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Abstract 

Purpose: For patients with early-stage breast cancer, prediction of the risk of metastatic 

relapse is of crucial importance. Existing predictive models rely on agnostic survival analysis 

statistical tools (e.g. Cox regression). Here we define and evaluate the predictive ability of a 

mechanistic model for the time to metastatic relapse.  

Methods: The data consisted of 642 patients with 21 clinicopathological variables. A 

mechanistic model was developed on the basis of two intrinsic mechanisms of metastatic 

progression: growth (parameter 𝛼) and dissemination (parameter 𝜇). Population statistical 

distributions of the parameters were inferred using mixed-effects modeling. A random 

survival forest analysis was used to select a minimal set of 5 covariates with best predictive 

power.  These were further considered to individually predict the model parameters, by using 

a backward selection approach. Predictive performances were compared to classical Cox 

regression and machine learning algorithms.   

Results: The mechanistic model was able to accurately fit the data. Covariate analysis 

revealed statistically significant association of Ki67 expression with 𝛼 (p=0.001) and EGFR 

with 𝜇 (p=0.009). Achieving a c-index of 0.65 (0.60-0.71), the model had similar predictive 

performance as the random survival forest (c-index 0.66-0.69) and Cox regression (c-index 

0.62 - 0.67), as well as machine learning classification algorithms.  

Conclusion: By providing informative estimates of the invisible metastatic burden at the time 

of diagnosis and forward simulations of metastatic growth, the proposed model could be 

used as a personalized prediction tool of help for routine management of breast cancer 

patients. 
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Introduction 

Breast cancer is the most frequent and second leading cause of cancer death in women1. 

In the majority of cases, the disease is diagnosed at the early stage, when all detectable 

lesions, confined to the breast or nearby lymph nodes, can be surgically removed2. 

However, approximately 20-30% of patients are reported to relapse with distant metastases 

after surgery3, 4, suggesting that clinically occult micro-metastases might already be present 

at the time of surgery. Accurate prediction of the risk of metastatic relapse is critical to 

personalize adjuvant treatment and avoid use of toxic and costly therapies when not needed.  

In the era of artificial intelligence, prognostic models are playing an increasing role for such 

a task5. Online tools, such as the Adjuvant!6, 7 and PREDICT models8, compute 

individualized survival probabilities based on multivariate statistical analysis and integration 

of clinical variables (age, tumor size, histological grade, hormone receptor status and nodal 

involvement)5. These tools, however, are based on agnostic statistical models, such as Cox 

regression8, 9. More recently, machine learning algorithms have started to be used10. 

Although traditionally designed for classification or regression tasks, adaptations to survival 

analysis include elastic net for Cox models11 or the random survival forests algorithm12. 

Deep learning has also recently been proposed for survival prediction from genomic data 

sets13. Nevertheless, few studies have so far investigated machine learning for prediction of 

breast cancer survival or recurrence13–15. 

Mechanistic modeling approaches – where biological knowledge is used to build a 

simulation model – have been developed to describe metastatic dynamics16–20. However, 

none of these mechanistic models has yet been implemented as a personalized predictive 

tool of metastatic relapse5. In previous work, we evaluated a mechanistic model of 

metastatic development21 using experimental data from orthosurgical mouse models of 

breast cancer22. The model was able to describe longitudinal growth of the total metastatic 

burden. For human data, the model could fit size-dependent probability of 20-years 

metastatic relapse in a historical dataset of 2,648 breast cancer patients22, 23.  

In the current work, we build on our descriptive model to propose an actionable tool for 

individualized predictions of the time to metastatic relapse (TTR), as well as reconstruction 

of the past natural history and prediction of future evolution of the disease. To train and 

validate the model, we relied on a dataset containing TTR and 21 clinical/pathological 

characteristics for 642 early-stage breast cancer patients. We first show a random survival 
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forest analysis12, which allowed us to select a restricted number of predictors of interest. We 

then present the main novelty of this work: the calibration – using mixed-effects learning24 – 

of the mechanistic model. We illustrate the possible value of the mechanistic approach by 

performing predictive simulations of the entire cancer history of real patients, calibrated from 

data available at diagnosis only. Finally, we compare our results with predictive 

performances of classification machine learning algorithms for 5-years metastatic relapse. 



