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Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stage breast cancer
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Purpose: For patients with early-stage breast cancer, prediction of the risk of metastatic relapse is of crucial importance. Existing predictive models rely on agnostic survival analysis statistical tools (e.g. Cox regression). Here we define and evaluate the predictive ability of a mechanistic model for the time to metastatic relapse. Methods: The data consisted of 642 patients with 21 clinicopathological variables. A mechanistic model was developed on the basis of two intrinsic mechanisms of metastatic progression: growth (parameter 𝛼) and dissemination (parameter 𝜇). Population statistical distributions of the parameters were inferred using mixed-effects modeling. A random survival forest analysis was used to select a minimal set of 5 covariates with best predictive power. These were further considered to individually predict the model parameters, by using a backward selection approach. Predictive performances were compared to classical Cox regression and machine learning algorithms.

Results: The mechanistic model was able to accurately fit the data. Covariate analysis revealed statistically significant association of Ki67 expression with 𝛼 (p=0.001) and EGFR with 𝜇 (p=0.009). Achieving a c-index of 0.65 (0.60-0.71), the model had similar predictive performance as the random survival forest (c-index 0.66-0.69) and Cox regression (c-index 0.62 -0.67), as well as machine learning classification algorithms. Conclusion: By providing informative estimates of the invisible metastatic burden at the time of diagnosis and forward simulations of metastatic growth, the proposed model could be used as a personalized prediction tool of help for routine management of breast cancer patients.

Introduction

Breast cancer is the most frequent and second leading cause of cancer death in women 1 .

In the majority of cases, the disease is diagnosed at the early stage, when all detectable lesions, confined to the breast or nearby lymph nodes, can be surgically removed [START_REF] Noone | SEER cancer statistics review, 1975-2015[END_REF] .

However, approximately 20-30% of patients are reported to relapse with distant metastases after surgery [START_REF] Kohn | Invasion and Metastases[END_REF][START_REF] Pollard | Defining Metastatic Cell Latency[END_REF] , suggesting that clinically occult micro-metastases might already be present at the time of surgery. Accurate prediction of the risk of metastatic relapse is critical to personalize adjuvant treatment and avoid use of toxic and costly therapies when not needed.

In the era of artificial intelligence, prognostic models are playing an increasing role for such a task [START_REF] Shachar | Internet tools to enhance breast cancer care[END_REF] . Online tools, such as the Adjuvant! [START_REF] Ravdin | Computer Program to Assist in Making Decisions About Adjuvant Therapy for Women With Early Breast Cancer[END_REF][START_REF] Mook | Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study[END_REF] and PREDICT models [START_REF] Wishart | PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer[END_REF] , compute individualized survival probabilities based on multivariate statistical analysis and integration of clinical variables (age, tumor size, histological grade, hormone receptor status and nodal involvement) [START_REF] Shachar | Internet tools to enhance breast cancer care[END_REF] . These tools, however, are based on agnostic statistical models, such as Cox regression [START_REF] Wishart | PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer[END_REF][START_REF] Wu | Personalized Prognostic Prediction Models for Breast Cancer Recurrence and Survival Incorporating Multidimensional Data[END_REF] . More recently, machine learning algorithms have started to be used [START_REF] Kourou | Machine learning applications in cancer prognosis and prediction[END_REF] .

Although traditionally designed for classification or regression tasks, adaptations to survival analysis include elastic net for Cox models [START_REF] Simon | Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent[END_REF] or the random survival forests algorithm [START_REF] Ishwaran | Random survival forests[END_REF] .

Deep learning has also recently been proposed for survival prediction from genomic data sets [START_REF] Yousefi | Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models[END_REF] . Nevertheless, few studies have so far investigated machine learning for prediction of breast cancer survival or recurrence [START_REF] Yousefi | Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models[END_REF][START_REF] Kim | Development of novel breast cancer recurrence prediction model using support vector machine[END_REF][START_REF] Delen | Predicting breast cancer survivability: a comparison of three data mining methods[END_REF] .

