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Abstract: 

Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very 
attractive in the context of numerical periodic homogenization, especially when compared to 
standard FE codes used in the same context. They allow applying to a unit-cell a uniform average 
strain with a periodic strain fluctuation that is an unknown quantity. Solving the problem allows to 
evaluate the complete stress-strain fields. 
The present work proposes to extend the use of the method from uniform loadings (i.e. uniform 
applied strain) to strain gradient loadings (i.e. strain fields with a uniform strain gradient) while 
keeping the algorithm as simple as possible. The identification of a subset of strain gradient loadings 
allows for a minimally invasive modification of the iterative algorithm so that the implementation is 
straightforward.  In spite of a reduced subset of 9 independent loadings among the 18 available, the 
second part of the paper demonstrates that it is enough for considering the homogenization of 
beams and plates. A first application validates the approach and compares it to another FFT-based 
method dedicated to the homogenization of plates. The second application concerns the 
homogenization of beams, for the first time considered (to author’s knowledge) with an FFT-based 
solver. The method applies to different beam cross-sections and the proposition of using composite 
voxels drastically improves the numerical solution when the beam cross-section is not conform with 
the spatial discretization, especially for torsion loading. 
As a result, the massively parallel AMITEX_FFTP code has been slightly modified and now offers a 
new functionality, allowing the users to prescribe torsions and flexions to beam or plate 
heterogeneous unit-cells.   
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1 – Introduction 

The present paper lies in the overall framework of numerical homogenization of heterogeneous 
materials for which the mechanical behavior at the upper scale derives from spatial averages of 
stress-strain fields simulated on heterogeneous unit-cells. The first developments and most common 
applications focus on first order homogenization, the homogenized behavior relating the 
displacement gradient tensor to a stress tensor, or more specifically, under the small perturbations 
assumption, the linearized strain to the Cauchy stress. The type of boundary conditions applied to 
the unit-cell is quite important in that context. First, they must satisfy the Hill-Mandel condition so 
that the average microscopic strain energy is equal to the macroscopic one.   Then, various choices 
satisfying this condition are available: Kinematic Uniform Boundary Conditions, Stress Uniform BC, 
periodic BC or even normal-mixed BC [14]. If the choice of periodic BC is obvious for periodic 
microstructures, it also provides the best estimate for random microstructures [22] [8] compared to 
KUBC or SUBC, that provide upper and lower bounds (at least for linear material) [18]. If applying PBC 
is not straightforward in Finite Element codes and can deteriorate the computation performance, it is 
natural for the FFT-based methods proposed in the 1990’s [26].  

These methods have been extensively used and improved during the last decade, reducing the initial 
drawbacks such as convergence issues for highly contrasted materials, spurious oscillations or 
sensitivity of the convergence to the reference material behavior (an algorithm parameter). Among 
significant improvements: modified discrete Green operators reducing spurious oscillations and 
improving the convergence ([4], [30] [28],…), algorithms replacing the initial fix-point algorithm to 
improve convergence ([31], [15], [19], [10] …) or composite voxels accounting for multi-phase 
materials, for voxels crossed by an interface, to improve the numerical solution and reduce spurious 
oscillations ([4], [16], [21] …). The list is not exhaustive and numerous theoretical works reinforce the 
mathematical basis of the method. 

Due to their high numerical efficiency compared to finite element codes used in the same context 
(periodic boundary conditions), various works intend to extend the method to various applications. 
Among these applications, we can cite the extension to non-local behaviors such as strain gradient 
plasticity [25] or damage phase field [10], the coupling with metallurgical phase fields such as 
martensitic phase transformation [23] or other physics such as magneto-electricity [3], the coupling 
with DD codes [2]… Once again, this short list is far from exhaustive but gives an idea of the 
increasing development of the method towards new research fields. 

Another kind of extension concerns higher order numerical homogenization [29][11]. In that case, 
the homogenized behavior is not only dependent of the first gradient of the displacement but also of 
higher order terms. Following this idea of going beyond the classical application of an average strain 
loading (i.e. first order displacement gradient) the present paper lies in the same general context. 
Actually, it focuses on the extension to average strain gradient loadings (i.e. second order 
displacement gradient), with an additional constraint of simplicity for the implementation. In other 
words, in the first part of the paper, the question is to propose a method to apply strain gradient 
loadings within classical FFT-based codes, initially designed for first gradient loadings, with a 
minimally invasive modification. If the set of strain gradient loadings fulfilling this constraint is 



reduced, the second part of the paper demonstrates that it is still large enough to deal with the 
question of beams and plates numerical homogenization with FFT-based algorithms.   

Actually, the questions of beams and plates homogenization can be regarded as second order term 
homogenizations [12] for which strain gradients are associated to flexion and torsion loadings. For 
plates, if the classical numerical implementation relies on the finite element method [12] [17], 
Nguyen also proposes an FFT-based method devoted to this application [27]. It relies on a specific 
algorithm combined with a dedicated Green operator to account for the traction free boundary 
conditions applied at the plates’ free surfaces. On the contrary, if the finite element method has also 
been used for beams homogenization [6], to the best of author’s knowledge, FFT-based methods 
have never been proposed in that context. One purpose of the paper is then to demonstrate that the 
same slightly modified FFT-based code can be used for both classical (i.e. first gradient term), as well 
as beams and plates, numerical periodic homogenization. This is made possible and quite efficient 
since recent FFT-based methods (see beginning of the introduction) allow for the simulation of unit-
cells enlarged with void voxels (i.e. infinite contrast) to account for traction free boundary conditions. 

To sum up, the first part of the paper (section 2) introduces the simple extension of the FFT-based 
method to a reduced set of strain gradient loadings and the second part (section 3) applies the 
method to the homogenization of beams and plates. In this part, the first sub-section presents the 
application to plates homogenization and focuses on the comparison with Nguyen’s method using 
exactly the same cases [27]. Finally, the second sub-section presents the new FFT-based application 
to beams homogenization with an additional emphasis on the use of composite voxels when the 
beam cross-section is not conform with the regular grid discretization.       

  

2 – Simple extension of the FFT-based method to strain gradient loadings 

Sub-section 2.2 introduces the standard FFT-based algorithm after a small discussion on the different 
descriptions of the periodicity condition in sub-section 2.1, useful in sub-section 2.3 introducing the 
simple extension to strain gradient loadings. A final sub-section extends the idea from the small 
perturbation to the finite strains framework.  

2.1 : Periodicity condition 

The description of the periodicity condition prescribed on a unit-cell Ω can be done equivalently from 
two different points of view: whether the unit-cell Ω is considered alone or an infinite periodic 
medium Ω௣௘௥ is considered. In the first case, fields are defined on Ω and boundary conditions have to 
be applied on its boundary ∂Ω. In the second case, fields are defined on an infinite space and 
Ω −periodicities are assumed for the fields. The first description is more appropriate for Finite-
Element solvers, the second is well-suited for FFT-based solvers. The two equivalent descriptions of 
the equilibrium condition, submitted to a periodicity condition, are given in equation (1). Below, 
“𝜎. 𝒏   antiperiodic on ∂Ω” means that the traction vector (𝜎. 𝒏) on opposite points of opposite 
faces of Ω are opposite. 

൜
𝒅𝒊𝒗(𝜎(𝒙)) = 0
𝜎. 𝒏   antiperiodic on ∂Ω

ஐ

         ⟺       ൜
𝒅𝒊𝒗(𝜎(𝒙)) = 0
𝜎   Ω − periodic 

 ஐ೛೐ೝ
                 (1) 

 



The periodicity condition of a displacement field 𝒖෥ in equation (2) is also equivalently formulated on 
 Ω௣௘௥  in terms of strain field 𝜀̃, adding a compatibility in that case. Below, “𝒖෥       periodic on ∂Ω” 
means that the displacement 𝒖෥ evaluated on opposite points of opposite faces are equal. 

൛
 

𝒖෥       periodic on ∂Ωஐ
    ⟺   ൛

 
𝒖෥       Ω − periodic ஐ೛೐ೝ      ⟺  ൜

𝜀̃     compatible   
𝜀̃     Ω − periodic

 ஐ೛೐ೝ
 (2) 

 

2.2 : FFT-based algorithm 

When considering classical (i.e. first order term) periodic homogenization under the small 
perturbations assumption, the problem to solve (3) consists of a heterogeneous unit cell Ω described 
by its stiffness tensor field 𝑐, submitted to an average displacement (first order) gradient ∇𝑼 with 
periodic boundary conditions. The displacement field is written as the sum of the prescribed linear 
term and the unknown fluctuation field 𝒖෥. 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝒅𝒊𝒗(𝜎(𝒙)) = 0

𝜎(𝒙) = 𝑐(𝒙): 𝜀(𝒙)

𝜀(𝒙) = (∇𝒖)௦௬௠(𝒙)

𝒖(𝒙) = ∇𝑈. 𝒙 + 𝒖෥(𝒙)
𝒖෥       periodic on ∂Ω 
𝜎. 𝒏   antiperiodic on ∂Ωஐ

 (3) 

 

Using equations (1) and (2), this problem (3) written on Ω, is equivalent to problem (4) written 
on Ω௣௘௥, removing the 𝒙 dependence for the sake of concision, the average strain 𝐸 being equal to 
the symmetrized average gradient  (𝐸 = (∇𝑈)௦௬௠). 

⎩
⎪
⎨

⎪
⎧

𝒅𝒊𝒗(𝜎) = 0
𝜎 = 𝑐: 𝜀
𝜀 = 𝐸 + 𝜀̃
𝜀     compatible
𝜀̃     Ω − periodic
𝜎    Ω − periodic ஐ೛೐ೝ

 (4) 

 

Now, introducing a homogeneous reference stiffness 𝑐଴ allows to define equivalently the problem 
(5). 

⎩
⎪
⎨

⎪
⎧

𝒅𝒊𝒗(𝑐଴: 𝜀 + 𝜏) = 0
𝜏 = (𝑐 − 𝑐଴): 𝜀
𝜀 = 𝐸 + 𝜀̃
𝜀 ̃                         compatible
𝜀̃                          Ω − periodic
𝜎 = 𝑐଴: 𝜀 + 𝜏    Ω − periodic ஐ೛೐ೝ

 (5) 

 

 



Temporarily assuming the so-called polarization 𝜏 as a known Ω −periodic field, allows defining the 
auxiliary problem (6) which can be solved by the application of the Green operator Γ଴, 
straightforward in Fourier space as the stiffness 𝑐଴ is homogeneous (see the annex of [26] for a 
detailed description).  

