B with a Poisson ratio of 10−4. To conclude, the
minor modification applied to our general FFT-based solver, allows reproducing the analytical

solution obtained for a laminate plate, at least as precisely and as efficiently as an FFT-based

solver dedicated to the homogenization of plates.

3.1.3 Plate with periodic fibers

This second validation test proposed in (Nguyen et al. 2008) considers a panel with a periodic

distribution of parallelepiped fibers. Figure 1 describes the periodic unit-cell. The matrix and the

inclusion have the same Poisson ratio 0.3, and the Young moduli of inclusion/matrix (in [GPa])

are (0/1), (10/1) and (1/1000). The AMITEX_FFTP code being able to apply whether the average

stress or the average strain 𝐸∗ for each of the six components, applying a null average stress for

the components 33, 13 and 23, was found to reduce the number of iterations at convergence of

about 30 % for the tensile loading. Hence, the loading used in this case is identical to the loading

introduced for the laminate case in Equation (19), except for these three components, now set to

null stress instead of null strain. The bending loading remains unchanged. The choice made for

Lamé’s coefficients follows the same rule as proposed in the laminate case. The spatial resolution

used for the simulations are 2𝑛 × 2𝑛 (×1) voxels for the unit cell Ω and two additional layers

enlarge the unit-cell to simulate traction-free boundary condition in Ω
∗, see Section 2.

All the simulations reported in (Nguyen et al. 2008) have been reproduced and all the

results are gathered in tables of Appendix C, in which the membrane stiffness 𝐴22, bending

stiffness 𝐷22 and number of iterations are given as a function of the spatial resolution for the

three elastic contrasts. The convergence criterion being very different between AMITEX_FFTP

and (Nguyen et al. 2008), the comparison between iteration numbers at convergence is not

significant. Hence, the evaluation of strain energy has been implemented in AMITEX_FFTP and

the relative difference between two iterations is evaluated as a post-treatment to determine

the number of iterations at convergence if using this criterion with a threshold of 10−4 used
in (Nguyen et al. 2008).

If not useful to discuss all the tables one by one, their analysis allows drawing a few main

conclusions. First, even for the coarsest resolution 16 × 16, with relative errors below 1 %, results

obtained with both FFT-based methods are very close to the reference solution obtained from

finite element simulations in (Nguyen et al. 2008). Second, the results are also quite comparable

to (Nguyen et al. 2008) with a relative error that decreases quite monotonously as a function of

the spatial resolution. Third, the number of iterations obtained with our approach (associated to a

field equilibrium criterion) remains reasonable with values comprised between 20 and 76. It is a

bit lower for bending loadings than for tensile loadings, whereas the type of loading has no

influence in (Nguyen et al. 2008). Finally, using the strain energy based criterion, the number of

iterations at convergence are rather similar to (Nguyen et al. 2008).

Finally, additional results obtained with realistic material properties are also given in

Appendix C. The material corresponds to a glass fiber/epoxy composite with the couple (Young’s

modulus, Poisson’s coefficient) being respectively (73.1GPa, 0.22) and (3.45GPa, 0.35) for glass

and matrix. The elastic contrast is around 20 and here, the Poisson coefficients are different. The

homogenized coefficient exhibit a monotonous convergence and the number of iteration of the

algorithm is a bit higher than the previous ones but remains below 100.
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To conclude, the minor modification applied to our general FFT-based solver, allows repro-

ducing the numerical results obtained for a matrix/inclusion plate, almost as precisely and as

efficiently as a solver dedicated to the homogenization of plates.

3.2 Homogenization of beams

If the extension of the approach proposed for plates in (Nguyen et al. 2008) to the homogenization

of beams is not straightforward especially with arbitrary cross-sections, it is direct with the

present approach. After a description of the method proposed for the homogenization of beams,

it is applied to different loadings with various geometries and elastic contrasts. As uniaxial

tension is quite straightforward and has already been applied in previous studies (Chen et al.

2019a), the paper focuses on bending and torsion loadings.

This section considers two different beams with a square and a disk cross-section. In the

first case the discretization is conform to the geometry while it is not in the second case. Cubic

inclusions, with conform discretization are considered in both cases, so that the effect of a

conforming discretization is limited to the shape of the cross-section which is of a prime interest

in the present context.

Figure 2 represents the geometry of the unit-cell with a cube diameter of 50mm, a unit-cell

length of 100mm, a square and disk diameter of 100mm for the cross-section. Void volumes

in blue complement the unit-cells Ω, with a minimal thickness of two voxels, to form the

enlarged unit-cells Ω∗. The center of the inclusion lies on the axis of the unit-cells. The spatial

Figure 2 Rendering of the two unit-cells: on the left with a square cross-section, on the right with a disk cross-section.
The cubic inclusion is in red, the added void volume is in blue and the matrix in transparency.

resolutions, defined by the number of voxels on 100mm, are 40, 80 and 160 (so that the unit-cells

are 40 × 44 × 44, 80 × 84 × 84 and 160 × 164 × 164). With these resolutions, the discretization of

the inclusion is conform to its geometry.

The matrix Young’s modulus is 10MPa and Poisson’s ratio, 0.3 with three elastic behaviors

for the inclusion: the matrix behavior, so that the beam is homogeneous, a void behavior leading

to an infinite contrast and a behavior stiffer than the matrix with a high contrast of 1000.

In addition, the use of composite voxels (Gélébart and Ouaki 2015; Kabel et al. 2015; Kabel

et al. 2017; Charière et al. 2020) is tested to improve the description of the geometry when

using a non-conforming discretization, as observed with the disk cross-section. The behavior

of the composite voxels, crossed by the interface between the matrix and the additional void

volume, follows a homogenization rule. Among the three classical rules, the Reuss and laminate

homogenization rules are not well-suited with void behavior: the first one simply replaces the

voxel by a void voxel and the second leads to an infinitely anisotropic behavior which generates

convergence issues in the FFT-based algorithm (observed in torsion loading). In addition, the

Voigt homogenization rule, which assumes a homogeneous strain over the phases, is extremely

simple to implement, even with non-linear behaviors. Voigt is used in the following. For the sake

of simplicity, an approximate definition of volume fractions is used and reported in Appendix D.

The choice made for the reference material’s Lamé coefficients (𝜆0, 𝜇0) is𝑋0 = (𝑋min+𝑋max)/2,
with𝑋 equal to 𝜆 or 𝜇. Note that the min and max are evaluated over the beam material, excluding

the additional void volume in Ω
∗: for contrasts 0 and 1000, the differences are negligible, and for

contrast 1, the reference material corresponds to the behavior of the homogeneous beam.
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3.2.1 Method

General settings The unit-cell Ω with an arbitrary cross-section is periodic in direction 𝒆1.