 

 5 

Methods 

Description of the data 

The consisted of data of 642 women diagnosed with primary operable invasive breast 

carcinoma treated at the Bordeaux Bergonié institute between 1989 and 1993. This dataset 

has been comprehensively analyzed using standard statistical tools (Cox regression)25. 

Patients in this analysis did not receive any adjuvant hormone or chemotherapy. The time 

to metastatic relapse (TTR) was defined as the time from the date of diagnosis to the date 

of distant relapse. Patients with no metastasis were censored at the date of last news or 

death26. Clinical/pathological variables available in the dataset included age at diagnosis, 

menopausal status, histological grade, pathological T (tumor size) and N (axillary lymph 

node status) stages, pathological tumor size, histological type and number of metastatic 

lymph nodes. In addition tissue microarray array analysis was performed from the tumor 

samples. Area percentage of staining was determined using immunohistochemistry for 

estrogen receptor (ER), progesterone receptor (PR), HER2, Ki67, CK56, EGFR, VIM, CD24, 

CD44, ALDH1, BCL2, E-Cadherin and Trio25. Tumors were classified as HER2 positive if 

the HER2 immunostaining showed 3+ intensity or from individual review for 2+ scores25. 

Missing covariate values were imputed before model building using the missForest 

imputation algorithm27. The percentage of missing data was less than 5% for all variables 

(Figure S1). Using 100 trees per forest (predefined setting value of missForest), continuous 

and categorical covariates were imputed with a 4.4% and 7.1% error, respectively.  

Institutional review board approval was obtained for this retrospective study in accordance 

with national laws. 

Random survival forests analysis (RSF) 

The RSF algorithm is an extension of Breiman’s random forest for the analysis of right-

censored time-to-event data28. We utilized the RSF implementation of the 

randomForestSRC R package29. All RSF models were fitted using 1000 trees, with the log-

rank splitting rule28. The optimal values of the tuning parameters (number of variables to be 

sampled at each split and minimum number of data points in a terminal node) were selected 

to maximize the concordance index calculated on the out-of-bag data. 

Impact of covariates on the TTR was assessed using the forest-averaged minimal depth30, 

which quantifies the predictive value of a covariate in a tree by its distance from the root 
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node to the first node where it is used to split (smaller minimal depth values correspond to 

more predictive covariates).  

Mechanistic model of metastatic dissemination and growth 

The individual primary tumor (PT) kinetics in individual 𝑖 were described by the Gompertz 

model: 

𝑉%&(𝑡) = 𝑒,-.- 	012345-67, 
where 𝑉%&(𝑡) is the number of cells within the PT at time 𝑡 and 𝛼& and 𝑏& are the Gompertzian 

growth parameters. Under this model, the tumor will approach a theoretical upper limit 𝐾 =
𝑒;-5-. In order to avoid overfitting and improve identifiability, 𝐾 was fixed to 101> cells, leaving 𝛼& as the only free parameter driving growth. This value was used following statistical 

estimations and biological considerations in breast cancer18, 31. The PT size – reported as a 

diameter in the data – was converted into number of cells assuming spherical shape and 

the assumption 1mm@ = 10A cells31, 32. All model simulations were performed in number of 

cells. 

Considering a dissemination rate from the PT given by 22  

𝑑&C𝑉%&D = 𝜇&𝑉%&, 
the total number of metastases at time 𝑡 is 

𝑁&(𝑡) = F𝑑& 0𝑉%&(𝑠)7 𝑑𝑠 = F𝜇&𝑉%&(𝑠)𝑑𝑠.I
J

I
J

 

The individual parameter 𝜇& is the per day probability for a PT cell to disseminate and 

establish a distant metastatic colony. Each metastasis was assumed to start from the 

volume 𝑉J of a single cell and to grow at the same rate than the PT: 

𝑔&(𝑣) = M𝛼& − 𝑏& log M 𝑣𝑉JRR 𝑣. 
The state of the metastatic process was described by a function 𝜌&(𝑡, 𝑣) representing the 

distribution of metastatic tumors with size 𝑣 at time 𝑡. It is given by the solution of the 

following transport equation 21: 

𝜕I𝜌&(𝑡, 𝑣) +	𝜕V 0𝑔&(𝑣)𝜌&(𝑡, 𝑣)7 = 0,									𝑡	 ∈ (0,+∞),			𝑣	 ∈ (1,+∞), 
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endowed with the boundary and initial conditions: 

𝑔&(1)𝜌&(𝑡, 𝑉J) = 𝑑 0𝑉%(𝑡)7 ,						𝑡	 ∈ (0,+∞), 
𝜌&(0, 𝑣) = 0,																																				𝑣	 ∈ (𝑉J, +∞). 