𝜀̃ = −Γ଴ ∗ 𝜏     (⇄ Fourier)             ⇔            ൞

𝒅𝒊𝒗(𝑐଴: 𝜀̃ + 𝜏) = 0
𝜀̃                          compatible
𝜀̃                          Ω − periodic
𝜎 = 𝑐଴: 𝜀̃ + 𝜏    Ω − periodic

 ஐ೛೐ೝ

   (6) 

 

Finally, the initial problem (4), equivalent to problem (5), reduces to problems (6) and (7). Note that 
periodicity and compatibility conditions are gathered in problem (6) and automatically fulfilled when 
applying the Green operator in Fourier space, so that problem (7) gathers a set of equations, which, 
followed step by step, defines the simple fix-point algorithm proposed initially by Moulinec and 
Suquet [26]. Initializing the strain field  𝜀 (with 𝜀 = 𝐸) allows to evaluate the polarization field  𝜏 (7)a.  
Then, the Green operator applies (in Fourier space) on the polarization to evaluate the fluctuation 
strain field 𝜀̃ (7)b, which, added to the average (applied) strain field provides the strain field 𝜀 (7)c (in 
practice it can be done easily in Fourier space on the null frequency). This strain field allows to begin 
a second iterate and so on until convergence. 

ቐ

𝜏 = (𝑐 − 𝑐଴): 𝜀                                  (𝑎)

𝜀̃ = −Γ଴ ∗ 𝜏     (⇄ Fourier)           (𝑏)
𝜀 = 𝐸 + 𝜀̃                                           (𝑐)

 ஐ೛೐ೝ

 (7) 

 

2.3 : Extension to strain gradient loadings with a simple implementation  

The purpose of this section is to add a non-uniform applied strain 𝜀∗ to the homogeneous applied 
strain 𝐸, modifying the initial problem (4) in problem (8).  

⎩
⎪
⎨

⎪
⎧

𝒅𝒊𝒗(𝜎) = 0
𝜎 = 𝑐: 𝜀
𝜀 = 𝐸 + 𝜀∗ + 𝜀̃
𝜀     compatible
𝜀̃     Ω − periodic
𝜎    Ω − periodic ஐ೛೐ೝ

 (8) 

 

In addition, for the sake of simplicity, we would like to use exactly the same algorithm as described 
by problems (6) and (7) with a minor modification that consists in adding the non-uniform applied 
strain 𝜀∗ when evaluating the strain in equation (7)c, replacing problem (7) by problem (9). 

ቐ

𝜏 = (𝑐 − 𝑐଴): 𝜀                                  (𝑎)

𝜀̃ = −Γ଴ ∗ 𝜏     (⇄ Fourier)           (𝑏)
𝜀 = 𝐸 + 𝜀∗ + 𝜀̃                                 (𝑐)

 ஐ೛೐ೝ

 (9) 

 



The question is now to identify a set of applied strain fields 𝜀∗ for which problem (8) reduces to 
problems (6) and (9). 

The first constraint arises from the compatibility equation (8)4 of the strain field (8)3 in problem (8). 
Hence, the applied heterogeneous strain 𝜀∗ must be compatible. Among the compatible fields, the 
simplest ones are linear fields. Actually, the compatibility condition, that involves double derivations 
of strain components, is satisfied as the double derivations automatically vanish for linear fields. In 
the following, the heterogeneous applied strain fields are limited to such linear fields characterized 
by their strain gradients 𝐺 as follows, assuming (𝒙 =0) the center of the unit-cell:  

𝜀∗(𝒙) = 𝐺. 𝒙           or            𝜀௜௝
∗ = 𝐺௜௝௞𝑥௞  (10) 

 

The second constraint comes from the application of the Green operator in problem (9)b. Actually, 
applying the Green operator is equivalent to solve the auxiliary problem (6), derived from problem 
(4). Instead, the auxiliary problem derived from problem (8) should have read: 

൞

𝒅𝒊𝒗(𝑐଴: 𝜀̃ + 𝑐଴: 𝐺. 𝒙 + 𝜏) = 0
𝜀̃                                                compatible
𝜀̃                                                Ω − periodic
𝜎 = 𝑐଴: 𝜀̃ + 𝑐଴: 𝐺. 𝒙 + 𝜏       Ω − periodic

 ஐ೛೐ೝ

   (11) 

 

Hence, the only way to use the auxiliary problem (6) instead of the auxiliary problem (11) is to have 
the term 𝑐଴: 𝐺. 𝒙 equilibrated (𝒅𝒊𝒗(𝑐଴: 𝐺. 𝒙) = 0) and the term (𝑐଴: 𝜀̃ + 𝑐଴: 𝐺. 𝒙 + 𝜏) Ω −periodic. 𝜀̃ 
and 𝜏 being Ω −periodic,  the second condition on 𝐺 corresponds to the Ω −periodicity of 𝑐଴: 𝐺. 𝒙. 
Following equation (1), these two conditions on  Ω௣௘௥ are now written on Ω as follows: 

൜
𝒅𝒊𝒗(𝑐଴: 𝐺. 𝒙) = 0
𝑐଴: 𝐺. 𝒙      Ω − periodic  ஐ೛೐ೝ

       ⟺     ൜
𝒅𝒊𝒗(𝑐଴: 𝐺. 𝒙) = 0
(𝑐଴: 𝐺. 𝒙). 𝒏       antiperiodic on ∂Ωஐ

                 (12) 

 

Assuming an isotropic behavior for 𝑐଴, with Lamé coefficients 𝜆଴ and 𝜇଴, the first condition on 𝐺 
(𝒅𝒊𝒗(𝑐଴: 𝐺. 𝒙) = 0), expressed in Cartesian coordinates, reads: 

ቐ

𝜆଴(𝐺ଵଵଵ + 𝐺ଶଶଵ + 𝐺ଷଷଵ) + 2𝜇଴(𝐺ଵଵଵ + 𝐺ଵଶଶ + 𝐺ଵଷଷ) = 0

𝜆଴(𝐺ଵଵଶ + 𝐺ଶଶଶ + 𝐺ଷଷଶ) + 2𝜇଴(𝐺ଶଵଵ + 𝐺ଶଶଶ + 𝐺ଶଷଷ) = 0

𝜆଴(𝐺ଵଵଷ + 𝐺ଶଶଷ + 𝐺ଷଷଷ) + 2𝜇଴(𝐺ଷଵଵ + 𝐺ଷଶଶ + 𝐺ଷଷଷ) = 0

   (13) 

 

The second condition is the anti-periodicity of (𝑐଴: 𝐺. 𝒙). 𝒏 on opposite faces of Ω, it reads: 



൝
𝜆଴(𝐺ଵଵଵ + 𝐺ଶଶଵ + 𝐺ଷଷଵ) + 2𝜇଴𝐺ଵଵଵ = 0
𝐺ଶଵଵ = 0
𝐺ଷଵଵ = 0

൝

𝐺ଵଶଶ = 0

𝜆଴(𝐺ଵଵଶ + 𝐺ଶଶଶ + 𝐺ଷଷଶ) + 2𝜇଴𝐺ଶଶଶ = 0
𝐺ଷଶଶ = 0

൝

𝐺ଵଷଷ = 0
𝐺ଶଷଷ = 0

𝜆଴(𝐺ଵଵଷ + 𝐺ଶଶଷ + 𝐺ଷଷଷ) + 2𝜇଴𝐺ଷଷଷ = 0

   (14) 

 

It is clear that the set equations (13) is automatically satisfied as soon as (14) is fulfilled. Hence, (14) 
gathers the 9 constraints that must be satisfied by 𝐺 if we want to solve problem (8), with an applied 
strain gradient 𝜀∗(𝒙) = 𝐺. 𝒙, using the very simple algorithm described by problem (9). In other 
words, among the 18 coefficients of 𝐺, 6 coefficients 𝐺௜௝௝  (with i ≠ j ) must be set to zero, nine 
coefficients 𝐺௜௜௝  are constrained by 3 equations and the coefficients 𝐺௜௝௞  (with i ≠ j, a ≠ k and k ≠

i) are free. The coefficients 𝐺௜௜௝ (with i ≠ j ) can be associated to bending loadings and the 
coefficients 𝐺௜௝௞   (with i ≠ j, a ≠ k and k ≠ i) to torsion loadings. 

 

2.4 : Implementation considerations 

Considering an existing FFT-based code able to solve problem (7)+(6), transforming this code to solve 
problem (9)+(6) is obvious. It consists in adding the applied strain gradient field when adding the 
homogeneous applied strain field to the periodic strain fluctuation. This is done, first when initializing 
the strain field (with a null fluctuation) and then, at the end of each iteration. The impact on the 
memory footprint is null, as no additional field needs to be allocated, and the additional 
computational cost is low compared to the complete cost of an iteration. 

 

2.5 : Extension to finite strain 

Even if not applied in the present paper, an extension to the general framework of finite strains is 
proposed below. 

The extension on the FFT-based method to finite strain proposed initially by Lahellec [24] is quite 
straightforward, replacing in problems (5) and (6), the Cauchy stress 𝜎 by the first Piola-Kirchoff 
stress 𝜋, and strain field 𝜀 by the displacement gradient ∇𝑢, the divergence and gradient operators 
now acting on the initial configuration. The main difference is that these tensors are no more 
symmetric and involve nine components. Then, the reasoning proposed to account for 
heterogeneous loadings, under the small perturbation assumption in the previous section, is 
straightforwardly extendable at finite strain. For the sake of conciseness, we focus on the main 
ingredients but not recall the complete reasoning below. 