Mechanistic modeling approaches -where biological knowledge is used to build a simulation model -have been developed to describe metastatic dynamics [START_REF] Hanin | Uncovering the natural history of cancer from post-mortem cross-sectional diameters of hepatic metastases[END_REF][START_REF] Haeno | Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies[END_REF][START_REF] Koscielny | A simulation model of the natural history of human breast cancer[END_REF][START_REF] Newton | A Stochastic Markov Chain Model to Describe Lung Cancer Growth and Metastasis[END_REF][START_REF] Retsky | Computer simulation of a breast cancer metastasis model[END_REF] . However, none of these mechanistic models has yet been implemented as a personalized predictive tool of metastatic relapse [START_REF] Shachar | Internet tools to enhance breast cancer care[END_REF] . In previous work, we evaluated a mechanistic model of metastatic development [START_REF] Iwata | A dynamical model for the growth and size distribution of multiple metastatic tumors[END_REF] using experimental data from orthosurgical mouse models of breast cancer [START_REF] Benzekry | Modeling spontaneous metastasis following surgery: an in vivo-in silico approach[END_REF] . The model was able to describe longitudinal growth of the total metastatic burden. For human data, the model could fit size-dependent probability of 20-years metastatic relapse in a historical dataset of 2,648 breast cancer patients [START_REF] Benzekry | Modeling spontaneous metastasis following surgery: an in vivo-in silico approach[END_REF][START_REF] Koscielny | Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination[END_REF] .

In the current work, we build on our descriptive model to propose an actionable tool for individualized predictions of the time to metastatic relapse (TTR), as well as reconstruction of the past natural history and prediction of future evolution of the disease. To train and validate the model, we relied on a dataset containing TTR and 21 clinical/pathological characteristics for 642 early-stage breast cancer patients. We first show a random survival forest analysis [START_REF] Ishwaran | Random survival forests[END_REF] , which allowed us to select a restricted number of predictors of interest. We then present the main novelty of this work: the calibration -using mixed-effects learning [START_REF] Lavielle | Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF] of the mechanistic model. We illustrate the possible value of the mechanistic approach by performing predictive simulations of the entire cancer history of real patients, calibrated from data available at diagnosis only. Finally, we compare our results with predictive performances of classification machine learning algorithms for 5-years metastatic relapse.

Methods

Description of the data

The consisted of data of 642 women diagnosed with primary operable invasive breast carcinoma treated at the Bordeaux Bergonié institute between 1989 and 1993. This dataset has been comprehensively analyzed using standard statistical tools (Cox regression) [START_REF] De Mascarel | Comprehensive prognostic analysis in breast cancer integrating clinical, tumoral, micro-environmental and immunohistochemical criteria[END_REF] .

Patients in this analysis did not receive any adjuvant hormone or chemotherapy. The time to metastatic relapse (TTR) was defined as the time from the date of diagnosis to the date of distant relapse. Patients with no metastasis were censored at the date of last news or death [START_REF] Gourgou-Bourgade | Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials)[END_REF] . Clinical/pathological variables available in the dataset included age at diagnosis, menopausal status, histological grade, pathological T (tumor size) and N (axillary lymph node status) stages, pathological tumor size, histological type and number of metastatic lymph nodes. In addition tissue microarray array analysis was performed from the tumor samples. Area percentage of staining was determined using immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), HER2, Ki67, CK56, EGFR, VIM, CD24, CD44, ALDH1, BCL2, E-Cadherin and Trio [START_REF] De Mascarel | Comprehensive prognostic analysis in breast cancer integrating clinical, tumoral, micro-environmental and immunohistochemical criteria[END_REF] . Tumors were classified as HER2 positive if the HER2 immunostaining showed 3+ intensity or from individual review for 2+ scores [START_REF] De Mascarel | Comprehensive prognostic analysis in breast cancer integrating clinical, tumoral, micro-environmental and immunohistochemical criteria[END_REF] .

Missing covariate values were imputed before model building using the missForest imputation algorithm [START_REF] Stekhoven | MissForest-non-parametric missing value imputation for mixedtype data[END_REF] . The percentage of missing data was less than 5% for all variables (Figure S1). Using 100 trees per forest (predefined setting value of missForest), continuous and categorical covariates were imputed with a 4.4% and 7.1% error, respectively. Institutional review board approval was obtained for this retrospective study in accordance with national laws.

Random survival forests analysis (RSF)

The RSF algorithm is an extension of Breiman's random forest for the analysis of rightcensored time-to-event data [START_REF] Ishwaran | Random Survival Forests for R[END_REF] . We utilized the RSF implementation of the randomForestSRC R package [START_REF] Ishwaran | randomForestSRC: Random Forests for Survival, Regression, and Classification[END_REF] . All RSF models were fitted using 1000 trees, with the logrank splitting rule [START_REF] Ishwaran | Random Survival Forests for R[END_REF] . The optimal values of the tuning parameters (number of variables to be sampled at each split and minimum number of data points in a terminal node) were selected to maximize the concordance index calculated on the out-of-bag data.