Assuming an applied strain field consistent with the Bernoulli modeling for beams, the problem

to solve reads:



div(𝜎) = 0

𝜎 = 𝑐 : 𝜀

𝜀 = 𝐸 + 𝜒3𝑥3 + 𝜒2𝑥2 + (∇�̃�)sym
with



�̃� periodic on 𝜕1Ω

𝜎 · 𝒏 antiperiodic on 𝜕1Ω

𝜎 · 𝒏 = 0 on 𝜕23Ω

(20)

where 𝜕1Ω denotes the two faces of outward normal 𝒆1, subject to periodic boundary conditions,

and 𝜕23Ω the external contour of the beam subject to a traction-free boundary condition. The

macroscopic applied strain is limited to components in boldface in

𝐸 =
©«
𝑬11 𝐸12 𝐸13
𝐸12 𝐸22 𝐸23
𝐸13 𝐸23 𝐸33

ª®¬
, 𝜒3 =

©«
𝑮113 −𝛼 𝐺133

−𝛼 𝐺223 𝐺233

𝐺133 𝐺233 𝐺333

ª®¬
and 𝜒2 =

©«
𝑮112 𝐺122 𝛼

𝐺122 𝐺222 𝐺232

𝛼 𝐺232 𝐺332

ª®¬
. (21)

The component 𝐸11 prescribes a tensile loading, the components 𝐺112 and 𝐺113 prescribe two

bending loadings respectively, and 𝛼 = 𝐺132 = −𝐺123 prescribes the torsion loading. According

to the arguments proposed in Appendix A.1 based on the vanishing components of 𝐸 and 𝐺

imposed by the periodicity condition in direction 1, only the component 11 of the 𝐸, 𝜒2 and

𝜒3 tensors can be prescribed. However, the components 𝐺132 = −𝐺123 = 𝛼 were successfully

prescribed for the torsion loading in the simulations below. Arguments regarding the symmetry

of the problem are given in Appendix A.1.

FFT-based resolution on an enlarged unit-cell In order to satisfy the traction-free boundary

condition, the full periodic problem is solved on the enlarged unit-cell Ω∗ with a void volume

surrounding Ω in order to fulfill the traction free boundary condition on 𝜕23Ω. Due to the added

void layers, the out-of-plane components prescribed to Ω
∗ are the same as prescribed to Ω (in

bold) but the in plane components can be chosen arbitrarily. They are set to 0:

𝐸∗ =
©«
𝑬11 0 0

0 0 0

0 0 0

ª®¬
, 𝜒∗

3
=
©«
𝑮113 −𝛼 0

−𝛼 0 0

0 0 0

ª®¬
and 𝜒∗

2
=
©«
𝑮112 0 𝛼

0 0 0

𝛼 0 0

ª®¬
. (22)

The discussion on prescribed components and components that can be chosen arbitrarily is similar

to the discussion proposed for plates. It has been checked on a homogeneous beam with 𝐸∗𝑖 𝑗 = 1

and 𝐺∗
223

= 𝐺∗
332

= 1, that the strain field is homogeneous with an average on Ω corresponding

to 𝐸11 = 1, 𝐸22 = 𝐸33 = −𝑣𝐸11 (and null shear strain components). The arbitrary choice of the

components 𝐺∗𝑖 𝑗 𝑗 is general, see Appendix A.1, and was already checked in Section 2.4. Finally, it

has been verified that the torsion loading applied to Ω
∗ is actually prescribed on Ω, as expected

from similar arguments than those used for plates.

Homogenization of beams Once, the problem solved at the micro-scale (on the heterogeneous

unit-cell), the last step consists in defining appropriate spatial averages for the macroscopic

quantities used for modeling beams. Classically, integrations of the traction vector 𝜎 · 𝒆1 over the
cross-section provide the macroscopic force 𝑵 (expressed in [N]) and moments 𝑴 (in [Nm]):

𝑵 =

∫
𝑆23

𝜎 · 𝒆1 d𝑆 =

∫
𝑆23

©«
𝜎11
𝜎12
𝜎13

ª®¬
d𝑆,𝑴 =

∫
𝑆23

©«
0

𝑥2
𝑥3

ª®¬
∧ (𝜎 · 𝒆1) d𝑆 =

∫
𝑆23

©«
𝜎13𝑥2 − 𝜎12𝑥3

𝜎11𝑥3
−𝜎11𝑥2

ª®¬
d𝑆. (23)

Component 𝑁1 of the force vector is the axial force and the other components are shear forces.

Component 𝑀1 of the moment vector is the torsion moment and the other components are

bending moments. For homogenization purpose, these quantities evaluated on a cross-section are

averaged along 𝒆1 of the unit-cell Ω so that they can be evaluated from volume integrations over
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the complete unit-cell Ω:

𝑵 =
1

ℓ1

∫
𝐿1

∫
𝑆23

𝜎 · 𝒆1 d𝑆 d𝑥1 =
1

ℓ1

∫
Ω

𝜎 · 𝒆1 d𝑉 ,

𝑴 =
1

ℓ1

∫
𝐿1

∫
𝑆23

©«
0

𝑥2
𝑥3

ª®¬
∧ 𝜎 · 𝒆1 d𝑆 d𝑥1 =

1

ℓ1

∫
Ω

©«
0

𝑥2
𝑥3

ª®¬
∧ 𝜎 · 𝒆1 d𝑉 .

(24)

Using the axial periodicity of �̃� and the equilibrium condition∫
𝑆12 (𝑥3)

𝜎𝑖3 d𝑆 =

∫
𝑆13 (𝑥2)

𝜎𝑖2 d𝑆 = 0 (25)

for all longitudinal sections 𝑆12(𝑥3) and 𝑆13(𝑥2), it can be demonstrated that the average of the

microscopic energy is equal to the macroscopic energy. In the case of beams, the energy linear

density is considered and the so-called macro-homogeneity condition of Hill-Mandel reads

1

ℓ1

∫
Ω

𝜎 : 𝜀 d𝑉 =
1

ℓ1

∫
Ω

𝜎 : (𝐸 + 𝜒2𝑥2 + 𝜒3𝑥3 + 𝜀) d𝑉 =𝑁1𝐸11 +𝑀2𝐺113 −𝑀3𝐺112 + 2𝑀1𝛼. (26)

The different terms are respectively associated to the uniaxial, the two bendings and the torsion

loadings. The minus sign of the third term comes from the minus sign of𝑀3 in Equation (23).