 The problem to solve at finite strain, accounting for a heterogeneous applied displacement 
gradient ∇𝑢∗, reads: 



⎩
⎪⎪
⎨

⎪⎪
⎧

𝒅𝒊𝒗(𝜋) = 0
𝜋 = 𝑐(∇𝑢)

∇𝑢 = ∇𝑈 + ∇𝑢∗ + ∇𝑢෪

∇𝑢       compatible

∇𝑢෪        Ω − periodic
𝜋          Ω − periodic ஐ೛೐ೝ

 (15) 

 

A simple way to satisfy the compatibility condition for ∇𝑢∗ is to choose a strain gradient field (16) 
characterized by the tensor 𝐺, which is no more symmetric on its two first indices when considering 
the finite strain context. 

∇𝑢∗(𝒙) = 𝐺. 𝒙           or            ∇𝑢௜௝
∗ = 𝐺௜௝௞𝑥௞  (16) 

 

Then, solving problem (15) with the simple fixed-point algorithm described by problem (17)  is 
possible if the applied strain gradient satisfies the same constraints as (12), with a non-symmetric 𝐺.  

ቐ

𝜏 = 𝑐(∇𝑢) − 𝑐଴: ∇𝑢

∇𝑢෪ = −Γ଴ ∗ 𝜏     (⇄ Fourier)

∇𝑢 = ∇𝑈 + ∇𝑢∗ + ∇𝑢෪
 ஐ೛೐ೝ

 (17) 

 

As the set of equations (14) does not account for the symmetry of 𝐺, it applies equivalently to the 
non-symmetric 𝐺. Now, the space of available loading has 18 dimensions (27 components minus 9 
equations) instead of 9 under the small strain assumption (18 components minus 9 equations). 

 

2.6 : Conclusion 

This work proposes to extend in a very simple manner the scope of FFT-based codes, 
classically implemented to account for uniform applied strain, to account for linearly varying applied 
strains (i.e. with a constant applied strain gradient). The modification is extremely simple and has a 
null memory footprint. 

 The price to pay for this simplicity is a constraint on the components of the applied strain 
gradient: among the 18 components (or 27 at finite strain) of the strain gradient, 9 equations reduce 
the space of available loadings to 9 dimensions (or 18 at finite strain).  However, the next section will 
demonstrate that it is enough to consider the problems of the homogenization of beams and plates. 

 

 

 

 

 



3 : Application to the homogenization of beams and plates 

The purpose of this section is to demonstrate that the slight modification proposed in the previous 
section, applied to an existing FFT-based code that is able to simulate microstructures with null 
elastic properties, is enough to consider the problem of thin plates or elongated beams 
homogenization.  Nguyen [27] has initially addressed the question of thin plates homogenization 
with an FFT-based solver, but his approach relied on a dedicated solver whereas our approach relies 
on any standard FFT-based solver able to account for null elastic properties. For the sake of 
validation and comparison, section 3.1 reproduces all the simulation cases proposed by Nguyen [27]. 
Then, section 3.2 extends the approach to the homogenization of beams, treated for the first time, to 
the author’s knowledge, with an FFT-based solver.     

As the convergence properties reported below (section 3.1 and 3.2) depends on the FFT-based code 
used for the simulation, a brief description is necessary. The two main features influencing the 
convergence properties in our code AMITEX_FFTP [1] are the iterative algorithm and the discrete 
Green operator. First, the algorithm corresponds to the fixed-point algorithm [26], described by 
problem (7)+(6),  combined with an Anderson convergence acceleration technique reported in ([9], 
section 3.2.1). This acceleration technique drastically improves the fixed-point algorithm 
convergence. In addition, compared to the Newton-Raphson implementation also proposed for FFT-
based solvers with non-linear behaviors [13], it is interesting because it does not require the tangent 
matrix behavior, whose analytical evaluation may be tedious. On the other hand, the memory 
footprint is higher: our implementation requires four couples of (solution field, residual field). 
Second, the discrete Green operator is associated to a finite element discretization with linear 
hexaedral elements with reduced integration [30] [28]. It is efficient to reduce spurious oscillations 
and improve convergence. Thanks to these two elements, the code is able to account, quite 
efficiently, for unit-cells containing void voxels (null elastic properties).  

 

3.1 : Homogenization of plates 

The purpose of this section is to demonstrate that a general FFT-based code, equipped with the 
minor modification proposed in this study, extends its application domain to the homogenization of 
plates. Validation comes from comparisons with analytical results and numerical results obtained by 
Nguyen [27].  Note that an extensive and refined comparison between our simulations and Nguyen’s 
simulations is not easy because of the differences between the iterative algorithms, the discrete 
Green operators and the convergence criterion. Especially, the convergence criterion used by Nguyen 
is a ‘macroscopic’ criterion based on the ‘relative’ difference of the strain energy between two 
iterations whereas the criterion used in AMITEX_FFTP relies on the ‘absolute’ equilibrium condition 
of the ‘local’ stress field.   

3.1.1 : Method 

We consider a thin heterogeneous plate described by a unit cell Ω periodically repeated in the plane 
(𝒆𝟏, 𝒆𝟐), with direction (𝒆𝟑) normal to the plate. Assuming an applied strain field consistent with the 
Kirchoff-Love modeling for plates, the problem to solve reads:  



⎩
⎪
⎨

⎪
⎧

𝒅𝒊𝒗(𝜎) = 0
𝜎 = 𝑐: 𝜀
𝜀 = 𝐸 + 𝜒𝑥ଷ + (∇𝒖෥)௦௬௠

𝒖෥                periodic on ∂ଵଶΩ
𝜎. 𝒏           antiperiodic on ∂ଵଶΩ
𝜎. 𝒏 = 0   on ∂ଷΩஐ

 (18) 

 

Where ∂ଵଶΩ denotes the four faces of normal directions (𝒆𝟏) and (𝒆𝟐), submitted to periodic 
boundary conditions and ∂ଷΩ the two faces submitted to a traction-free boundary condition. The 
macroscopic applied strain and strain gradient are limited to the in-plane components for both the 
uniform and non-uniform parts, in bold in equation (19). However, due to mechanical couplings 
between directions, out of plane components do not systematically vanish (i.e. even in the simplest 
case of an elastic, homogeneous and isotropic material, the components 𝐸ଷଷ and 𝜒ଷଷ arise from the 
classical Poisson effect). 

𝐸 = ൭

𝑬𝟏𝟏 𝑬𝟏𝟐 𝐸ଵଷ

𝑬𝟏𝟐 𝑬𝟐𝟐 𝐸ଶଷ

𝐸ଵଷ 𝐸ଶଷ 𝐸ଷଷ

൱        and      𝜒 = ൭

𝝌𝟏𝟏 𝝌𝟏𝟐 𝜒ଵଷ

𝝌𝟏𝟐 𝝌𝟐𝟐 𝜒ଶଷ

𝜒ଵଷ 𝜒ଶଷ 𝜒ଷଷ

൱ = ൭

𝑮𝟏𝟏𝟑 𝑮𝟏𝟐𝟑 𝐺ଵଷଷ

𝑮𝟏𝟐𝟑 𝑮𝟐𝟐𝟑 𝐺ଶଷଷ

𝐺ଵଷଷ 𝐺ଵଷଷ 𝐺ଷଷଷ

൱ 

 

(19) 

In their paper, to solve problem (18), Nguyen and al. [27] follow exactly the reasoning described in 
section 2. However, keeping the traction-free condition on ∂ଷΩ, they have to modify the Green 
operator to account for this condition in the auxiliary problem.  

Instead, in the present paper, we make use of the classical periodic Green operator, built with full 
periodic conditions and available in every FFT-based codes. In order to satisfy the traction-free 
boundary condition, the full periodic problem is not solved on the unit-cell Ω  but on an enlarged 
unit-cell Ω∗ adding to Ω one layer with null elastic properties on each side of ∂ଷΩ (see Figure 1). In 
practice the added layers are one voxel thickness in the discretized problem and using one layer on 
each side allows to keep the same middle surface for Ω and Ω∗ (helpful for the post-treatment of the 
stress field). Due to the added void layers, the in-plane components applied to  Ω∗ must be the same 
but the out of plane components can be chosen arbitrarily as follows: 

𝐸∗ = ൭
𝑬𝟏𝟏 𝑬𝟏𝟐 0
𝑬𝟏𝟐 𝑬𝟐𝟐 0

0 0 0
൱        and      𝜒∗ = ൭

𝝌𝟏𝟏 𝝌𝟏𝟐 0
𝝌𝟏𝟐 𝝌𝟐𝟐 0

0 0 𝜒ଷଷ
∗

൱ = ൭

𝑮𝟏𝟏𝟑 𝑮𝟏𝟐𝟑 0
𝑮𝟏𝟐𝟑 𝑮𝟐𝟐𝟑 0

0 0 𝐺ଷଷଷ
∗

൱ 

 

(20) 

In order to use the method proposed in the previous section to account for linearly varying applied 
strain, the strain gradient components imposed in equation (20) have to satisfy the constraints 
established in the general case (set of equations (14)). In the present case, the imposed 
component 𝐺ଵଶଷ remains unconstrained; it consists of an elementary torsion plate loading. The 
unique constraint applies to the 𝐺௜௜ଷ components: 

𝜆଴(𝐺ଵଵଷ + 𝐺ଶଶଷ + 𝐺ଷଷଷ
∗ ) + 2𝜇଴𝐺ଷଷଷ

∗ = 0 (21) 
 

This constraint allows proposing two elementary flexion plate loadings, governed by the components 
𝐺ଵଵଷ and 𝐺ଶଶଷ applied to Ω, as follows: 



⎩
⎨

⎧
𝐺ଵଵଷimposed
𝐺ଶଶଷ = 0

𝐺ଷଷଷ
∗ = −

𝜆଴

𝜆଴ + 2𝜇଴
𝐺ଵଵଷ

                              

⎩
⎨

⎧
𝐺ଵଵଷ = 0
𝐺ଶଶଷ imposed

𝐺ଷଷଷ
∗ = −

𝜆଴

𝜆଴ + 2𝜇଴
𝐺ଶଶଷ

 (22) 

 

It is worth noting that 𝐺ଷଷଷ
∗ , the gradient of 𝜀ଷଷ according to 𝑥ଷ is applied to Ω∗ in the thickness 

direction (i.e. direction 3), in which the two additional void layers have been added to Ω. Because of 
these void layers, Ω is free to deform in direction 𝒆𝟑 (to allow for the mechanical coupling between 
directions, such as the Poisson effect) and the average value of 𝐺ଷଷଷ

∗  on Ω∗  can be different from its 
average on Ω. As a result, if the relations on 𝐺ଷଷଷ

∗  in equation (22) must be satisfied on Ω∗, they can 
be completely disregarded when considering their effect on the unit-cell Ω (without added layers). 
The same consideration holds for 𝐸ଷଷ

∗ = 𝐸ଵଷ
∗ = 𝐸ଶଷ

∗ = 0 and 𝐺ଵଷଷ
∗ = 𝐺ଶଷଷ

∗ = 0 applied to the enlarged 
unit-cell Ω∗.  