Impact of covariates on the TTR was assessed using the forest-averaged minimal depth [START_REF] Ishwaran | High-Dimensional Variable Selection for Survival Data[END_REF] , which quantifies the predictive value of a covariate in a tree by its distance from the root node to the first node where it is used to split (smaller minimal depth values correspond to more predictive covariates).

Mechanistic model of metastatic dissemination and growth

The individual primary tumor (PT) kinetics in individual 𝑖 were described by the Gompertz model:

𝑉 % & (𝑡) = 𝑒 , -
. -0123 45 -6 [START_REF] Mook | Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study[END_REF] ,

where 𝑉 % & (𝑡) is the number of cells within the PT at time 𝑡 and 𝛼 & and 𝑏 & are the Gompertzian growth parameters. Under this model, the tumor will approach a theoretical upper limit 𝐾 = 𝑒 ; -5 -. In order to avoid overfitting and improve identifiability, 𝐾 was fixed to 10 1> cells, leaving

𝛼 & as the only free parameter driving growth. This value was used following statistical estimations and biological considerations in breast cancer [START_REF] Koscielny | A simulation model of the natural history of human breast cancer[END_REF][START_REF] Spratt | Decelerating growth and human breast cancer[END_REF] . The PT size -reported as a diameter in the data -was converted into number of cells assuming spherical shape and the assumption 1mm @ = 10 A cells [START_REF] Spratt | Decelerating growth and human breast cancer[END_REF][START_REF] Spratt | Rates of growth of human solid neoplasms: Part I[END_REF] . All model simulations were performed in number of cells.

Considering a dissemination rate from the PT given by 22

𝑑 & C𝑉 % & D = 𝜇 & 𝑉 % & ,
the total number of metastases at time 𝑡 is

𝑁 & (𝑡) = F 𝑑 & 0𝑉 % & (𝑠)7 𝑑𝑠 = F 𝜇 & 𝑉 % & (𝑠)𝑑𝑠. I J I J
The individual parameter 𝜇 & is the per day probability for a PT cell to disseminate and establish a distant metastatic colony. Each metastasis was assumed to start from the volume 𝑉 J of a single cell and to grow at the same rate than the PT:

𝑔 & (𝑣) = M𝛼 & -𝑏 & log M 𝑣 𝑉 J RR 𝑣.
The state of the metastatic process was described by a function 𝜌 & (𝑡, 𝑣) representing the distribution of metastatic tumors with size 𝑣 at time 𝑡. It is given by the solution of the following transport equation [START_REF] Iwata | A dynamical model for the growth and size distribution of multiple metastatic tumors[END_REF] :

𝜕 I 𝜌 & (𝑡, 𝑣) + 𝜕 V 0𝑔 & (𝑣)𝜌 & (𝑡, 𝑣)7 = 0, 𝑡 ∈ (0, +∞), 𝑣 ∈ (1, +∞),
endowed with the boundary and initial conditions:

𝑔 & (1)𝜌 & (𝑡, 𝑉 J ) = 𝑑 0𝑉 % (𝑡)7 , 𝑡 ∈ (0, +∞),

𝜌 & (0, 𝑣) = 0, 𝑣 ∈ (𝑉 J , +∞).

Mechanistic modeling of the time-to-relapse

To calibrate the metastatic model on TTR data, we defined the theoretical time to relapse as illustrated in Figure 1. More precisely, assuming a value 𝑉 V&Y as detection threshold, the time 𝜏 V&Y for a tumor to reach this size was given from the assumption of Gompertzian growth, i.e.

𝜏 V&Y = - 1 𝑏 & log [1 - 𝑏 & 𝛼 & log 𝑉 V&Y & \.
In an analogous way, the time from the first cancer cell to the detection of the primary tumor,

\.

A visibility threshold 𝑉 V&Y of 5 mm in diameter was assumed to be the detectability limit at imaging.

Since metastases of size larger than 𝑉 V&Y at time 𝑡 must have been emitted in the time interval C0, 𝑡 -𝜏 V&Y & D, the number of visible metastases at time 𝑡 can be obtained by

𝑁 V&Y & (𝑡) = 𝑁 & C𝑡 -𝜏 V&Y & D.
The theoretical TTR was then defined as

𝑇𝑇𝑅C𝑉 ]&^_ & ; 𝛼 & , 𝜇 & D = c inf g 𝑡 > 0 | 𝑁 V&Y & C𝑡 ]&^_ & + 𝑡D ≥ 1 k if 𝑁 & C𝑡 ]&^_ & D ≥ 1, +∞ otherwise.
That is, the time elapsed from diagnosis to the appearance of the first visible metastasis, if, according to the model, at least a metastasis was emitted before diagnosis; otherwise it was considered as infinite.