Finally, the homogenized elastic behavior relates the kinematic quantities 𝑼 = (𝐸11, 𝛼,𝐺112,𝐺113)
to the forces and moments 𝑭 = (𝑁1, 𝑀1, 𝑀2, 𝑀3) with the linear relationship 𝑭 = 𝑲 · 𝑼 .

As mentioned for plates, the Hill-Mandel condition allows using indifferently the energetic

or the mechanical approach. The last one is used in the following: a single kinematic loading

is applied and the stress field is post-treated to evaluate forces and moments and identify the

stiffness components of 𝑲 .

3.2.2 Beam bending

The bending loading is applied to the unit-cell Ω∗ with 𝐺∗
112

= 𝐺112. Components 𝐺∗
222

and 𝐺∗
332

arbitrarily set to 0 in Equation (22) are now set to −𝑣𝐺∗
112

. Even if components 222 and 332 are

not prescribed to the unit-cell Ω, they provide a better initialization of the strain field and reduce

the number of iterations at convergence. For the homogeneous strain loading, three different

propositions have been tested: all the average strain components equal to 0, all the average stress

components equal to 0, average strain components (1 𝑗)𝑗=1,2,3 and average stress components

(𝑖 𝑗)𝑖=1,2𝑗=1,2 equal to zero. All the propositions provide the same bending moment𝑀3 (up to a

relative difference of ∼ 10
−4) and none of them outperforms the others regarding the number of

iterations at convergence. Results below are presented with all the average strain components

equal to 0. In practice, 𝐺112 is set to 1 in the simulations so that the bending moment is directly

the bending stiffness.

Homogeneous beam bending The case of a homogeneous beam is interesting, at first as a

validation case for which the analytical solution is known, but also to focus on the question of

the non-conforming discretization of the beam (for the disk cross-section) and the potential

interest of using composite voxels (with Voigt homogenization rule in that case). This specific

case is also interesting because the initialization of the strain field in the FFT-based algorithm

directly provides the solution of the problem and convergence should achieve at the first iterate.

Actually, the initial strain field is a null homogeneous strain field added to a linearly varying

strain field associated to𝐺112 and𝐺
∗
222

= 𝐺∗
332

= −𝑣𝐺112 (see introduction of Section 3.2.2). Hence,

the initialization of the strain field imposes 𝜀12 = 𝜀13 = 𝜀23 = 0 for shear strains, 𝜀11 = 𝐺112𝑥2 for

the axial strain and 𝜀22 = 𝜀33 = −𝑣𝜀11 for the transverse strains. This strain field initialized on the

whole unit-cell Ω∗ also applies on the sub-volume Ω so that it is directly the solution of the

bending problem. As a validation part, the implementation in the AMITEX_FFTP code confirms

this property: convergence is reached at the first iterate.

The bending moments derived from the Euler-Bernoulli beam theory are:

𝑀3 = 𝐸
𝜋𝐷4

64
𝐺112 (disk cross-section) 𝑀3 = 𝐸

𝐷4

12
𝐺112 (square cross-section) (27)
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Figure 3 represents the evolution of the relative error of the bending moments as a function

of the spatial resolution. For the square cross-section, with a conform discretization the error

Figure 3 Relative error on the evaluation of the
bending moment for homogeneous beams
with square and disk cross-sections, and
with the use of composite voxels for disk
cross-sections.
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is very low even for the lowest resolution 6 × 10−4 and decreases monotonously to around

10
−5. On the contrary, for the disk cross-section, the error is much higher and decreases with

the spatial resolution from 0.01 to reach a value around 10
−4 for the highest resolution. This

difference clearly exhibits, on the macroscopic property, the difference between conforming and

non-conforming discretization. For the square cross-section, the error is purely associated to the

numerical integration of a quadratic field (𝜎11𝑥2) on a rectilinear grid, whereas for the disk

cross-section, an additional and predominant error due to the non-conforming discretization of

the cross-section is added. In that case, the composite voxels demonstrate their efficiency to

improve the results: the relative error is between 5 and 100 times lower than without composite

voxels. As expected, the factor for resolution 40 (factor 37) is higher than for resolution 160

(factor 5). The factor 100 for resolution 80 was not really expected. However, it must be kept in

mind that the convergence criterion (normalized norm of the stress equilibrium gap) is 10−4 in
the simulations, so that the errors below 10

−4 should be considered with caution. Hence, the

increase from 10
−5 to 3 × 10−5 for a resolution increasing from 80 to 160 should be considered as

a stagnation. From the stress field point of view, as observed in Figure 4, the composite voxels

only modify the stress within the voxels crossed by the interface. In that case, their effect is

purely local (it will be different for torsion loading).

−500

−250

0

250

500

𝜎11 [MPa]

Figure 4 Homogeneous beam: axial stress field obtained for the disk cross-section with (left) and without (right)
composite voxels for the lowest spatial resolution 40. For visualization purposes, a quarter of the unit-cell
is removed.

Heterogeneous beam bending Figure 5 (right) represents the evolution of the bending

moments (or bending stiffness as 𝐺112=1) for the three different elastic contrasts. It is worth

noting that in spite of high contrasts, the evolution of the bending stiffness is moderate. Different

observations can explain this result. At first, the volume fraction of inclusions is not so high

(12.5 % and 15.9 %, respectively for the square and disk cross-sections). Then, and probably more

importantly, the inclusions are located at the center of the beam, which is the less stressed region

of the beam. It is also noticeable that the difference on the moments between square and disk

cross-sections is almost independent of the contrast, respectively (3.42, 3.42, 3.45) × 107 for the
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contrasts 0, 1, and 1000. In other words, the stiffening (or softening) induced by these stiff (or

soft) inclusions, with respect to the homogeneous beam, corresponds to an additional positive (or

negative) bending stiffness that is rather independent of the beam cross-section.
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Figure 5 Bending moments: (a) normalized by their converged values obtained for the highest resolution 160 with
solid, dotted and dashed lines for contrasts 1, 0 and 1000, respectively; (b) converged values obtained at
highest resolution: the arrows symbolize null contrasts in log axis. Note that ‘disk’ and ‘disk+composite
voxels’ symbols are superimposed, confirming that the moments obtained with the ‘disk’ (without
composite voxel) at resolution 160 are converged values.

Regarding the convergence analysis with respect to the spatial resolution, Figure 5(a) displays

the evolution of the bending moments, normalized by their converged value (obtained for

resolution 160). The same conclusions as obtained for the homogeneous beam still hold for

heterogeneous beams: convergence is very fast for the square cross-section, unlike the case of the

disk cross-section without composite voxels, and using composite voxels significantly improves

the convergence. The effect of the contrast, moderate on the converged values of the moments, in

Figure 5(b), is also quite moderate on the convergence curves, in Figure 5(a).