Once, the problem solved at the micro-scale (on the heterogeneous unit-cell), the last step consists 
in defining appropriate averages for the macroscopic quantities used for modeling plates. For an 
homogenized material, considering 𝜎ఈఉ  (𝛼, 𝛽 = 1 or 2) as a function of 𝑥ଷ, the two macroscopic 
‘stress’ tensors are the linear force tensor 𝑁 (expressed in N/m) and the linear moment tensor 𝑀 (in 
N.m/m) defined by: 

𝑁ఈఉ = න 𝜎ఈఉ𝑑𝑥ଷ

௛

ି௛

            and        𝑀ఈఉ = න 𝑥ଷ𝜎ఈఉ𝑑𝑥ଷ

௛

ି௛

 (23) 

 

Now considering a heterogeneous unit-cell (and  𝜎ఈఉ as a function of 𝑥ଵ, 𝑥ଶ and 𝑥ଷ), the following 
averaging procedure is used, with 𝑆 the area of 𝑆ଵଶ  the cross-sections of Ω in plane (1,2) : 

𝑁ఈఉ = න ቆ
1

𝑆
න 𝜎ఈఉ𝑑𝑆

ௌభమ

ቇ 𝑑𝑥ଷ

௛

ି௛

=
1

𝑆
න 𝜎ఈఉ𝑑𝑉

ஐ

𝑀ఈఉ = න ቆ
1

𝑆
න 𝑥ଷ𝜎ఈఉ𝑑𝑆

ௌభమ

ቇ 𝑑𝑥ଷ

௛

ି௛

=
1

𝑆
න 𝑥ଷ𝜎ఈఉ𝑑𝑉

ஐ

 (24) 

 

Using the in-plane periodicity of 𝒖෥ and the equilibrium condition (∫ 𝜎௜ଷ𝑑𝑆
ௌభమ

= 0 for all 

sections 𝑆ଵଶ(𝑥ଷ)), it can be demonstrated that the average of the microscopic energy is equal to the 
macroscopic energy. In the case of plates, the energy surface density is considered and the so-called 
macro-homogeneity condition of Hill-Mandel reads: 

1

𝑆
න 𝜎: 𝜀𝑑𝑉 =

ஐ

1

𝑆
න 𝜎: (𝐸 + 𝜒𝑥ଷ + 𝜀̃)𝑑𝑉 = 𝑁: 𝐸௉ + 𝑀:

ஐ

𝜒௉ (25) 

 

Finally, the homogenized elastic behavior relates the kinematic tensors (𝐸௉ , 𝜒௉), restrictions of the 
tensors (𝐸, 𝜒) to their in-plane components, to the macroscopic ‘stress’ tensors (𝑁, 𝑀) as follows: 

ቂ
𝑁
𝑀

ቃ = ቂ
𝐴 𝐵
𝐵 𝐷

ቃ ൤
𝐸௉

𝜒௉൨ (26) 



 
Tensor 𝐴 describes the membrane behavior, 𝐷 the flexion and torsion behaviors and 𝐵 the possible 
coupling arising, for example, with non-symmetric unit-cells with respect to the middle surface. From 
this definition, the energy surface density reads: 

1

𝑆
න 𝜎: 𝜀𝑑𝑉 =

ஐ

𝐸௉ . 𝐴. 𝐸௉ + 2𝐸௉ . 𝐵. 𝜒௉ + 𝜒௉ . 𝐷. 𝜒௉ (27) 

 

In practice, the identification of the homogenized behavior results from six simulations 
corresponding to six independent loadings (𝐸௉ , 𝜒௉) applied to the unit-cell. The mechanical 
approach post-treats the stress fields to evaluate the corresponding resultant ‘stress’ tensors (𝑁, 𝑀) 
with equations (24) in order to identify the coefficients of relation (26). The energetic approach post-
treats the stress-strain fields to evaluate the corresponding energies in order to identify the 
coefficients of relation (27).  

As soon as the macro-homogeneity condition (25) holds, the energetic approach followed by Nguyen 
in [27] is strictly equivalent to the mechanical approach followed in the present paper.  

 

3.1.2 : Laminate plate [27] 

Following the validation test used by Nguyen, we consider the case of a two phases laminate plate 
for which a closed form solution exists (see [27]). The unit-cell Ω represented on Figure 1, is 
symmetric so that the coupling tensor 𝐵 vanishes. The volume fractions of phases are equal (50%), 
and their elastic properties (Young modulus, Poisson coefficient) are respectively (46GPa, 0.3) and 
(10GPa, 0.3) for phases 1 and 2. According to [27], the spatial resolution used for the simulations are 
2nx2n(x1) voxels (the code is 3D) for the unit cell Ω and two additional layers enlarge the unit-cell to 
simulate traction-free boundary condition in Ω∗ (see section 2). The non-null components (𝐸ଶଶ, 𝜒ଶଶ)  
of  𝐸௉ and 𝜒௉ defines the two applied loadings: (1,0) for the tensile loading  and (0,1) for the flexion 
loading. They directly allow to evaluate 𝐴ଶଶ = 𝑁ଶଶ 𝐸ଶଶ⁄  and 𝐷ଶଶ = 𝑀ଶଶ 𝜒ଶଶ⁄ . The corresponding 
loadings applied to the enlarged unit-cell Ω∗ are: 

𝐸∗ = ൭
𝟎 𝟎 0
𝟎 𝑬𝟐𝟐 0
0 0 0

൱ ,  𝜒∗ = 0                                                                                       (tension)

𝐸∗ = 0,                           𝜒∗ = ൭

𝟎 𝟎 0
𝟎 𝜒𝟐𝟐 0

0 0 𝜒ଷଷ
∗

൱    with  𝜒ଷଷ
∗ = −

𝜆଴

𝜆଴ + 2𝜇଴
𝜒ଶଶ      (flexion)

   

 

(28) 

The choice made for the reference material’s Lamé coefficients (𝜆଴, 𝜇଴) is 𝜆଴ = (𝜆௠௜௡ + 𝜆௠௔௫)/2 
with 𝜆௠௜௡ = 0 (for the void layers), and 𝜇଴ adjusted to obtain a Poisson coefficient 𝜐଴ = 0.3, the 
Poisson coefficient common to both phases. 



 

Figure 1 : Description of the two unit-cells used in simulations of heterogeneous plates: laminate plate (left) and composite 
plate with cylinder (square base) inclusions (right). In orange are represented the additional void layers used in the present 
simulations. 

For the tensile loading, the algorithm reaches convergence after 6 iterations with a convergence 
criterion on the local equilibrium of 10-15 far below the threshold of 10-4 used for the simulation. It 
seems that the solver reaches the exact solution, up to the double precision round-off error.  
Actually, the exact solution being constant per layer, it can be observed that the FFT-based method is 
able to find it if the discretization grid is parallel to the layers. From the macroscopic point of view, 
Table 1 gathers the comparison with analytical results and numerical results from [27]. The 
comparison with analytical result is exact up to the 8th digit. The comparison with [27] is perfect up to 
the number of available digits. However, the converged value is obtained after 10 iterations to 
converge on a macroscopic criterion (10-4 on the average energy between two iterations), compared 
to 6 for this study on a more stringent criterion (local equilibrium). Finally, as the solution is constant 
per layer, it does not depend on the mesh resolution and exactly the same result is obtained with a 
resolution 4x4 (i.e. with one voxel per layer in the thickness). 

Resolution Analytical This work [27] 
8x8 3.07692307   3.07692303 3.077 
4x4 3.07692307   3.07692303  
Table 1 : Axial stiffness 𝐴ଶଶ obtained for the laminate case: comparison between analytical results and two FFT-based 
methods 

For the flexion loading, the algorithm reaches convergence after a single iteration with, once again, a 
convergence criterion on the local equilibrium of 10-15 far below the threshold of 10-4.  As mentioned 
earlier, the method is able to find perfectly equilibrated layered stress fields (up to the precision 
round off and as soon as the layer are parallel to the discretization grid). However, in the case of 
flexion, the stress field is not constant per phase so that the stress field and consequently the 
resultant ‘stress’ tensor 𝑀, depends on the mesh size. Table 2 compares the analytical results with 
the numerical results in [27] and this study, for different spatial resolutions. Both results are in 
excellent agreement with the analytical case and the error becomes very low as soon as resolution 
reaches 32x32. For resolution 16x16, results are still in good agreement (relative error ~3.4%) and 
Nguyen’s method looks better in that case. On the other hand, it required 10 iterations to reach 
convergence (on a macroscopic criterion), compared to a single iteration in this study.  

𝒆ଶ 

𝒆ଷ 

M1 

M1 

M2 

M2 𝒆ଶ 

𝒆ଷ 

M1 

M2 

0,
1m

 

0,1m 0,05m 

0,
05

m
 



Resolution Analytical (GPa/m) This study (rel. error) [27] (rel.  error) 
16x16 0.003800 0.003670 (342e-4) 0.00382   (52e-4) 
32x32 0.003800 0.003798 (5e-4) 0.003805 (13e-4) 
64x64 0.003800 0.003803 (7e-4) 0.003802 (5e-4) 
Table 2 : Bending stiffness 𝐷ଶଶ obtained for the laminate case: comparison between analytical results and two FFT-based 
methods 

 

To conclude, the minor modification applied to our general FFT-based solver, allows reproducing the 
analytical solution obtained for a laminate plate, at least as precisely and as efficiently as an FFT-
based solver dedicated to the homogenization of plates. 