Mechanistic modeling of the time-to-relapse 

To calibrate the metastatic model on TTR data, we defined the theoretical time to relapse 

as illustrated in Figure 1. More precisely, assuming a value	𝑉V&Y as detection threshold, the 

time 𝜏V&Y for a tumor to reach this size was given from the assumption of Gompertzian 

growth, i.e.  

𝜏V&Y = − 1𝑏& log[1 − 𝑏&𝛼& log 	𝑉V&Y& \. 
 

In an analogous way, the time from the first cancer cell to the detection of the primary tumor, 𝑡]&^_& , was determined from the known size of the primary tumor at detection, 𝑉]&^_& : 

𝑡]&^_& = − 1𝑏& log [1 − 𝑏&𝛼& log𝑉]&^_& \. 
A visibility threshold 𝑉V&Y of 5 mm in diameter was assumed to be the detectability limit at 

imaging.  

Since metastases of size larger than 𝑉V&Y at time 𝑡 must have been emitted in the time interval C0, 𝑡 − 𝜏V&Y& D, the number of visible metastases at time 𝑡 can be obtained by  

𝑁V&Y& (𝑡) = 𝑁&C𝑡 − 𝜏V&Y& D. 
The theoretical TTR was then defined as  

𝑇𝑇𝑅C𝑉]&^_& ; 𝛼&, 𝜇&D = cinf	g	𝑡 > 0		|		𝑁V&Y& C𝑡]&^_& + 𝑡D ≥ 1	k								if	𝑁&C𝑡]&^_& D ≥ 1,+∞ otherwise.  

That is, the time elapsed from diagnosis to the appearance of the first visible metastasis, if, 

according to the model, at least a metastasis was emitted before diagnosis; otherwise it was 

considered as infinite. 

Calibration of the mechanistic model using mixed-effects learning 
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The mathematical model for individual TTR was thus defined as a function of 𝑉]&^_&  and a 

vector of structural individual parameters 𝜓& = C𝛼&, 𝜇&D. Let 𝑇& denote the TTR for patient 𝑖. 
A constant error model was assumed on the log-transformed data: 

 log 𝑇𝑖 = log 0𝑇𝑇𝑅C𝑉𝑑𝑖𝑎𝑔𝑖 ; 	𝜓𝑖D7 + 𝑒𝑖, (1)  

where 𝑒& is the residual error following a normal distribution with mean 0 and variance 𝜎>. 
The log-transformation was used to ensure positive values of the TTR variable. The 

individual parameters were assumed to be log-normally distributed and a linear covariate 

model was used:  

 

log 𝛼& = log 𝛼%u% + 𝛽,	 ⋅ 𝑥,& + 𝜂,,& 													𝜂,& ∼ 	𝒩(0,𝜔,>) 
log 𝜇& = log 𝜇%u% + 𝛽} ⋅ 𝑥}& + 𝜂}& ,														𝜂}& ∼ 𝒩C0,𝜔}>D (2) 

where 𝑥,&  and	𝑥}&  are vectors of subject-specific covariates, which might be identical, or 

partially or completely different.  