Calibration of the mechanistic model using mixed-effects learning

The A constant error model was assumed on the log-transformed data:

log 𝑇 𝑖 = log 0𝑇𝑇𝑅C𝑉 𝑑𝑖𝑎𝑔 𝑖 ; 𝜓 𝑖 D7 + 𝑒 𝑖 , (1) 
where 𝑒 & is the residual error following a normal distribution with mean 0 and variance 𝜎 > .

The log-transformation was used to ensure positive values of the TTR variable. The individual parameters were assumed to be log-normally distributed and a linear covariate model was used:

log 𝛼 & = log 𝛼 %u% + 𝛽 , ⋅ 𝑥 , & + 𝜂 ,, & 𝜂 , & ∼ 𝒩(0, 𝜔 , > ) log 𝜇 & = log 𝜇 %u% + 𝛽 } ⋅ 𝑥 } & + 𝜂 } & , 𝜂 } & ∼ 𝒩C0, 𝜔 } > D (2) 
where The contribution of individual 𝑖 to the likelihood is then given by [START_REF] Commenges | Dynamical Biostatistical Models[END_REF] :

ℒ & (𝜃) = F ℎC 𝑇 ‡ & | | 𝜓 & ; 𝜃 D • -𝑆C 𝑇 ‡ & | | 𝜓 & ; 𝜃 D𝑝C𝜓 & ; 𝜃D𝑑𝜓 & ,
where 𝜃 = C𝛼 %u% , 𝜇 %u% , 𝛽 ,, 𝛽 } , 𝜔 , , 𝜔 } , 𝜎D are the population parameters to be estimated and 𝑝C𝜓 & ; 𝜃D is the probability density function of the individual parameters, defined by (2).

The likelihood function (product of the individual likelihoods ℒ & (𝜃)) was maximized using the Stochastic Approximation of Expectation-Maximization (SAEM) algorithm [START_REF] Lavielle | Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools[END_REF] implemented in the R saemix package [START_REF] Comets | Parameter Estimation in Nonlinear Mixed Effect Models Using saemix , an R Implementation of the SAEM Algorithm[END_REF] . Initial values of the parameters were 𝛼 J = 0.002, 𝜇 J = 4 × 10 21> , 𝜔 , J = 15, 𝜔 } J = 15, 𝜎 J = 0.6. Standard errors of the estimated parameters were obtained using 100 bootstrap samples, and significance of covariates was assessed using the Wald test.

The mean of the conditional survival functions was estimated as 

Classification machine learning algorithms for prediction of 5-year distant metastasis-free survival

Machine learning algorithms were trained using the scikit-learn python package [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] . These Each model was evaluated using 100 replicates of 10-fold cross-validations, with folds created using a stratified random sampling strategy (to preserve class balance). We applied a standard scaling for each run and each set by removing the training folds mean and scaling to unit variance, for the algorithms that require a homogeneous scale (SVM, kNN). The random forests algorithm was also seeded with a different random initialization value each time.

Evaluation of predictive performances

Results

Random survival forest multivariate analysis

For machine learning analysis of the TTR data, we used the RSF algorithm, which allows right-censored data [START_REF] Ishwaran | High-Dimensional Variable Selection for Survival Data[END_REF] . In addition to evaluating its predictive power, we used this algorithm to identify variables most predictive of TTR. Covariates were ordered on the basis of minimal depth (Figure 2A) and selected by running a nested analysis (Figure 2B). The crossvalidated c-index improved as the number of variables increased, reaching a maximum of 0.67 (95% CI, 0.66-0.69) with 5 variables. We selected these 5 top variables for the optimal model and future analysis in the mechanistic model below. Calibration plots for 2-, 5-and 10-year demonstrated a good agreement between the observed and model-predicted probabilities of metastatic relapse (Figure 2C), with moderate overprediction of relapse in the higher risk groups.

Partial dependence plots for the selected covariates indicated strong nonlinear relationships between covariates and relapse probabilities, with a non-monotonic behavior for age and tumor size (Figure S2). Confirming previous results [START_REF] Bellera | Variables with time-varying effects and the Cox model: Some statistical concepts illustrated with a prognostic factor study in breast cancer[END_REF] , these plots suggest nonvalidity of the proportional hazards assumption. Indeed, if such assumption would hold, the probability of no relapse at any time would be monotonous as a function of any covariate value.