 

3.1.3 : Plate with periodic fibers [27] 

This second validation test proposed in [27] considers a panel with a periodic distribution of 
parallelepiped fibers. Figure 1 describes the periodic unit-cell. The matrix and the inclusion have the 
same Poisson ratio (0.3), and the Young moduli of inclusion / matrix (in GPa) are (0/1), (10/1) and 
(1/1000). The AMITEX_FFTP code being able to apply whether the average stress or the average 
strain 𝐸∗ for each of the six components, applying a null average stress for the components 33, 13 
and 23, was found to reduce the number of iterations at convergence of about 30% for the tensile 
loading. Hence, the loading used in this case is identical to the loading introduced for the laminate 
case in equation (28), except for these three components, now set to null stress instead of null strain. 
The flexion loading remains unchanged. The choice made for Lamé coefficients follows the same rule 
as proposed in the laminate case. The spatial resolution used for the simulations are 2nx2n(x1) voxels 
(the code is 3D) for the unit cell Ω and two additional layers enlarge the unit-cell to simulate traction-
free boundary condition in Ω∗ (see section 2). 

All the simulations reported in [27] have been reproduced and all the results are gathered in tables of 
annex A, in which the membrane stiffness 𝐴ଶଶ, bending stiffness 𝐷ଶଶ and number of iterations are 
given as a function of the spatial resolution for the three elastic contrasts. The convergence criterion 
being very different between AMITEX_FFTP and [27], the comparison between iteration numbers at 
convergence is not significant. Hence, the evaluation of strain energy has been implemented in 
AMITEX_FFTP and the relative difference between two iterations is evaluated as a post-treatment to 
determine the number of iterations at convergence if using this criterion with a threshold of 10-4 
(used in [27]). 

If not useful to discuss all the tables one by one, their analysis allows drawing a few main 
conclusions. First, even for the coarsest resolution (16x16), with relative errors below 1%, results 
obtained with both FFT-based methods are very close to the reference solution obtained from finite 
element simulations in [27]. Second, if the relative error decreases monotonously with Nguyen’s 
method, the decrease is less monotonous with our approach and, in addition, the relative error do 
not seem to decrease below 0.1% for the flexion loading cases. If this question could be further 
investigated, in practice a relative error of 0.1% is yet below the accuracy required by many 
applications. Third, the number of iterations obtained with our approach (associated to a field 
equilibrium criterion) remains reasonable with values comprised between 14 and 75. It is lower for 



flexion loadings than for tensile loadings, whereas the type of loading has no influence on [27]’s 
results. Finally, when post-treating our results with the strain energy based criterion, the number of 
iterations at convergence are rather similar to [27]’s results, a bit higher for tensile loadings and a bit 
lower for flexion. 

To conclude, the minor modification applied to our general FFT-based solver, allows reproducing the 
numerical results obtained for a matrix/inclusion plate, almost as precisely and as efficiently as a 
solver dedicated to the homogenization of plates. 

 

3.2 : Homogenization of beams 

If the extension of the approach proposed for plates in [27] to the homogenization of beams is not 
straightforward especially with arbitrary cross-sections, it is direct with our approach. After a 
description of the method proposed for the homogenization of beams, it is applied to different 
loadings with various geometries and elastic contrasts.  As uniaxial tension is quite straightforward 
and has already been applied in previous studies [9], the paper focuses on flexion and torsion 
loadings. 

This section considers two different beams with a square and a disk cross-section. In the first case the 
discretization is conform to the geometry while it is not in the second case. Cubic inclusions, with 
conform discretization are considered in both cases, so that the effect of a conforming discretization 
is limited to the shape of the cross-section which is of a prime interest in the present context.   

 

Figure 2 : Rendering of the two unit-cells: on the left with a square cross-section, on the right with a disk cross-section. The 
cubic inclusion is in red, the added void volume is in blue and the matrix in transparency.  

Figure 2 represents the geometry of the unit-cell with a cube diameter of 50mm, a unit-cell length of 
100mm, a square and disk diameter of 100mm for the cross-section. Void volumes in blue 
complement the unit-cells Ω, with a minimal thickness of two voxels, to form the enlarged unit-cells 
Ω∗.  The center of the inclusion lies on the axis of the unit-cells. The spatial resolutions, defined by 
the number of voxels on 100mm, are 40, 80 and 160 (so that the unit-cells are 40x44x44, 80x84x84 
and 160x164x164). With these resolutions, the discretization of the inclusion is conform to its 
geometry.  



The Young modulus of the matrix is 10MPa with a Poisson coefficient of 0.3 and three elastic 
behaviors are considered for the inclusion: the matrix behavior, so that the beam is homogeneous, a 
void behavior leading to an infinite contrast and a behavior stiffer than the matrix with a high 
contrast 1000.  

In addition, the use of composite voxels [16] [21] [20] [7] is tested to improve the description of the 
geometry when using a non-conforming discretization, as observed with the disk cross-section. The 
behavior of the composite voxels, crossed by the interface between the matrix and the additional 
void volume, follows a homogenization rule. Among the three classical rules, the Reuss and laminate 
homogenization rules are not well-suited with void behavior: the first one simply replaces the voxel 
by a void voxel and the second leads to an infinitely anisotropic behavior which generates 
convergence issues in the FFT-based algorithm (observed in torsion loading). In addition, the Voigt 
homogenization rule, which assumes a homogeneous strain over the phases, is extremely simple to 
implement, even with non-linear behaviors. Voigt is used in the following. For the sake of simplicity, 
an approximate definition of volume fractions is used and reported in annex B.  

The choice made for the reference material’s Lamé coefficients (𝜆଴, 𝜇଴) is 𝑋଴ = (𝑋௠௜௡ + 𝑋௠௔௫)/2, 
with 𝑋 equal to 𝜆 or 𝜇. Note that here, min and max are evaluated over the beam material, excluding 
the additional void volume in Ω∗: for contrasts 0  and 1000, the difference are null or very small, and 
for contrast 1, the reference material corresponds to the behavior of the homogeneous beam.   

 

3.2.1 : Method 

The unit-cell Ω, with an arbitrary cross-section is periodic in direction 𝒆𝟏 and, for numerical 
resolution purpose, is enlarged by additional voxels of null stiffness to form a parallelepiped unit-
cell Ω∗, as shown on the two examples on Figure 2. Assuming an applied strain field consistent with 
the Bernoulli modeling for beams, the problem to solve reads: 

⎩
⎪
⎨

⎪
⎧

𝒅𝒊𝒗(𝜎) = 0
𝜎 = 𝑐: 𝜀
𝜀 = 𝐸 + 𝜒ଷ𝑥ଷ + 𝜒ଶ𝑥ଶ + (∇𝒖෥)௦௬௠

𝒖෥                periodic on ∂ଵΩ
𝜎. 𝒏           antiperiodic on ∂ଵΩ
𝜎. 𝒏 = 0   on ∂ଶଷΩஐ

 (29) 

 

Where ∂ଵΩ denotes the two faces of normal direction 𝒆𝟏, submitted to periodic boundary 
conditions, and ∂ଶଷΩ the external contour of the beam submitted to a traction-free boundary 
condition. The macroscopic applied strain is limited to components in bold in equation (30). The 
component 𝐸ଵଵ prescribes a tensile loading, the components 𝐺ଵଵଶ and 𝐺ଵଵଷ prescribe two flexion 
loadings respectively, and 𝛼 = 𝐺ଵଷଶ = −𝐺ଵଶଷ prescribes the torsion loading. As mentioned for plates 
in section 3.1.1, due to mechanical coupling between directions, the other components are not 
prescribed but do not systematically vanish (the simplest example being the Poisson effect). 

𝐸 = ൭

𝑬𝟏𝟏 𝟎 𝟎
𝟎 𝐸ଶଶ 𝐸ଶଷ

𝟎 𝐸ଶଷ 𝐸ଷଷ

൱ ;   𝜒ଷ = ൭

𝑮𝟏𝟏𝟑 −𝜶 𝟎
−𝜶 𝐺ଶଶଷ 𝐺ଶଷଷ

𝟎 𝐺ଶଷଷ 𝐺ଷଷଷ

൱   and   𝜒ଶ = ൭

𝑮𝟏𝟏𝟐 𝟎 𝜶
𝟎 𝐺ଶଶଶ 𝐺ଶଷଶ

𝜶 𝐺ଶଷଶ 𝐺ଷଷଶ

൱  (30) 



 
In order to satisfy the traction-free boundary condition, the full periodic problem is solved on the 
enlarged unit-cell Ω∗ with a void volume surrounding Ω in order to fulfil the traction free boundary 
condition on ∂ଶଷΩ. Due to the added void layers, the out of plane components prescribed to  Ω∗ are 
the same (in bold) but the in plane components can be chosen arbitrarily as follows: 

𝐸∗ = ൭
𝑬𝟏𝟏 𝟎 𝟎

𝟎 0 0
𝟎 0 0

൱ ;   𝜒ଷ
∗ = ቌ

𝑮𝟏𝟏𝟑 −𝜶 𝟎

−𝜶 𝐺ଶଶଷ
∗ 0

𝟎 0 𝐺ଷଷଷ
∗

ቍ  and 𝜒ଷ
∗ = ቌ

𝑮𝟏𝟏𝟐 𝟎 𝜶
𝟎 𝐺ଶଶଶ

∗ 0

𝜶 0 𝐺ଷଷଶ
∗

ቍ 

 

(31) 

In order to use the method proposed in section 2 to account for linearly varying applied strain, the 
strain gradient components imposed in equation (31) have to satisfy the constraints established in 
the general case (set of equations (14)). In the present case, the torsion component 𝛼 = 𝐺ଵଷଶ =

−𝐺ଵଶଷ remains unconstrained and two constraints apply to 𝐺௜௜ଷ  and 𝐺௜௜ଶ components: 

൜
𝜆଴(𝐺ଵଵଶ + 𝐺ଶଶଶ

∗ + 𝐺ଷଷଶ
∗ ) + 2𝜇଴𝐺ଶଶଶ

∗ = 0

𝜆଴(𝐺ଵଵଷ + 𝐺ଶଶଷ
∗ + 𝐺ଷଷଷ

∗ ) + 2𝜇଴𝐺ଷଷଷ
∗ = 0

 (32) 