The statistical model for the observations (1) implicitly defines for each individual 𝑖 the 

probability density function of 𝑇& conditionally on the individual parameters 𝜓&. The 

corresponding survival and hazard functions can be obtained by: 

𝑆C 𝑡 ∣∣ 𝜓&; 𝑉]&^_& D = 𝑃C 𝑇& > 𝑡 ∣∣ 𝜓& D = 1 − Φ� log 𝑡	 − log 0𝑇𝑇𝑅C𝑉]&^_& ; 𝜓&D7𝜎 ∣∣∣∣
∣ 𝜓& �, 

ℎC 𝑡 ∣∣ 𝜓&; 𝑉]&^_& D = − 𝑑𝑑𝑡 log𝑆C 𝑡 ∣∣ 𝜓& D = 1𝜎𝑡𝑆C 𝑡 ∣∣ 𝜓& D 𝜑� log 𝑡 − log 0𝑇𝑇𝑅C𝑉]&^_
& ; 𝜓&D7𝜎 ∣∣∣∣

∣ 𝜓& �, 
where Φ and 𝜑 are the cumulative distribution and probability density functions of the 

standard normal distribution, respectively.  

Let 𝐶& denote the time to death or last follow-up for individual 𝑖. With right-censoring the 

observations are C𝑇� &, 𝛿&D, where 𝑇� & = min(𝑇&, 𝐶&) and 𝛿& = 𝕝g�-��-k is the indicator variable. 

The contribution of individual 𝑖 to the likelihood is then given by 33: 

ℒ&(𝜃) = FℎC 𝑇� & ∣∣ 𝜓&; 𝜃 D�-𝑆C 𝑇� & ∣∣ 𝜓&; 𝜃 D𝑝C𝜓&; 𝜃D𝑑𝜓& , 
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where 𝜃 = C𝛼%u%, 	𝜇%u%, 	𝛽,,	𝛽} , 𝜔, , 𝜔} , 𝜎D	are the population parameters to be estimated and 

𝑝C𝜓&; 𝜃D is the probability density function of the individual parameters, defined by (2). 

The likelihood function (product of the individual likelihoods ℒ&(𝜃)) was maximized using the 

Stochastic Approximation of Expectation-Maximization (SAEM) algorithm24 implemented in 

the R saemix package34. Initial values of the parameters were 𝛼J = 0.002,𝜇J =4 × 1021>, 𝜔,J = 15, 𝜔}J = 15, 𝜎J = 	0.6. Standard errors of the estimated parameters were 

obtained using 100 bootstrap samples, and significance of covariates was assessed using 

the Wald test.  

The mean of the conditional survival functions was estimated as 
1�∑ 𝑆C 𝑡 ∣∣ 𝜓&; 𝑉]&^_& D,�&�1  with 

(𝜓1, … , 𝜓�) and (𝑉]&^_1 , … , 𝑉]&^_� ) drawn respectively from the estimated distribution of the 

individual parameters and the values of 𝑉]&^_ in the data.  

Classification machine learning algorithms for prediction of 5-year 

distant metastasis-free survival 

Machine learning algorithms were trained using the scikit-learn python package35. These 

included logistic regression, support vector machines (SVM), random forests (RF), k-nearest 

neighbors (kNN) and gradient boosting. Values of the models hyperparameters were 

selected to optimize the area under the ROC curve, using a 3-fold cross-validated grid 

search. The kernel used for SVM was the radial basis function 𝐾(𝑥, 𝑥�) = 𝑒2�‖�2��‖ with 𝛾 =
1>1 (21=number of features) and regularization parameter 𝐶 = 1. For the classification 

algorithms (and for them only), because these are not able to manage censored data, 

patients with data censored before 5 years were removed from the dataset, leaving a total 

of 594 patients. A balanced version of the dataset was constructed by keeping all 55 patients 

with 5-years metastatic relapse and by adding an equal number of patients randomly 

selected from those who experienced metastatic relapse later than 5 years from diagnosis. 

Each model was evaluated using 100 replicates of 10-fold cross-validations, with folds 

created using a stratified random sampling strategy (to preserve class balance). We applied 

a standard scaling for each run and each set by removing the training folds mean and scaling 

to unit variance, for the algorithms that require a homogeneous scale (SVM, kNN). The 

random forests algorithm was also seeded with a different random initialization value each 

time. 

Evaluation of predictive performances 
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All models were internally validated using 10-fold cross-validation. For classification tasks, 

the models were evaluated using receiver operating characteristic (ROC) curve analysis and 

standard performance metrics for binary classification algorithms36. 