Regarding the convergence analysis of the FFT-based algorithm (in our case, a fixed-point

algorithm combined with a convergence acceleration procedure), presented in Table 3, four main

conclusions can be drawn. First, the convergence is very efficient for void inclusions. Second,

Square Disk Disk with Composite Voxel

Resolution 𝐶 = 0 𝐶 = 1 𝐶 = 1000 𝐶 = 0 𝐶 = 1 𝐶 = 1000 𝐶 = 0 𝐶 = 1 𝐶 = 1000

40 16 1 456 16 1 423 25 1 699

80 21 1 600 15 1 336 24 1 666

160 28 1 759 15 1 366 24 1 763

Table 3 Bending loading case: number of iterations at convergence for the various beams, contrasts, resolutions
and use of composite voxels.

stiff inclusions drastically deteriorate the convergence. Note that, in that case, the unit-cell Ω∗

exhibits two types of large elastic contrast: between the matrix and the infinitely soft voids and

between the matrix and the 1000 times stiffer inclusions. Such high and opposite contrasts are

not really well suited for FFT-based methods. However, convergence is achieved and the number

of iteration remains reasonable. Third, the use of composite voxels deteriorates the convergence

by a factor of around 2. Fourth, for the square cross-section, increasing the spatial resolution

deteriorates the convergence, but it tends to stabilize in the worst case with the contrast of 1000.

The understanding of these last two unexpected results is still under investigation.

The analysis of the local stress fields focuses on the simulations with an elastic contrast of

1000 that induces the highest contribution to the bending stiffness, compared to the homogeneous

beam in Figure 5(b), and exhibits the worst algorithm convergence, see Table 3. The worse

convergence of the algorithm is probably to be correlated with the spurious oscillations arising in

and around the stiff inclusion. Comparing the disk and square cross-sections, the stress fields in

and around the inclusion are almost identical, independent of the cross-section. This is consistent
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with the previous observation, at the macroscopic scale, of an additional contribution to the

bending stiffness independent of the cross-section. Finally, comparing the disk cross-section with

and without composite voxels, the conclusion reported for homogeneous beam still holds in

the heterogeneous cases: they essentially affect the voxels crossed by the interface, keeping

unchanged the rest of the volume (it is not true for torsion loading).

Finally, Figure 6 displays the distribution of the axial stress 𝜎11 within the beam. The effect

of composite voxels used for the disk cross-section is similar to the homogeneous case, see

Figure 4. In addition, the stress distribution in the inclusion seems rather independent of the

beam cross-section (disk or square).

−500 −250 0 250 500

𝜎11 [MPa]

−2,000 −1,000 0 1,000 2,000

𝜎11 [MPa]

Figure 6 Axial stress field 𝜎11 for the square cross-section (bottom), and the disk cross-section with (top) and
without (center) composite voxels, for the lowest spatial resolution 40 and a contrast of 1000 for the
inclusion. For visualization purposes, a quarter of the unit-cell is removed. Right handside figures are
zooms on the inclusion.

3.2.3 Beam torsion

The torsion loading applies to the unit-cell Ω∗ with 𝛼 = 𝐺132 = −𝐺123 and the other strain

gradient components set to 0. For the homogeneous strain loading, three different propositions

have been tested: all the average strain components equal to 0, all the average stress components

equal to 0, average strain components (1 𝑗)𝑗=1,2,3 and average stress components (𝑖 𝑗)𝑖=1,2𝑗=1,2 equal
to zero. All the propositions provide the same torsion moment𝑀1 (up to a relative difference of

∼ 10
−4) and none of the proposition outperforms the others regarding the number of iterations at

convergence. Results below are presented with all the average strain components equal to 0. In
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practice, 𝐺132 is set to 1 in the simulations so that the torsion moment is directly the torsion

stiffness.

Homogeneous beam torsion The torsion of homogeneous beams, submitted to bending in

the previous section, is also interesting for validation purpose. However, when the initialization

of the strain field solution directly provides the solution in the bending case, the torsion case

requires iterating the algorithm for balancing the stress field. The torsion moments derived from

the Euler-Bernoulli beam theory are

𝑀1 = 𝜇
𝜋𝐷4

32
𝛼 (disk cross-section) 𝑀1 = 𝜇𝐷4𝛼 × 0.1406 (square cross-section). (28)

For the square cross-section, the expression is deduced from numerical simulation or from Fourier

series evaluated numerically (Bruhns 2003).

Figure 7 reports the evolution of the relative error of the torsion moment (or torsion stiffness)

as a function of the spatial resolution. For the square cross-section, the error is very small

Figure 7 Relative error on the evaluation of the
torsion moment for homogeneous beams
with square and disk cross-sections, and
with the use of composite voxels for disk
cross-sections.
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5 × 10−4 for the lowest resolution 40 and decreases up to 2 × 10−4 for the highest resolution
160. The shear stress field 𝜎13, observed in Figure 8 (down), is not a simple linear function of

𝑥2 but also depends on 𝑥3, emphasizing that the solution, obtained after 9 iterations, is quite

different from the initial stress field (linear function of 𝑥2). In spite of an infinite contrast (with

the surrounding void volume), the solution is perfectly smooth without any spurious oscillations.

On the other hand, for the disk cross-section, the relative error is much larger: decreasing

from 1.4 % to 0.6 % between resolutions 40 and 160. The stress field, in Figure 8 (up), is almost a

linear function of 𝑥2 but exhibits important spurious oscillations in the neighborhood of the

beam interface to accommodate the traction free boundary condition approximated on a regular

grid. These important fluctuations are suspected to maintain a quite high error (0.6 %) for the

−500
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Figure 8 Homogeneous beam under torsion loading: shear stress field 𝜎13 for disk cross-section without (left) and
with composite voxels (center) and square cross-section (right). Spatial resolution 40. For visualization
purposes, a quarter of the unit-cell is removed.

highest resolution, whereas in the bending case, without any spurious oscillations, the error

reduces to 10
−4. Finally, the use of composite voxels is, once again, of a great help for improving

the solution. Macroscopically, the relative error is very low, compared to the solution without
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composite voxels: decreasing from 12 × 10−4 up to 4 × 10−4 between resolution 40 and 160. The

effect is also very important on the stress field, observed in Figure 8: it drastically reduces the

amount of spurious oscillations. Compared to the bending loading case for which the effect is

purely local, here, composite voxels also affect the solution in their neighborhood. Surprisingly,

in spite of a smoother solution, the number of iterations at convergence is higher with composite

voxels, see Table 4. This unexpected result is still not well understood.