Calibration and validation of the mechanistic model

To offer better insights on the mechanisms of relapse, we developed a mechanistic model of the TTR. We first evaluated the ability of this model to describe the TTR data without using covariates, except for pathological tumor size, which is a variable encoded in the structural model. We asked whether we could describe inter-individual variability of TTR by means of population statistical distributions of the parameters 𝜇 (dissemination) and 𝛼 (growth) of the model. Estimates of the population parameters were obtained using the SAEM algorithm and are reported in Table 1. Both fixed and random effects were identified with satisfactory precision (relative standard error < 37%). Figure 3A 

Mechanistic covariate analysis and predictive power of the mathematical model

We next tested the covariates selected by the RSF analysis in the mechanistic model. We built the covariate model using a backward elimination procedure, starting with the full model with all the preselected covariates on both parameters 𝛼 and 𝜇. The final model included Ki67 and CD44 on 𝛼, and EGFR on the dissemination parameter 𝜇 (Table 1). The crossvalidated c-index for this model was 0.65 (95% CI, 0.60-0.71). Calibration plots for 2-, 5-and 10-year outcomes demonstrated good predictive accuracy of the model (Figure 3B).

Nevertheless, similarly as the RSF model, risk of relapse was overestimated in high risk groups. For the classification task of prediction of 5-and 10-year relapse, comparable results

were obtained between the mechanistic model, the RSF, classification machine learning algorithms and Cox regression (Table 2).

Predictive simulations of the mechanistic model

The previous results allow to calibrate the mechanistic model parameters from variables available at diagnosis, by using only the covariate part in equation ( 2) and neglecting the remaining unexplained variance. We used this to simulate the natural cancer history for a number of representative patients of our dataset. For each patient, the population-level parameters 𝛼 %u% , 𝜇 %u% , 𝛽 Ÿ&A ,, , 𝛽 OE¡¢¢,, and 𝛽 £¤¥¦,} were calibrated from an independent training set that did not contain this patient (coming from the cross-validation procedure).

Simulations were then performed using a discrete version of the metastatic model [START_REF] Benzekry | Modeling spontaneous metastasis following surgery: an in vivo-in silico approach[END_REF] S1). Distinct levels of Ki67 cause distinct growth kinetics. Moreover, unlike patient 224, the tumor of patient 358 expresses EGFR, which is associated with a higher metastatic potential. Thus although patient 358's tumor is much younger, the total number of (invisible) metastases at surgery is predicted to be larger (35 vs 21 metastases in patient 224). Model predictions are also informative in the case of individuals who were censored at the last follow-up. For instance, patient 70 (Figure S4) was censored at 17.7 years after diagnosis. This is consistent with our model, which predicts that this patient was disease-free after PT resection and would never have relapsed (TTR = +∞).

Comparison with machine learning classification algorithms and Cox regression

We tested the predictive power of machine learning classification algorithms. These cannot account for right-censored data. Thus, for this part we focused on prediction of 5-years metastatic relapse (yes or no). Best performances were achieved by the random forest and logistic regression models (Table 2 and Figure S5A-D). However, owing to the low event rate (9.25%), positive predictive value and and F1 scores were low (Table 2). To improve these metrics, a balanced, downsampled version of the dataset was constructed. This significantly improved PPV and F1, as well as model calibration (Figure S5E-F). We also compared our results to classical Cox regression survival analysis, which was found to exhibit similar predictive power (Figure S6, Tables 2 andS2).

Discussion

We propose a mechanistic model for prediction of metastatic relapse after surgical intervention in patients with early-stage breast cancer which, for the first time, is able to simulate the pre-and post-diagnosis history of the disease from data available at diagnosis only. Notably, with a c-index of 0.65 (95% CI, 0.60 -0.71), the mechanistic model achieved similar performances as the RSF algorithm (95% CI, 0.66-0.69) and Cox regression (95% CI, 0.62-0.67). These were also comparable with the actual standard prognosis model of breast-cancer-specific survival Adjuvant! (c-index 0.71) [START_REF] Mook | Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study[END_REF] , used for risk classification in the MINDACT trial [START_REF] Cardoso | 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer[END_REF] . Others also reported a similar c-index of 0.67 for prediction of relapse in untreated patients, using Cox analysis [START_REF] Parker | Supervised risk predictor of breast cancer based on intrinsic subtypes[END_REF] . Advanced deep learning algorithms did not outperform this predictive power (c-index 0.68) for prediction of survival, even though integrating genomic data [START_REF] Yousefi | Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models[END_REF] . A recent study that considered recurrence (either local, regional or distant) reported superior predictive power (AUC 0.81 for prediction of relapse at 5-years, versus 0.73 in our analysis), which might be explained by the much larger data set (15, 314 patients) and inclusion of epidemiological data not available in our analysis.