 

These constraints allow proposing two elementary flexion beam loadings, governed by the 
components 𝐺ଵଵଷ and 𝐺ଵଵଶ applied to Ω, as follows: 

⎩
⎨

⎧
𝐺ଵଵଷ imposed

𝐺ଶଶଷ
∗ = 𝛽𝐺ଷଷଷ

∗

𝐺ଷଷଷ
∗ = −

𝜆଴

𝜆଴(1 + 𝛽) + 2𝜇଴
𝐺ଵଵଷ

                              

⎩
⎨

⎧
𝐺ଷଷଶ

∗ = 𝛽𝐺ଶଶଶ
∗

𝐺ଵଵଶ imposed

𝐺ଶଶଶ
∗ = −

𝜆଴

𝜆଴(1 + 𝛽) + 2𝜇଴
𝐺ଵଵଶ

 (33) 

 

These two loadings are very similar to the flexion plate loadings (one is identical with 𝛽 = 0) given in 
equation (22). As mentioned in the case of plates, because of the void volume surrounding Ω in Ω∗,  

the volume Ω is free to deform in the directions 𝒆𝟐 and 𝒆𝟑, so that the values of 𝐺௜௝  and 𝐺௜௝ଶ (with 
(𝑖, 𝑗) ∈ {1,2}ଶ) evaluated over Ω can be different from their corresponding values 𝐺௜௝௞

∗  over the 

enlarged cell Ω∗. The same consideration holds for the null components 22, 33 and 23 of 𝐸∗. The 
parameter 𝛽 is set to 1 in the present paper. 

Once, the problem solved at the micro-scale (on the heterogeneous unit-cell), the last step consists 
in defining appropriate spatial averages for the macroscopic quantities used for modeling beams. 
Classically, integrations of the traction vector (𝜎. 𝒆𝟏) over the cross-section provide the macroscopic 
force 𝑵 (expressed in N) and moments 𝑴 (in N.m) as follows: 

𝑵 = න 𝜎. 𝒆𝟏𝑑𝑆
ௌమయ

= න ൭

𝜎ଵଵ

𝜎ଵଶ

𝜎ଵଷ

൱ 𝑑𝑆
ௌమయ

𝑴 = න ൭
0
𝑥ଶ

𝑥ଷ

൱ ∧ (𝜎. 𝒆𝟏)𝑑𝑆
ௌమయ

= න ൭

𝜎ଵଷ𝑥ଶ − 𝜎ଵଶ𝑥ଷ

𝜎ଵଵ𝑥ଷ

−𝜎ଵଵ𝑥ଶ

൱ 𝑑𝑆
ௌమయ

    (34) 

 

The 𝑁ଵ component of the force vector is the axial force and the other components are shear forces. 
The 𝑀ଵcomponent of the moment vector is the torsion moment and the other components are 



bending moments. For homogenization purpose, these quantities evaluated on a cross section are 
averaged over the 𝒆𝟏 direction of the unit-cell Ω so that they can be evaluated from volume 
integrations over the complete unit-cell Ω: 

𝑵 =
1

𝑙ଵ
න ቆන 𝜎. 𝒆𝟏𝑑𝑆

ௌమయ

ቇ 𝑑𝑥ଵ

௅భ

=
1

𝑙ଵ
න 𝜎. 𝒆𝟏𝑑𝑉

ஐ

𝑴 =
1

𝑙ଵ
න ൭න ൭

0
𝑥ଶ

𝑥ଷ

൱ ∧ (𝜎. 𝒆𝟏)𝑑𝑆
ௌమయ

൱ 𝑑𝑥ଵ

௅భ

=
1

𝑙ଵ
න ൭

0
𝑥ଶ

𝑥ଷ

൱ ∧ (𝜎. 𝒆𝟏)𝑑𝑉

ஐ

    (35) 

 

Using the axial periodicity of 𝒖෥ and the equilibrium condition (∫ 𝜎௜ଷ𝑑𝑆
ௌభమ(௫య)

= ∫ 𝜎௜ଶ𝑑𝑆
ௌభయ(௫మ)

= 0, for 

all longitudinal sections 𝑆ଵଶ(𝑥ଷ) and  𝑆ଵଷ(𝑥ଶ)), it can be demonstrated that the average of the 
microscopic energy is equal to the macroscopic energy. In the case of beams, the energy linear 
density is considered and the so-called macro-homogeneity condition of Hill-Mandel reads: 

1

𝑙ଵ
න 𝜎: 𝜀𝑑𝑉 =

ஐ

1

𝑙ଵ
න 𝜎: (𝐸 + 𝜒ଶ𝑥ଶ + 𝜒ଷ𝑥ଷ + 𝜀̃)𝑑𝑉 = 𝑁ଵ: 𝐸ଵଵ + 𝑀ଶ: 𝐺ଵଵଷ − 𝑀ଷ: 𝐺ଵଵଶ + 2𝑀ଵ: 𝛼

ஐ

 (36) 

 

The different terms are respectively associated to the uniaxial, the two bendings and the torsion 
loadings. The minus sign of the third term comes from the minus sign of 𝑀ଷ in equation (34). 

Finally, the homogenized elastic behavior relates the kinematic quantities 𝑼 = (𝐸ଵଵ, 𝛼, 𝐺ଵଵଶ, 𝐺ଵଵଷ) to 
the forces and moments 𝑭 = (𝑁ଵ, 𝑀ଵ, 𝑀ଶ, 𝑀ଷ) with a linear relationship: 

𝑭 = 𝐾: 𝑼 
 (37) 

As mentioned for plates, the Hill-Mandel condition allows using indifferently the energetic or the 
mechanical approach. The last one is used in the following: a single kinematic loading is applied and 
the stress field is post-treated to evaluate forces and moments and identify the stiffness components 
of 𝐾. 

3.2.2 : Beam flexion 

The flexion loading applies to the unit-cell Ω∗ with 𝐺ଵଵଶ and the other strain gradient components set 
to 0. For the homogeneous strain loading, three different propositions have been tested: all the 
average strain components equal to 0, all the average stress components equal to 0, average strain 
components (1𝑗)௝ୀଵ,ଶ,ଷ and average stress components (𝑖𝑗)௜ୀଵ,ଶ ௝ୀଵ,ଶ equal to zero. All the 
propositions provide the same bending moment 𝑀ଷ (up to a relative difference of ~10-4) and none of 
them outperforms the others regarding the number of iterations at convergence. Results below are 
presented with all the average strain components equal to 0.  

In practice, 𝐺ଵଵଶ is set to 1 in the simulations so that the bending moment is directly the bending 
stiffness. 

3.2.2.1 : Homogeneous beam flexion 



The case of a homogeneous beam is interesting, at first as a validation case for which the analytical 
solution is known, but also to focus on the question of the non-conforming discretization of the 
beam (for the disk cross-section) and the potential interest of using composite voxels (with Voigt 
homogenization rule in that case). This specific case is also interesting because the initialization of 
the strain field in the FFT-based algorithm directly provides the solution of the problem and 
convergence should achieve at the first iterate. Actually, the initial strain field is a null homogeneous 
strain field added to a linearly varying strain field associated to 𝐺ଵଵଶ and 𝐺ଶଶଶ

∗ = 𝐺ଷଷଶ
∗ =

−
ఒబ

ଶ(ఒబାఓబ)
𝐺ଵଵଶ (see equation (33)). Hence, the initialization of the strain field imposes 𝜀ଵଶ =  𝜀ଵଷ =

 𝜀ଶଷ = 0 for shear strains,  𝜀ଵଵ = 𝐺ଵଵଶ𝑥ଶ for the axial strain and 𝜀ଶଶ = 𝜀ଷଷ = −
ఒబ

ଶ(ఒబାఓబ)
𝜀ଵଵ = −𝜐଴𝜀ଵଵ 

for the transverse strains. This strain field initialized on the whole unit-cell Ω∗ also applies on the sub-
volume Ω so that, if the Poisson coefficient of the reference medium 𝜐଴ is equal to the Poisson 
coefficient of the beam material 𝜐, the initial strain field is directly the solution of the flexion 
problem. As a validation part, the implementation in the AMITEX_FFTP code confirms this property 
(convergence reached at the first iterate).   

The bending moments derived from the Euler-Bernoulli beam theory are: 

𝑀ଷ = 𝐸
𝜋𝐷ସ

64
𝐺ଵଵଶ   (disk cross section)       and     𝑀ଷ = 𝐸

𝐷ସ

12
𝐺ଵଵଶ   (square cross section) (38) 

 

Figure 3 represents the evolution of the relative error of the bending moments as a function of the 
spatial resolution. For the square cross-section, with a conform discretization the error is very low 
even for the lowest resolution (6.10-4) and decreases to around 10-5. On the contrary, for the disk 
cross section, the error is much higher and decreases with the spatial resolution from 0.01 to reach a 
value around 1.10-4 for the highest resolution. This difference clearly exhibits, on the macroscopic 
property, the difference between conforming and non-conforming discretization. For the square 
cross-section, the error is purely associated to the numerical integration of a quadratic field (𝜎ଵଵ𝑥ଶ) 
on a rectilinear grid, whereas for the disk cross-section, an additional and predominant error due to 
the non-conforming discretization of the cross-section is added. In that case, the composite voxels 
demonstrate their efficiency to improve the results: the error is 3.10-4 for the lowest resolution and 
stabilizes around 10-5. From the stress field point of view, as observed on Figure 4, the composite 
voxels only modify the stress within the voxels crossed by the interface. In that case, their effect is 
purely local (it will be different for torsion loading).  



 

Figure 3 : Evolution of the relative error on the evaluation of the bending moment as a function of the spatial resolution, for 
homogeneous beams with square and disk cross-sections, and with the use of composite voxels for disk cross-sections.    

 

Figure 4 : Axial stress field obtained for the disk cross-section with (right) and without (left) composite voxels, for the lowest 
spatial resolution (40) (for visualization purpose a quarter of the unit-cell is removed) and an homogeneous beam. 