Heterogeneous beam torsion Figure 9(b) represents the evolution of the torsion moments (or

torsion stiffness as 𝛼 = 1) for the three different contrasts. Similarly to the bending loading cases,
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Figure 9 Torsion moments: (a) normalized by their converged values for the highest resolution 160: solid, dotted and
dashed lines respectively for contrasts 1, 0 and 1000; (b) converged values obtained at highest resolution:
arrows symbolize infinite contrasts). Symbols ‘disk’ and ‘disk+composite voxels’ are superimposed
confirming that the moments obtained with the ‘disk’ (without composite voxel) at resolution 160 are
converged.

the effect of inclusions on the stiffness is quite moderate, even if a bit more pronounced for the

highest contrast 1000 with an increase from 1.08 × 108 Nm to 1.41 × 108 Nm. In addition, and in

agreement with the bending loading case: the stiffening (or softening) induced by the stiff (or

soft) inclusions, with respect to the homogeneous beam, corresponds to an additional positive (or

negative) torsion stiffness that is rather independent of the beam cross-section.

Regarding the convergence analysis with respect to the spatial resolution shown in Figure 9(a),

observations are similar to the bending case: convergence is better for square cross-section than

for disk cross-section, and in that case, convergence is better with composite voxels.

The convergence analysis of the FFT-based algorithm (fixed-point algorithm combined with a

convergence acceleration procedure), presented in Table 4, draws conclusions very similar to the

bending loading case. For the sake of conciseness, the reader is invited to refer to the analysis of

Square Disk Disk with Composite Voxel

Resolution 𝐶 = 0 𝐶 = 1 𝐶 = 1000 𝐶 = 0 𝐶 = 1 𝐶 = 1000 𝐶 = 0 𝐶 = 1 𝐶 = 1000

40 18 9 462 19 12 475 57 48 1236

80 19 12 453 21 12 648 57 51 1437

160 25 16 378 21 10 744 51 36 1350

Table 4 Torsion loading case: number of iterations at convergence for the different beams, contrasts, resolutions
and use of composite voxels.

Table 3 for bending. The main difference arises from the fourth conclusion: in the torsion case,

for the square cross-section, increasing the spatial resolution do not deteriorates the convergence.

Finally, the analysis of the local stress fields focuses on the simulations with an elastic

contrast of 1000 that induces the highest contribution to the torsion stiffness, compared to the

homogeneous beam, see Figure 9(b), and exhibits the worst algorithm convergence (see Table 4).

As for the bending loading case, the stress field in and around the inclusion (zooms in Figure 10)

does not seem to be affected by the beam cross-section (square or disk), observation which is also

consistent with the macroscopic observation of an additional contribution on the torsion stiffness
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independent of the cross-section. If spurious oscillations almost disappear in torsion, these

smoother solutions are not associated to a better convergence of the algorithm when comparing

Table 3 with Table 4.

−500 −250 0 250 500

𝜎13 [MPa]

−2,722 −1,361 0 1,361 2,722

𝜎13 [MPa]

Figure 10 Shear stress 𝜎13 obtained for the square cross-section (bottom), and the disk cross-section with (middle)
and without (top) composite voxels, for the lowest spatial resolution (40) and a contrast of 1000 for the
inclusion. For visualization purposes, a quarter of the unit-cell is removed. Right handside figures are
zooms in the inclusion.

3.3 Non-linear beam application

The aim of this final subsection is to demonstrate the ability of the method to account for non-

linear behaviors. For that purpose, a beam with a square cross-section (𝐷 × 𝐷 with 𝐷 = 100mm)

and a cube inclusion (𝑑 × 𝑑 × 𝑑 with 𝑑 = 75mm) is used. Note that, in order to emphasize the

effect of the inclusion on the beam behavior, the inclusion size 𝑑 has been increased. Two spatial

resolution are used, 40 and 80.

As a validation test, the material is considered homogeneous with an elasto-plastic behavior

with perfect plasticity. Then, while the matrix remains elasto-plastic, the inclusion is now purely

elastic. The elastic properties of the matrix are set to (10MPa, 0.3) for the couple (Young’s

modulus, Poisson’s coefficient). Time independent perfect plasticity is associated to a Von Mises

criterion with a yield stress 𝑅0, set to 0.1MPa. The Poisson coefficient of the inclusion is 0.3 and

three different Young’s moduli are tested: 0MPa (elastic contrast 𝐶 = 0 for a void inclusion),

10MPa (no elastic contrast with the matrix, 𝐶 = 1), 200MPa (elastic contrast 𝐶 = 20 as observed
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in glass/epoxy composites for example).

For bending tests, the applied load corresponds to a null average strain 𝐸 and the average

strain gradient component 𝐺∗
112

= 𝐺112 is set to 0.001mm
−1 at the end of the loading. If the

gradients 𝐺222 and 𝐺332, cannot be prescribed (see Appendix A), the choice of 𝐺∗
222

and 𝐺∗
332

influences the convergence of the iterative algorithm. The choice 𝐺∗
222

= 𝐺∗
332

= −𝑣𝐺112 made in

the previous section with linear behaviors is kept. Other strain gradient components 𝐺∗
𝑖 𝑗𝑘

are set

to zero. For torsion tests, the non-zero components of the strain gradient are 𝐺∗
132

= 𝐺132 and

𝐺∗
123

= 𝐺123 with 𝐺132 = −𝐺123 = 0.001mm
−1 at the end of the loading. Finally, in both tests, the

load is discretized in 20 steps.

3.3.1 Homogeneous beam with perfect plasticity

For bending test, the bending moment can be evaluated analytically. It is the sum of two

contributions. The first comes from the region located around the center of the beam (i.e

𝑥2 ∈ [−𝑦0, 𝑦0]) where the material behaves elastically. The second comes from the rest of the

beam where the material flows plastically with 𝜎11 = 𝑅0. The coordinate 𝑦0 that separates the

two regions corresponds to the coordinate for which the stress in the elastic region reaches

𝑅0 = 𝐸𝜀0 = 𝐸𝐺112𝑦0. If the loading is too low, the whole beam remains elastic and 𝑦0 = 𝐷/2, so
that the expression can be summarized by 𝑦0 = min(𝐷/2, 𝑅0/(𝐸𝐺112)). Then, the evaluation of

the bending moment from the two contributions reads

𝑀 = 𝑀1 +𝑀2 = 𝐸
𝐷 (2𝑦0)3

12
𝐺112 + 𝐷𝑅0

(𝐷2

4
− 𝑦2

0

)
with 𝑦0 = min

(𝐷
2
,

𝑅0

𝐸𝐺112

)
. (29)

A comparison of numerical and analytical results is given in Figure 11. The comparison exhibits

an excellent agreement even with the lowest resolution.