Grounded on the biology of the metastatic process, our model provides insights not achievable by statistical analysis alone. First, one of the most important and well known predictor of metastatic relapse -tumor size [START_REF] Koscielny | Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination[END_REF] -is directly incorporated into the model as an input parameter, used for calculation of the tumor age. Second, our model allows to test whether covariates are associated with growth and/or dissemination. We found that Ki67 was positively associated with the proliferation parameter 𝛼, which aligns with the definition of Ki67 as a proliferation marker [START_REF] Dowsett | Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group[END_REF] , as well as other results confirming its predictive power [START_REF] Yerushalmi | Ki67 in breast cancer: prognostic and predictive potential[END_REF] .

On the other hand, the basal marker EGFR was found to be a significantly positive covariate for the dissemination parameter 𝜇. EGFR has previously been demonstrated as being a prognostic factor of relapse [START_REF] Cheang | Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype[END_REF] , yet it is interesting to note that correlation appears here on 𝜇, which is consistent with the known fact that basal-like breast cancers are metastatically more aggressive [START_REF] Rakha | Basal-like breast cancer: a critical review[END_REF] . Interestingly, the median value of 𝜇 was consistent with the value estimated in a previous work using data of metastatic relapse probabilities from a cohort of breast cancer patients (𝜇 %u% = 2.26 × 10 21> cell -1 .day -1 here vs 𝜇 %u% = 7 × 10 21> cell -1 .day -1 in [START_REF] Benzekry | Modeling spontaneous metastasis following surgery: an in vivo-in silico approach[END_REF] ).

Our analysis also confirmed the prognostic value of age at diagnosis, with younger patients having a higher risk of relapse [START_REF] Lian | The Impact of Young Age for Prognosis by Subtype in Women with Early Breast Cancer[END_REF] . However, we found that after 60 years-old, the risk of relapse was increasing (Figure S2). This nonlinearity might explain why age did not appear as significant in either our mechanistic or Cox analysis. Although not significant at the 0.05 threshold, our results suggest prognosis value of CD44 (p = 0.083 for association with 𝛼).

CD44 is a cellular protein which is used as a marker of breast cancer stem cells [START_REF] Al-Hajj | Prospective identification of tumorigenic breast cancer cells[END_REF] and is associated with metastasis [START_REF] Li | Beyond tumorigenesis: cancer stem cells in metastasis[END_REF][START_REF] Mcfarlane | CD44 increases the efficiency of distant metastasis of breast cancer[END_REF] . Since CD44 is involved in cell adhesion and invasion [START_REF] Sheridan | CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis[END_REF] , it is surprising that it emerges as associated with 𝛼 and not 𝜇. This might indicate limitations of our model to detect complex biological processes since inference is only made indirectly and using several simplifying assumptions, such as a unimodal lognormal distribution of the parameters in the population. This might also be due to the fact that we considered here CD44 as a continuous variable, whereas a standard marker is the percentage of CD44 + /CD24 -cells [START_REF] Al-Hajj | Prospective identification of tumorigenic breast cancer cells[END_REF] . Similarly, only EGFR as a continuous variable was investigated and not the more classical EGFR + /CK5/6 + marker [START_REF] Cheang | Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype[END_REF] . Indeed, the aim of the current study was to establish the methodology of using our mechanistic model as a predictive tool, and we favored first keeping continuous variables. We plan to perform more detailed examination of such clinical variables in forthcoming work, as well as study the predictive power of the model in well-established subgroups such as node-negative patients or patients stratified according to the current molecular classification 50 .

A major advantage and clinical relevance of the mechanistic model over standard statistical or machine learning models, is that it can be used to perform patient-specific simulations allowing to assess the extent of invisible metastases at the time of diagnosis and to predict future growth of metastases. In turn, this might aid selecting patients that will most benefit from extended adjuvant therapy (or conversely, patients who would need only a limited number of cycles), by performing individualized simulations of the future course of the disease under competing therapeutic strategies. However, it will be first required to develop and validate models integrating the effect of systemic adjuvant therapies [START_REF] Benzekry | Modelling the impact of anticancer agents on metastatic spreading[END_REF] . We also believe that our methodology could be applied to other cancer types where similar concerns occur about the use of adjuvant therapy to avoid metastatic relapse (e.g. lung or kidney cancer).

In addition, the novel approach we propose to mechanistically model time-to-event data could be used to extract biologically relevant information from such data, which -although ubiquitous in clinical oncology -are almost exclusively analyzed using agnostic statistical tools.