 

3.2.2.2 : Heterogeneous beam flexion 

Figure 5 (right) represents the evolution of the bending moments (or bending stiffness as 𝐺ଵଵଶ = 1) 
for the three different elastic contrasts. It is worth noting that in spite of high contrasts, the evolution 
of the bending stiffness is moderate. Different observations can explain this result. At first, the 
volume fraction of inclusions is not so high (12.5% and 15.9%, respectively for the square and disk 
cross-sections).  Then, and probably more importantly, the inclusions are located at the center of the 
beam, which is the less stressed region of the beam. It is also noticeable that the difference on the 
moments between square and disk cross-sections is almost independent of the contrast (respectively 
(3.42, 3.42, 3.45)x107 for the contrasts (0,1,1000)). In other words, the stiffening (or softening) 
induced by these stiff (or soft) inclusions, with respect to the homogeneous beam, corresponds to an 
additional positive (or negative) bending stiffness that is rather independent of the beam cross-
section.  

Figure 5 (left) proposes a convergence analysis, as a function of the spatial resolution, of the bending 
moments, normalized by their converged value (obtained for resolution 160). The same conclusions 



as obtained for the homogeneous beam still hold for heterogeneous beams: convergence is very fast 
for the square cross-section, unlike the case of the disk cross-section without composite voxels, and 
using composite voxels significantly improves the convergence.  The effect of the contrast, moderate 
on the converged values of the moments (see Figure 5 (right)), is also quite moderate on the 
convergence curves (see Figure 5 (left)). 

Regarding the convergence analysis of the FFT-based algorithm (in our case, a fixed-point algorithm 
combined with a convergence acceleration procedure), presented on Table 3, four main conclusions 
can be drawn. First, the convergence is very efficient for void inclusions. Second, stiff inclusions 
drastically deteriorate the convergence. Note that, in that case, the unit-cell Ω∗ exhibits two types of 
large elastic contrast: between the matrix and the infinitely soft voids and between the matrix and 
the 1000 times stiffer inclusions. Such high and opposite contrasts are not really well suited for FFT-
based methods. However, convergence is achieved and the number of iteration remains reasonable. 
Third, the use of composite voxels deteriorates the convergence by a factor of around 2. Fourth, for 
the square cross-section, increasing the spatial resolution deteriorates the convergence, but it tends 
to stabilize in the worst case with the contrast of 1000. The understanding of these last two 
unexpected results is still under investigation.  

The analysis of the local stress fields focuses on the simulations with an elastic contrast of 1000 that 
induces the highest contribution to the bending stiffness (compared to the homogeneous beam, see 
Figure 5 (right)) and exhibits the worst algorithm convergence (see Table 3). The worse convergence 
of the algorithm is probably to be correlated with the spurious oscillations arising in and around the 
stiff inclusion. Comparing the disk and square cross-sections, the stress fields in and around the 
inclusion are almost identical, independent of the cross-section. This is consistent with the previous 
observation, at the macroscopic scale, of an additional contribution to the bending stiffness 
independent of the cross-section. Finally, comparing the disk cross-section with and without 
composite voxels, the conclusion reported for homogeneous beam still holds in the heterogeneous 
cases: they essentially affect the voxels crossed by the interface, keeping unchanged the rest of the 
volume (it will be different for torsion loading).   

 

Figure 5 : Evolution of the bending moments (normalized by their converged values obtained for the highest resolution) as a 
function of the spatial resolution; with solid, dotted and dashed lines respectively for contrasts 1, 0 and 1000  (left). 
Evolution of the converged values of the moments (obtained for the highest resolution) as a function of the contrast (the 
arrows symbolize null contrasts in log axis) (right). Note that ‘disk’ and ‘disk+composite voxels’ symbols are superimposed, 
confirming that the moments obtained with the ‘disk’ (without composite voxel) at resolution 160 are converged values.  



 

 

 

 

Figure 6 : Axial stress field obtained for the square cross-section (right), and the disk cross-section with (left) and without 
(middle) composite voxels, for the lowest spatial resolution (40) and a contrast of 1000 for the inclusion (for visualization 
purpose a quarter of the unit-cell is removed). Bottom figures are zooms on the inclusion with an appropriate color bar. 

 

Resolution Square Disk Disk with Composite Voxel 
C=0 C=1 C=1000 C=0 C=1 C=1000 C=0 C=1 C=1000 

40 16 1 387 16 1 351 25 1 642 
80 21 1 585 15 1 372 24 1 864 
160 28 1 849 15 1 399 24 1 645 
320 39 1 840       
Table 3 : Number of iteration at convergence for the different beams, contrasts, resolutions and use of composite voxels 
(flexion loading case) 

 

  



3.2.3 : Beam torsion 

The torsion loading applies to the unit-cell Ω∗ with 𝛼 = 𝐺ଵଷଶ = −𝐺ଵଶଷ and the other strain gradient 
components set to 0. For the homogeneous strain loading, three different propositions have been 
tested: all the average strain components equal to 0, all the average stress components equal to 0, 
average strain components (1𝑗)௝ୀଵ,ଶ,ଷ and average stress components (𝑖𝑗)௜ୀଵ,ଶ ௝ୀଵ,ଶ equal to zero. 
All the propositions provide the same torsion moment 𝑀ଵ (up to a relative difference of ~10-4) and 
none of the proposition outperforms the others regarding the number of iterations at convergence. 
Results below are presented with all the average strain components equal to 0.  

In practice, 𝐺ଵଷଶ is set to 1 in the simulations so that the torsion moment is directly the torsion 
stiffness. 

3.2.3.1 : Homogeneous beam torsion 

The torsion of homogeneous beams, submitted to flexion in the previous section, is also interesting 
for validation purpose. However, when the initialization of the strain field solution directly provides 
the solution in the flexion case, the torsion case requires iterating the algorithm for equilibrating the 
stress field. The torsion moments derived from the Euler-Bernoulli beam theory are: 

𝑀ଵ = 𝜇
𝜋𝐷ସ

32
𝛼   (𝑑isk cross section)      and      𝑀ଵ = 𝜇𝐷ସ𝛼 × 0.1406   (square cross section) (39) 

 

For the square cross-section, the expression is not analytical but deduced from numerical simulation 
and reported in various handbooks (see for example [5]). 

Figure 7 reports the evolution of the relative error of the torsion moment (or torsion stiffness) as a 
function of the spatial resolution. For the square cross-section, the error is very small (5.10-4) for the 
lowest resolution (40) and decreases up to 2.10-4 for the highest resolution (160). The shear stress 
field  𝜎ଵଷ, observed on Figure 8 (right), is not  a simple linear function of 𝑥ଶ but also depends on 𝑥ଷ, 
emphasizing that the solution, obtained after 9 iterations, is quite different from the initial stress 
field (linear function of 𝑥ଶ). In spite of an infinite contrast (with the surrounding void volume), the 
solution is perfectly smooth without any spurious oscillations. On the other hand, for the disk cross-
section, the relative error is much larger: decreasing from 1.4%to 0.6% between resolution 40 and 
160. Here, the stress field, on Figure 8 (left), is almost a linear function of 𝑥ଶ but exhibits important 
spurious oscillations in the neighborhood of the beam interface. These important fluctuations are 
suspected to maintain a quite high error (0.6%) for the highest resolution, whereas in the flexion 
case, without any spurious oscillations, the error reduces to 1.10-4. Finally, the use of composite 
voxels is, once again, of a great help for improving the solution.  Macroscopically, the relative error is 
very low, compared to the solution without composite voxels: decreasing from 12.10-4 up to 4.10-4 
between resolution 40 and 160. The effect is also very important on the stress field, observed on 
Figure 8 (left and middle): it drastically reduces the amount of spurious oscillations. Compared to the 
flexion loading case for which the effect is purely local, here, composite voxels also affect the 
solution in their neighborhood. Surprisingly, in spite of a smoother solution, the number of iterations 
at convergence is higher with composite voxels (see Table 4). This unexpected result is still not well 
understood. 



 

Figure 7 : Evolution of the relative error on the evaluation of the torsion moment as a function of the spatial resolution, for 
homogeneous beams with square and disk cross-sections, and with the use of composite voxels for disk cross-sections.    

 

 

 

 

Figure 8 : Shear stress (𝜎ଵଷ) field obtained for the square cross-section (right), disk cross-section without (left) and with 
(middle) composite voxels, for the lowest spatial resolution (40) (for visualization purpose a quarter of the unit-cell is 
removed) with an homogeneous beam (torsion loading). 

 

3.2.3.2 : Heterogeneous beam torsion 

Figure 9 (right) represents the evolution of the torsion moments (or torsion stiffness as 𝛼 = 1) for 
the three different contrasts. Similarly to the flexion loading cases, the effect of inclusions on the 
stiffness is quite moderate, even if a bit more pronounced for the highest contrast (1000) with an 
increase from 1.08 108 N.m to 1.41 108 N.m. In addition, and in agreement with the flexion loading 
case: the stiffening (or softening) induced by the stiff (or soft) inclusions, with respect to the 
homogeneous beam, corresponds to an additional positive (or negative) torsion stiffness that is 
rather independent of the beam cross-section.  

The convergence analysis of the FFT-based algorithm (fixed-point algorithm combined with a 
convergence acceleration procedure), presented on Table 4, draws conclusions very similar to the 
flexion loading case. For the sake of conciseness, the reader is invited to refer to the analysis of Table 
3 for flexion in section 3.2.2.2. The main difference arises from the fourth conclusion: in the torsion 



case, for the square cross-section, increasing the spatial resolution do not deteriorates the 
convergence. 

Finally, the analysis of the local stress fields focuses on the simulations with an elastic contrast of 
1000 that induces the highest contribution to the torsion stiffness (compared to the homogeneous 
beam, see Figure 9 (right)) and exhibits the worst algorithm convergence (see Table 4). As for the 
flexion loading case, the stress field in and around the inclusion (zooms in Figure 9) does not seem 
affected by the beam cross-section (square or disk), which is also consistent with the macroscopic 
observation of an additional contribution on the torsion stiffness independent of the cross-section. If 
spurious oscillations almost disappear in torsion, these smoother solutions are not associated to a 
better convergence of the algorithm when comparing Table 3 with Table 4. 