A similar analysis can be conducted for the torsion loading applied to a beam with a disk

cross-section. The analytical evaluation of the torsion moment reads

𝑀 = 𝑀1 +𝑀2 = 𝜇𝐺123𝜋𝑟
4

0
+ 2𝜋𝑅0√

3

(𝐷3

24
−
𝑟 3
0

3

)
with 𝑟0 = min

(𝐷
2
,
𝑅0/
√
3

2𝜇𝐺112

)
. (30)

The comparison between analytical and numerical results displayed in Figure 11 reveals that

without composite voxels, increasing the resolution from 40 to 80 improves the agreement and, as

reported in the linear case, using composite voxels leads to a very nice agreement even with the

lowest resolution.
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Figure 11 (a) Bending moment for a square cross-section. (b) Torsion moment for a disk cross-section.

For the bending test, the total number of iterations required by the algorithm was 129 and

164 for resolutions 40 and 80, respectively, or 6.5 and 8.2 iterations per step in average, which is

quite low. In spite of the highly non-linear behavior of perfect plasticity, the algorithm remains

very efficient. For the torsion test, the required iterations are 356 and 386 without composite

voxels and 400 and 441 with composite voxels. The use of Voigt composite voxels appears very

interesting as the increase of the number of iterations is balanced by an improved precision.
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3.3.2 Heterogeneous beam with perfectly plastic matrix

Now the inclusion is elastic while the matrix remains elasto-plastic with perfect plasticity and the

elastic contrasts are 𝐶 = 0 (void inclusion), 𝐶 = 1 (no elastic contrast) and 𝐶 = 20 (similar to

a glass/epoxy elastic contrast). The square cross-section is adapted to the regular mesh and

composite voxels are not required (as in the previous section in the similar case).

Figure 12 represents the evolution of the bending and torsion moments as a function of the

applied strain gradients. It is worth noting that the curves associated to the two resolutions (40
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Figure 12 Moments for a square cross-section and two resolutions 𝑟 . Black curves correspond to homogeneous
beams (no inclusion) obtained analytically for bending and numerically for torsion. Legend applies to both
figures.

and 80) are almost superimposed so that the numerical simulation is considered as converged

with respect to the spatial resolution. Then, it is noticeable that bending and torsion results

exhibit three similar tendencies:

· compared to the homogeneous beam, the inclusion with 𝐶 = 1 gives the same elastic behavior,

the same plastic yield (moment at the onset of plasticity), but a higher plastic limit (asymptotic

moment),

· compared to the heterogeneous beam with 𝐶 = 1, the stiff inclusion with 𝐶 = 20 stiffens the

elastic behavior, increases the yield stress but does not change the plastic limit,

· compared to the heterogeneous beam with 𝐶 = 1, the porous inclusion with 𝐶 = 0 softens the

elastic behavior, decreases both the yield stress and the plastic limit.

As observed in the linear case, the total number of iterations, reported in Table 5, is affected by

the elastic contrast. If the increase, compared to 𝐶 = 1, is quite low for a void inclusion (𝐶 = 0),

Homogeneous 𝐶 = 0 𝐶 = 1 𝐶 = 20

Bending 129/164 278/324 248/296 1011/1279
Torsion 261/211 600/667 509/583 1655/1782

Table 5 Total number of iterations for 20 loading steps for homogeneous and heterogeneous beams (square
cross-section, cubic inclusion) with various contrasts. The first number corresponds to resolution 40, the
second to resolution 80.

the increase is significant for the stiff inclusion (𝐶 = 20). However, it must be mentioned that, in

spite of the high non-linearity (perfect-plasticity), even in the worst case of the torsion test with

(𝐶 = 20), the computation times for simulations performed on a single machine with 14 cores,

are less than 2.5 minutes to obtain converged results with resolution 40, that is 77 440 voxels. In

the better case, the flexion test with𝐶 = 1, the computation time to obtain converged results with

resolution 40 is 0.5 minute.

4 Conclusion

The method described in the present paper extends the application domain of any existing

FFT-based code, from homogeneous applied strain loading to strain gradient loadings, with a
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minor and low invasive modification. Actually, the modification consists in adding the applied

strain gradient field when adding the homogeneous applied strain field to the periodic strain

fluctuation. This is achieved, first when initializing the strain field and then, at the end of each

iteration. The impact on the memory footprint is null, as no additional field needs to be allocated.

Among the 18 components of the strain gradient, it has been shown that only nine components

can be really prescribed here with periodic boundary conditions. However, this subset has proven

to be large enough to address the problems of heterogeneous beams and plates homogenization.

As a practical result, the massively parallel code AMITEX_FFTP (Gélébart 2022) now offers a new

functionality allowing the users to prescribe torsion and bending loadings to beam or plate

heterogeneous unit-cells.

The approach proposed for the homogenization of beams and plates relies on this method

to apply bending and torsion loadings to heterogeneous unit-cells enlarged with void voxels

to account for traction-free boundary conditions. An FFT-based method dedicated to the

homogenization of plates had previously been proposed in (Nguyen et al. 2008), and their

simulations have been reproduced. These comparisons, together with analytical and Finite

Element comparisons, validate the approach and demonstrate that a non-specific FFT-based

solver, with a minor modification, can be almost as precise and efficient as a dedicated one.

The extension of the method proposed for plates in (Nguyen et al. 2008) to the homogenization

of beams with any arbitrary cross-section does not seem straightforward. To the best of the

author’s knowledge, it was considered in the present study for the first time with an FFT-based

solver. The approach is partially validated from simulations of homogeneous beams, with disk

and square cross-sections, subject to bending and torsion. Simulations of heterogeneous beams

with void or stiff inclusions (with a high elastic contrast of 1000) demonstrate the robustness of

the solver. In addition, the use of composite voxels proves once again its ability to improve the

numerical solution when voxels are crossed by an interface. Here, the interface is the beam

boundary, and composite voxels consist of two phases: the void and the beam material. Applied to

a beam with a disk cross-section, composite voxels with the Voigt homogenization rule improve

the estimation of macroscopic moments (torsion, bending) and reduce spurious oscillations

observed in torsion in the neighborhood of the beam boundary. Surprisingly, in spite of smoother

fields, the use of composite voxels deteriorates the convergence of the algorithm. This point

should be clarified. From the application point-of-view, it is noticeable that for the considered

heterogeneities, located at the beam center, the additional stiffness induced by the presence of

inclusions is quite moderate and independent of the beam cross-section.