Our model represents a first attempt of a mechanistic, individual-level, predictive model of metastatic relapse and might be improved in a number of ways. For instance, unexplained variability remained important despite the inclusion of covariates, suggesting that biomarkers other than those tested might improve model predictions. In this regard, genetic expression signatures have been shown to have higher predictive power compared to standard histological and clinical variables alone [START_REF] Van De Vijver | A gene-expression signature as a predictor of in breast cancer[END_REF] . Our mechanistic model could also be refined by higher order phenomena such as dormancy, which has been proposed to explain recurrence occurring after many years from surgery [START_REF] Karrison | Dormancy of Mammary Carcinoma After Mastectomy[END_REF][START_REF] Uhr | Controversies in clinical cancer dormancy[END_REF] . Finally, to be applied in clinical practice, the model should be further evaluated on external data sets. For comparison purpose between time-to-event and classification models, prediction metrics performed on the entire data set are reported. In bold is the best score achieved for a given metric. 
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  mathematical model for individual TTR was thus defined as a function of 𝑉 ]&^_ & and a vector of structural individual parameters 𝜓 & = C𝛼 & , 𝜇 & D. Let 𝑇 & denote the TTR for patient 𝑖.

  𝑥 , & and 𝑥 } & are vectors of subject-specific covariates, which might be identical, or partially or completely different. The statistical model for the observations (1) implicitly defines for each individual 𝑖 the probability density function of 𝑇 & conditionally on the individual parameters 𝜓 & . The corresponding survival and hazard functions can be obtained by: 𝑆C 𝑡 | | 𝜓 & ; 𝑉 ]&^_ D = -𝑑 𝑑𝑡 log 𝑆C 𝑡 | | 𝜓 & D = 1 where Φ and 𝜑 are the cumulative distribution and probability density functions of the standard normal distribution, respectively. Let 𝐶 & denote the time to death or last follow-up for individual 𝑖. With right-censoring the observations are C𝑇 ‡ & , 𝛿 & D, where 𝑇 ‡ & = min(𝑇 & , 𝐶 & ) and 𝛿 & = 𝕝 gŠ -‹OE -k is the indicator variable.

(

  𝜓 1 , … , 𝜓 -) and (𝑉 ]&^_ 1 , … , 𝑉 ]&^_ -) drawn respectively from the estimated distribution of the individual parameters and the values of 𝑉 ]&^_ in the data.

1 >1(

 1 included logistic regression, support vector machines (SVM), random forests (RF), k-nearest neighbors (kNN) and gradient boosting. Values of the models hyperparameters were selected to optimize the area under the ROC curve, using a 3-fold cross-validated grid search. The kernel used for SVM was the radial basis function 𝐾(𝑥, 𝑥 š ) = 𝑒 2›‖•2•š‖ with 𝛾 = 21=number of features) and regularization parameter 𝐶 = 1. For the classification algorithms (and for them only), because these are not able to manage censored data, patients with data censored before 5 years were removed from the dataset, leaving a total of 594 patients. A balanced version of the dataset was constructed by keeping all 55 patients with 5-years metastatic relapse and by adding an equal number of patients randomly selected from those who experienced metastatic relapse later than 5 years from diagnosis.

  compares the model estimation of the TTR survival function to the empirical Kaplan-Meier estimate. Despite a slight overestimation of the metastatic risk for shorter times, the model was able to capture the shape of the Kaplan-Meier estimate. To further verify the agreement between model and data, we also compared model and Kaplan-Meier curves for different values of the tumor size at diagnosis (FigureS3). Although the model remained within the Kaplan-Meier confidence interval in all cases, we observed that model predictions tended to be less accurate as the tumor size increased, with overestimation of the relapse risk for large PT sizes.

For patients 224 and

  358 (Figure 4A-B), the model predicted a time from the first cell to detection (pre-surgical history) of 17.3 years and 3.61 years, respectively. In addition, the model allowed to predict the metastatic size distribution at diagnosis (Figure 4C-D). Patient 224 was predicted to have 21 invisible metastases at the time of diagnosis. The largest metastasis contained 2.32 • 10 4 cells and the smallest only 1 cell. The former was predicted to have initiated 12.9 years after the first cell of the PT, i.e. 4.4 years before surgery. The model predicts relapse 6.18 years after diagnosis while true relapse occurred at 4.88 years. At diagnosis, patient 358 was predicted to have a total of 35 invisible metastases. The largest metastasis contained 1.16 • 10 4 cells and the smallest 1.36 cells. According to this simulation, the first metastasis in this patient was emitted 2.6 years after the PT onset, i.e. 1.01 years before surgery. The model predicted relapse 1.97 years after diagnosis while true relapse occurred at 3.06 years. The differences in PT and metastatic dynamics for these two patients are due to the different values of the covariates (Table
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 1 Figure 1: Scheme of the mechanistic model
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 2 Figure 2: Survival random forest and covariate selection
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 4 Figure 4: Simulations of the cancer history for two patients
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 S1S2S3 Figure S1: Percentage of missing values in each variable
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 S6 Figure S6: Calibration plots for the Cox model with the eight covariates selected through
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 S1 Figure S1. Percentage of missing values in each variable