 

Figure 9 : Evolution of the torsion moments (normalized by their converged values obtained for the highest resolution) as a 
function of the spatial resolution; with solid, dotted and dashed lines respectively for contrasts 1, 0 and 1000  (left). 
Evolution of the converged values of the moments (obtained for the highest resolution) as a function of the contrast (the 
arrows symbolize infinite contrasts) (right). Note that ‘disk’ and ‘disk+composite voxels’ symbols are superimposed, 
confirming that the moments obtained with the ‘disk’ (without composite voxel) at resolution 160 are converged values. 

 



  

Figure 10 : Shear stress (𝜎ଵଷ) field obtained for the square cross-section (right), and the disk cross-section without (left) and 
without (middle) composite voxels, for the lowest spatial resolution (40) and a contrast of 1000 for the inclusion (for 
visualization purpose, a quarter of the unit-cell is removed). Bottom figures are zooms on the inclusion with an appropriate 
color bar. 

 

 

Resolution Square Disk Disk with Composite Voxel 
C=0 C=1 C=1000 C=0 C=1 C=1000 C=0 C=1 C=1000 

40 18 9 462 19 12 475 57 48 1236 
80 19 12 453 21 12 648 57 51 1437 
160 25 16 378 21 10 744 51 36 1350 
Table 4 : Number of iteration at convergence for the different beams, contrasts, resolutions and use of composite voxels 
(torsion loading case). 

 

4 : Conclusion 

The method described in the present paper allows extending the application domain of any existing 
FFT-based code, from homogeneous applied strain loading to strain gradient loadings, with a minor 
and low invasive modification. Actually, the modification consists in adding the applied strain 
gradient field when adding the homogeneous applied strain field to the periodic strain fluctuation. 
This is done, first when initializing the strain field and then, at the end of each iteration. The impact 
on the memory footprint is null, as no additional field needs to be allocated. The price to pay for this 
simplicity is that only a subset of strain gradients can be applied in that context. However, this subset 
has proven to be large enough to consider the problems of heterogeneous beams and plates 
homogenization. As a practical result, the massively parallel code AMITEX_FFTP [1] now offers a new 
functionality, allowing the users to prescribe torsion and flexion loadings to beam or plate 
heterogeneous unit-cells.   



The approach proposed for the homogenization of beams and plates relies on this method to apply 
flexion and torsion loadings to heterogeneous unit-cells enlarged with void voxels to account for 
traction free boundary conditions. As an FFT-based method dedicated to the homogenization of 
plates had previously been proposed in [27], all the simulations reported in [27] have been 
reproduced. These comparisons, together with analytical and Finite Element comparisons, validate 
the approach and demonstrates that a non-specific FFT-based solver, with a minor modification, can 
be almost as precise and efficient as a dedicated one.  

The extension of the method proposed for plates in [27], to the homogenization of beams with any 
arbitrary cross-section do not seem straightforward. To the best of the author’s knowledge, it has 
been considered here, for the first time with an FFT-based solver. The approach is partially validated 
from simulations of homogeneous beams, with disk and square cross-sections, submitted to flexion 
and torsion. Simulations of heterogeneous beams with void or stiff inclusions (with a high elastic 
contrast of 1000) demonstrates the robustness of the solver. In addition, the use of composite 
voxels, proves once again its ability to improve the numerical solution when voxels are crossed by an 
interface. Here, the interface is the beam boundary, and composite voxels consist of two phases: the 
void and the beam material. Applied to a beam with a disk cross-section, composite voxels with the 
Voigt homogenization rule improve the estimation of macroscopic moments (torsion, flexion) and 
reduces spurious oscillations observed in torsion in the neighborhood of the beam boundary. 
Surprisingly, in spite of smoother fields, the use of composite voxels deteriorates the convergence of 
the algorithm. This point should be clarified. From the application point of view, it is noticeable that 
for the considered heterogeneities, located at the beam center, the additional stiffness induced by 
the presence of inclusions is quite moderate and independent of the beam cross-section.  

As future prospects, the approach proposed for the homogenization of beams and plates could now 
be applied to more complex, but of practical interest, microstructures such as stranded cables and 
corrugated beams or plates, as studied in [6]. Its straightforward extension to non-linear behaviors 
should also be tested, as well as the extension to finite strains proposed but not applied in the paper. 
Finally, another interesting application comes with the use of FFT-based solvers to simulate volume 
elements for which DIC or DVC (Digital Image or Volume Correlation) measurements have been 
performed [9]. Up to now, FFT-based solvers can apply the average strain measured experimentally. 
The present method will allow extending the loading to strain gradients components measured 
experimentally. It could be useful for example if the in-situ tensile test device induces spurious 
flexion or torsion loadings.  
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Annex A 

All the simulation cases reported in [27] have been reproduced with our approach and results are 
gathered in the following tables for the different contrasts and loading cases. The absolute values are 
respectively the tension and bending stiffness 𝐴ଶଶ = 𝑁ଶଶ 𝐸ଶଶ⁄  and 𝐷ଶଶ = 𝑀ଶଶ 𝜒ଶଶ⁄  (in GPa/m). 
Regarding the column “iteration” : the first value is the number of iteration at convergence of our 
code AMITEX_FFTP, based on a field equilibrium criterion, and the second value correspond to the 
number of iterations to reach the convergence criterion used in [27] (relative difference of strain 
energy between two iterations less than 10-4).  

Contrast 0 :  (E୧୬ୡ୪୳ୱ୧୭୬/E୫ୟ୲୰୧୶) = (0/1) GPa 

Tension 

Resolution FEM [27] This study (rel.error) FFT [27] (rel. error) Iterations  Iterations  [27] 
16x16 0.5840 0.5822(-0.3%) 0.5826(-0.24%) 27/8 8 
32x32 0.5840 0.5834(-0.1%) 0.5837(-0.05%) 44/11 9 
64x64 0.5840 0.5838(-0.07%) 0.5839(-0.01%) 44/14 9 
128x128 0.5840 0.5838(-0.07%) 0.5840(~0%) 47/15 9 
 

Flexion 

Resolution FEM [27] This study (rel.error) [27] (rel. error) Iterations  Iterations  [27] 
16x16 8.224e-4 8.204e-4(-0.24%) 8.242e-4(0.22%) 14/5 8 
32x32 8.224e-4 8.219e-4(-0.06%) 8.228e-4(0.05%) 14/5 8 
64x64 8.224e-4 8.230e-4(0.07%) 8.225e-4(0.01%) 14/5 8 
128x128 8.224e-4 8.216e-4(-0.1%) 8.224e-4(~0%) 17/5 8 
 

Contrast 0.001 :  (𝐸௜௡௖௟௨௦௜௢௡/𝐸௠௔௧௥௜௫) = (1/1000) GPa 

Tension 

Resolution FEM [27] This study (rel.error) FFT [27] (rel. error) Iterations  Iterations  [27] 
16x16 58.495 58.329(-0.28%) 58.363(-0.23%) 27/8 8 
32x32 58.495 58.455(-0.07%) 58.472(-0.04%) 38/11 9 
64x64 58.495 58.484(-0.02%) 58.502(0.01%) 44/14 9 
128x128 58.495 58.487(-0.01%) 58.506(0.02%) 47/15 9 
 

Flexion 

Resolution FEM [27] This study (rel.error) FFT [27] (rel. error) Iterations  Iterations  [27] 
16x16 0.08225 0.08206(-0.23%) 0.08244(0.23%) 14/5 8 
32x32 0.08225 0.08221(-0.05%) 0.08230(0.06%) 14/5 8 
64x64 0.08225 0.08232(0.08%) 0.08227(0.02% 14/5 8 
128x128 0.08225 0.08217(-0.1%) 0.08226(0.01%) 17/5 8 
 

  



Contrast 10 :  (𝐸௜௡௖௟௨௦௜௢௡/𝐸௠௔௧௥௜௫) = (10/1) GPa 

Tension 

Resolution FEM [27] This study (rel.error) FFT [27] (rel. error) Iterations  Iterations  [27] 
16x16 0.16288 0.16267(-0.13%) 0.16209(-0.49%) 48/14 15 
32x32 0.16288 0.16284(-0.02%) 0.16257(-0.19%) 38/17 16 
64x64 0.16288 0.16287(-0.01%) 0.16279(-0.06%) 59/17 16 
128x128 0.16288 0.16290(0.01%) 0.16287(-0.01%) 75/17 16 
 

Flexion 

Resolution FEM [27] This study (rel.error) FFT [27] (rel. error) Iterations  Iterations  [27] 
16x16 1.0652e-4 1.0597e-4(-0.5%) 1.0701e-4(0.46%) 32/6 18 
32x32 1.0652e-4 1.0638e-4(-0.13%) 1.0659e-4(0.07%) 30/6 18 
64x64 1.0652e-4 1.0659e-4(0.07%) 1.0654e-4(0.02%) 35/6 18 
128x128 1.0652e-4 1.0642e-4(-0.1%) 1.0654e-4(0.02%) 32/6 18 
 

 

 

 

  



 

 

Annex B 

The volume fraction of beam (cylinder with disk cross-section) within composite voxels is 
approximated from the intersection area between two disks: the disk base of the cylinder and a disk 
of radius 𝑅௖௩ centered on the voxel, with 𝑅௖௩ the radius of the encompassing circle.  

𝑆 = 𝑆ଵ + 𝑆ଶ

𝑆ଵ = 𝑅଴
ଶ acos ൬

𝑑௜

𝑅଴
൰ − 𝑑௜ට𝑅଴

ଶ − 𝑑௜
ଶ

𝑆ଶ = 𝑅௖௩
ଶ acos ൬

𝑑ଵ − 𝑑௜

𝑅௖௩
൰ − (𝑑ଵ − 𝑑௜)ට𝑅௖௩

ଶ − (𝑑ଵ − 𝑑௜)ଶ

𝑑௜ =
𝑅଴

ଶ − 𝑅௖௩
ଶ + 𝑑ଵ

ଶ

2𝑑ଵ

𝑓 =  
𝑆

𝜋𝑅௖௩
ଶ

 

 

(40) 

 

In practice, in order to avoid too low (or high) volume fractions, the detection of composite voxels 
uses a distance of 0.9345𝑅௖௩ which corresponds to a threshold of 1% of volume fraction (i.e. below 
this value a voxel is not considered as composite). 

 