As a final numerical experiment, the simulation of homogeneous and heterogeneous beams

with an elasto-plastic behavior (perfect plasticity) demonstrates that the method can be used in a

wide range of applications including non-linear analysis.

As future prospects, the approach proposed for the homogenization of beams and plates

could be applied to more complex, yet of practical interest, microstructures such as stranded

cables and corrugated beams or plates, as studied in (Cartraud and Messager 2006). Finally,

another interesting application comes with the use of FFT-based solvers to simulate volume

elements for which DIC or DVC (Digital Image or Volume Correlation) measurements have

been performed (Chen et al. 2019a). Up to now, FFT-based solvers can apply the average strain

measured experimentally. The present method will allow extending the loading to strain gradients

components measured experimentally. It could be useful for example if the in-situ tensile test

device induces spurious bending or torsion loadings.

A Consequences of periodic fluctuations on average strain and strain

gradient fluctuations

A.1 Periodicity in one direction

Let us consider the periodicity condition of the fluctuation displacement �̃� on opposites faces with

normal parallel to 𝒆1 (i.e. �̃� periodic on 𝜕1Ω) with the property �̃� (𝑥1 + ℎ1, 𝑥2, 𝑥3) = �̃� (𝑥1, 𝑥2, 𝑥3),
∀𝑥2, 𝑥3. Using𝑥 , a linear average of𝑥 along 𝒆1, leads to �̃�1,1(𝑥2, 𝑥3) = �̃�2,1(𝑥2, 𝑥3) = �̃�3,1(𝑥2, 𝑥3) = 0,

∀𝑥2, 𝑥3. The consequences on the average strain fluctuations are that the conditions ⟨�̃�1,1⟩ =
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⟨�̃�2,1⟩ = ⟨�̃�3,1⟩ = 0 without any constraint on the other components imply that ⟨𝜀11⟩ = 0

without any constraint on other components. Above, since 𝜀 is the symmetric part of the

gradient, shear components do not systematically vanish. It can be observed additionally that

�̃�𝑖, 𝑗 (𝑥1 + ℎ1, 𝑥2, 𝑥3) = �̃�𝑖, 𝑗 (𝑥1, 𝑥2, 𝑥3), ∀𝑥2, 𝑥3 and 𝑖 = 1, 2, 3, 𝑗 = 2, 3. The vanishing components

𝑖 𝑗𝑘 of ⟨�̃�𝑖, 𝑗𝑘⟩ arising from this periodicity are reported below (the second column is simply an

inversion of the derivation order:

121 112

131 113

221 212

231 213

321 312

331 313

Above, since �̃� is symmetric with respect to the first two indices, the vanishing components of �̃� ,

the average strain gradient fluctuations, are reported in bold character. Similar results can be

obtained in the other two directions.

A.2 Application to the full periodicity problem

Applying the periodicity conditions below in the three directions, the consequences on the

average strain fluctuations are ⟨𝜀𝑖 𝑗 ⟩ = 0, ∀𝑖, 𝑗 . The consequences on the average strain gradient

fluctuations are:

�̃�221 = �̃�231 = �̃�331 = 0

�̃�112 = �̃�132 = �̃�332 = 0

�̃�113 = �̃�123 = �̃�223 = 0

(A.1)

with no constraint on other components. Hence, when using 𝜀 = 𝐸 + 𝜀∗ + 𝜀 in Problem (8):

· all components of 𝐸 are prescribed for the average strain,

· only the nine components of the gradient of 𝜀∗ corresponding to �̃�𝑖 𝑗𝑘 = 0, are prescribed for the

average strain gradient (components 𝐺𝑖 𝑗 𝑗 cannot be prescribed).

The other components of the strain gradient of 𝜀∗ (i.e. 𝐺∗𝑖 𝑗 𝑗 ) can be set to arbitrary values.

A.3 Application to the periodic beam problem

The problem involves a single periodicity condition along 𝒆1. The conclusions of Appendix A.1

apply. When using 𝜀 = 𝐸 + 𝜒3𝑥3 + 𝜒2𝑥2 + 𝜀 in Problem (20):

· only the component 𝐸11 is prescribed for the average strain.

· only the component 11 of 𝜒2 and 𝜒3 are prescribed for the average strain gradient,

· components 221, 231, 331 of the average strain gradient are also implicitly prescribed to 0.

The other components can be set to any arbitrary values, they will be ‘measured’ quantities

during post-treatment.

According to these arguments, components 12 of 𝜒3 and 23 of 𝜒2 cannot be prescribed.

However, in the case of symmetric unit-cells, the axial component �̃�1 of the fluctuation dis-

placement, is equal to 0 on the two opposite faces. In addition to ⟨�̃�2,13⟩ = ⟨�̃�3,12⟩ = 0 reported

in Appendix A.1, we have ⟨�̃�1,23⟩ = ⟨�̃�1,32⟩ = 0, so that the components of the strain gradient

fluctuation �̃�213 and �̃�312 vanish and the corresponding components of the average strain gradient

can be prescribed. In the general case (no specific symmetry), we have 𝐺213 = −𝛼 + 1

2
⟨�̃�1,23⟩ and

𝐺312 = 𝛼 + 1

2
⟨�̃�1,32⟩. If the quantity ⟨�̃�1,23⟩ = ⟨�̃�1,32⟩ is not prescribed to 0 by periodic boundary

conditions, it cannot be adjusted (by the numerical resolution) to vanish the applied load, as it is

the case for components ⟨�̃�𝑖, 𝑗 𝑗 ⟩ that is able to vanish the applied strain gradient 𝐺𝑖 𝑗 𝑗 . Actually if

⟨�̃�1,23⟩ increases to reduce the magnitude of 𝐺213, on the other hand, it will increase 𝐺312.

A.4 Application to the periodic plate

The problem involves two periodicity conditions along 𝒆1 and 𝒆2. In 𝜀 = 𝐸 + 𝜒𝑥3 + (∇�̃�)sym in

Problem (11):

Journal of Theoretical, Computational and Applied Mechanics
�� July 2022

�� jtcam.episciences.org 23
�� 27

https://jtcam.episciences.org


Lionel Gélébart Extension of FFT-based methods to strain gradient loadings ś Homogenization of beams and plates

· only the components 11, 22 and 12 of 𝐸 are prescribed for the average strain,

· only the components 11, 22 and 12 of 𝜒 are prescribed for the average strain gradient,

· components 221, 231, 331, 112, 132, 332 of the average strain gradient are implicitly prescribed

to 0.