  and are reported in Figures 4 and S4. Covariate values used for prediction and resulting inferred individual parameters 𝛼 § & and 𝜇̂& are reported in TableS1.

Table 1 :

 1 Parameter estimates. Mechanistic mixed-effects models for the time to metastatic relapse were fitted to the data using likelihood maximization. Parameters 𝛼 (growth) and 𝜇 (dissemination) were assumed to follow lognormal distributions with fixed effects (typical value) 𝛼 %u% and 𝜇 %u% , standard deviation of the random effects 𝜔 , and 𝜔 } and standard deviation of the error model 𝜎 (see methods). A first version was fitted without covariates (top) and a second with inclusion of dependence of the individual parameters on individual covariates (bottom). r.s.e. : relative standard error. p-value refers to a Wald test for statistical significance of the covariate on the parameter value.

Table 2 : Prediction metrics for classification of 5-and 10-years metastatic relapse.

 2 

Table S1 :

 S1 Covariates and resulting inferred parameter values for individual predictions.

TTR = time-to-relapse

Table

S2

: Cox regression using the first five covariates selected by minimal depth with the random survival forest model. HR = hazard ratio. 95% CI = 95% confidence interval.



	Metastasis-free survival		
		0	5	10	15	20
			Time from diagnosis (years)

Table 1

 1 Parameter Estimate r.s.e. (%) p-value

		log α pop	-6.34	12.6	
	Model without covariates	log µ pop σ ω α	-26.8 0.542 3.37	3.68 28.4 36.4	
		ω µ	3.78	15.9	
		log α pop	-9.01	10.8	
		β Ki67,α	0.093	29.6	0.001
		β CD44,α	0.017	57.7	0.083
	Model with	log µ pop	-25.9	4.4	
	covariates	β EGFR,µ	0.053	38.1	0.009
		σ	0.606	24	
		ω α	2.75	22.1	
		ω µ	3.03	20.5	

Table 2

 2 

		Algorithm	AUROC Accuracy Sensitivity Specificity PPV NPV	F1
		Mechanistic model	0.73	0.68	0.75	0.67	0.19 0.96 0.30
		Random survival forest	0.73	0.69	0.64	0.70	0.18	0.95	0.28
		Random forest	0.75	0.66	0.71	0.66	0.18	0.96	0.28
	5 years	Logistic regression k-nearest neighbor	0.75 0.62	0.83 0.91	0.42 0.02	0.87 1.00	0.24 0.41	0.94 0.91	0.31 0.05
		Gradient boosting	0.71	0.90	0.11	0.98	0.36	0.92	0.17
		Support vector machine	0.64	0.87	0.09	0.95	0.15	0.91	0.11
		Cox	0.71	0.72	0.66	0.73	0.20	0.95	0.31
		Mechanistic model	0.67	0.67	0.62	0.68	0.30 0.89 0.41
	10 years	Random survival forest	0.69	0.62	0.71	0.60	0.28	0.90 0.41
		Cox	0.65	0.65	0.61	0.65	0.28	0.88	0.39

&:𝑡 ]&^_ &

& D = 𝑃C 𝑇 & > 𝑡 | | 𝜓 & D = 1 -Φ ' log 𝑡 -log 0𝑇𝑇𝑅C𝑉 ]&^_ & ; 𝜓 & D7 𝜎 | | | | | 𝜓 & ƒ, ℎC 𝑡 | | 𝜓 & ; 𝑉 ]&^_ &
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All models were internally validated using 10-fold cross-validation. For classification tasks, the models were evaluated using receiver operating characteristic (ROC) curve analysis and standard performance metrics for binary classification algorithms [START_REF] Hossin | A review on evaluation metrics for data classification evaluations[END_REF] .

Discrimination of time-to-event models was quantified by Harrell's c-index [START_REF] Harrell | Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors[END_REF] . Calibration of each model was examined graphically, by comparing the model predicted probabilities against the observed event rates [START_REF] Harrell | Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors[END_REF] . 
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