The other components can be set to any arbitrary values. They will be ‘measured’ quantities

evaluated as a post-treatment of the simulation results.

B Laminate plateśadditional case

Table B.1 shows that the method converges towards analytical results.

Table B.1 Bending stiffness𝐷22 for the lam-
inate case: comparison between
analytical results and the pro-
posed FFT-based method.

Resolution Analytical [GPa/m] Present study Rel. error

16 × 16 19.949927685076197 19.897348729113546 −0.26%
32 × 32 19.949927685076197 19.936783319118270 −0.07%
64 × 64 19.949927685076197 19.946641214046725 −0.016%
128 × 128 19.949927685076197 19.949106561516157 −0.004%

C Plate with periodic fibers: comparison with (Nguyen et al. 2008)

All the simulation cases reported in (Nguyen et al. 2008) have been reproduced with our approach

and results are gathered in Table C.2 for various contrasts (contrast = 𝐸inclusion/𝐸matrix in [GPa])

and loading cases. The absolute values are respectively the tension and bending stiffness

𝐴22 = 𝑁22/𝐸22 and 𝐷22 = 𝑀22/𝜒22 in [GPa/m]. The column łIter.ž reports the number of iterations

at convergence of our code AMITEX_FFTP, based on a field equilibrium criterion, while the

column łIter.*ž indicates the number of iterations to reach the convergence criterion used

in (Nguyen et al. 2008), with a relative difference of strain energy between two iterations less

than 10
−4.

Resolution FEM* Present study Rel. err. FFT* Rel. err. Iter. Iter.*

C
o
n
tr
as
t
=
0

T
en
si
o
n

16 × 16 0.5840 0.5822 −0.3% 0.5826 −0.24% 28/8 8

32 × 32 0.5840 0.5834 −0.1% 0.5837 −0.05% 45/11 9

64 × 64 0.5840 0.5838 −0.07% 0.5839 −0.01% 44/14 9

128 × 128 0.5840 0.5838 −0.07% 0.5840 ∼ 0% 48/15 9

B
en
d
in
g 16 × 16 8.224 × 10−4 8.204 × 10−4 −0.24% 8.242 × 10−4 0.22% 19/8 8

32 × 32 8.224 × 10−4 8.219 × 10−4 −0.06% 8.228 × 10−4 0.05% 19/8 8

64 × 64 8.224 × 10−4 8.223 × 10−4 +0.015% 8.225 × 10−4 0.01% 19/8 8

128 × 128 8.224 × 10−4 8.224 × 10−4 −0.004% 8.224 × 10−4 ∼ 0 % 21/8 8

C
o
n
tr
as
t
=
0
.0
0
1

T
en
si
o
n

16 × 16 58.495 58.329 −0.28% 58.363 −0.23% 28/8 8

32 × 32 58.495 58.455 −0.07% 58.472 −0.04% 39/11 9

64 × 64 58.495 58.484 −0.02% 58.502 +0.01% 45/14 9

128 × 128 58.495 58.487 −0.01% 58.506 +0.02% 48/15 9

B
en
d
in
g 16 × 16 0.08225 0.08206 −0.23% 0.08244 +0.23% 50/8 8

32 × 32 0.08225 0.08221 −0.05% 0.08230 +0.06% 35/8 8

64 × 64 0.08225 0.08224 −0.005% 0.08227 +0.02% 20/8 8

128 × 128 0.08225 0.08225 −0.006% 0.08226 +0.01% 20/8 8

C
o
n
tr
as
t
=
1
0

T
en
si
o
n

16 × 16 0.16288 0.16267 −0.13% 0.16209 −0.49% 49/14 15

32 × 32 0.16288 0.16284 −0.02% 0.16257 −0.19% 39/17 16

64 × 64 0.16288 0.16287 −0.01% 0.16279 −0.06% 60/17 16

128 × 128 0.16288 0.16290 +0.01% 0.16287 −0.01% 76/17 16

B
en
d
in
g 16 × 16 1.0652 × 10−4 1.0597 × 10−4 −0.5% 1.0701 × 10−4 +0.46% 40/17 18

32 × 32 1.0652 × 10−4 1.0638 × 10−4 −0.13% 1.0659 × 10−4 +0.07% 42/17 18

64 × 64 1.0652 × 10−4 1.0649 × 10−4 −0.03% 1.0654 × 10−4 +0.02% 51/17 18

128 × 128 1.0652 × 10−4 1.0652 × 10−4 −0.002% 1.0654 × 10−4 +0.02% 45/17 18

Table C.2 Comparison analysis. łIter.ž means łIterationsž. łRel. err.ž means łRelative errorž. Starred columns refer to
(Nguyen et al. 2008).
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Table C.3 Glass Epoxy composite. Resolution Present study Iterations

T
en
si
o
n

16 × 16 0.621 221 × 109 68/26
32 × 32 0.622 367 × 109 80/35
64 × 64 0.622 609 × 109 113/28
128 × 128 0.622 700 × 109 122/32

B
en
d
in
g 16 × 16 3.889 901 074 × 105 62/20

32 × 32 3.906 817 410 × 105 65/20
64 × 64 3.910 938 081 × 105 71/20
128 × 128 3.912 030 558 × 105 71/20

D Characterization of composite voxels: beam with cylinder cross-

section

The beam volume fraction (cylinder with disk cross-section) within composite voxels is approxi-

mated from the intersection area between two disks: the disk base of the cylinder and a disk of

radius 𝑅cv, radius of the encompassing circle, centered on the voxel. The expressions are as

follows:

𝑆 = 𝑆1 + 𝑆2

𝑆1 = 𝑅2

0
arccos

( 𝑑i
𝑅0

)
− 𝑑i

√
𝑅2

0
− 𝑑2i

𝑆2 = 𝑅2

cv arccos
(𝑑1 − 𝑑i

𝑅cv

)
− (𝑑1 − 𝑑i)

√
𝑅2
cv − (𝑑1 − 𝑑i)2

𝑑i =
𝑅2

0
− 𝑅2

cv + 𝑑21
2𝑑1

𝑓 =
𝑆

𝜋𝑅2
cv

.

(D.1)

𝑑1 being the distance between the center of the beam section and the center of the voxel, and

𝑅0, the radius of the disk cross-section. In practice, in order to avoid too low (or high) volume

fractions, the detection of composite voxels uses a distance of 0.9345𝑅cv which corresponds to a

threshold of 1 % of volume fraction (i.e. below this value, a voxel is not considered as composite).
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