Discrimination of time-to-event models was quantified by Harrell’s c-index37. Calibration of 

each model was examined graphically, by comparing the model predicted probabilities 

against the observed event rates37.  
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Results 

Random survival forest multivariate analysis 

For machine learning analysis of the TTR data, we used the RSF algorithm, which allows  

right-censored data 30. In addition to evaluating its predictive power, we used this algorithm 

to identify variables most predictive of TTR. Covariates were ordered on the basis of minimal 

depth (Figure 2A) and selected by running a nested analysis (Figure 2B). The cross-

validated c-index improved as the number of variables increased, reaching a maximum of 

0.67 (95% CI, 0.66-0.69) with 5 variables. We selected these 5 top variables for the optimal 

model and future analysis in the mechanistic model below. Calibration plots for 2-, 5- and 

10-year demonstrated a good agreement between the observed and model-predicted 

probabilities of metastatic relapse (Figure 2C), with moderate overprediction of relapse in 

the higher risk groups.  

Partial dependence plots for the selected covariates indicated strong nonlinear relationships 

between covariates and relapse probabilities, with a non-monotonic behavior for age and 

tumor size (Figure S2). Confirming previous results38, these plots suggest nonvalidity of the 

proportional hazards assumption. Indeed, if such assumption would hold, the probability of 

no relapse at any time would be monotonous as a function of any covariate value. 

Calibration and validation of the mechanistic model  

To offer better insights on the mechanisms of relapse, we developed a mechanistic model 

of the TTR. We first evaluated the ability of this model to describe the TTR data without 

using covariates, except for pathological tumor size, which is a variable encoded in the 

structural model. We asked whether we could describe inter-individual variability of TTR by 

means of population statistical distributions of the parameters 𝜇 (dissemination) and 𝛼 

(growth) of the model. Estimates of the population parameters were obtained using the 

SAEM algorithm and are reported in Table 1. Both fixed and random effects were identified 

with satisfactory precision (relative standard error < 37%). Figure 3A compares the model 

estimation of the TTR survival function to the empirical Kaplan-Meier estimate. Despite a 

slight overestimation of the metastatic risk for shorter times, the model was able to capture 

the shape of the Kaplan-Meier estimate. To further verify the agreement between model and 

data, we also compared model and Kaplan-Meier curves for different values of the tumor 

size at diagnosis (Figure S3). Although the model remained within the Kaplan-Meier 

confidence interval in all cases, we observed that model predictions tended to be less 
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accurate as the tumor size increased, with overestimation of the relapse risk for large PT 

sizes.  

Mechanistic covariate analysis and predictive power of the mathematical 

model 

We next tested the covariates selected by the RSF analysis in the mechanistic model. We 

built the covariate model using a backward elimination procedure, starting with the full model 

with all the preselected covariates on both parameters 𝛼 and 𝜇. The final model included 

Ki67 and CD44 on 𝛼, and EGFR on the dissemination parameter 𝜇 (Table 1). The cross-

validated c-index for this model was 0.65 (95% CI, 0.60-0.71). Calibration plots for 2-, 5- and 

10-year outcomes demonstrated good predictive accuracy of the model (Figure 3B). 

Nevertheless, similarly as the RSF model, risk of relapse was overestimated in high risk 

groups. For the classification task of prediction of 5- and 10-year relapse, comparable results 

were obtained between the mechanistic model, the RSF, classification machine learning 

algorithms and Cox regression (Table 2). 

Predictive simulations of the mechanistic model  

The previous results allow to calibrate the mechanistic model parameters from variables 

available at diagnosis, by using only the covariate part in equation (2) and neglecting the 

remaining unexplained variance. We used this to simulate the natural cancer history for a 

number of representative patients of our dataset. For each patient, the population-level 

parameters 𝛼%u%, 𝜇%u% , 𝛽�&A ,,, 𝛽�¡¢¢,, 	and 𝛽£¤¥¦,} were calibrated from an independent 

training set that did not contain this patient (coming from the cross-validation procedure). 

Simulations were then performed using a discrete version of the metastatic model22 and are 

reported in Figures 4 and S4. Covariate values used for prediction and resulting inferred 

individual parameters 𝛼§ & and �̂�& are reported in Table S1. 

For patients 224 and 358 (Figure 4A-B), the model predicted a time from the first cell to 

detection (pre-surgical history) of 17.3 years and 3.61 years, respectively. In addition, the 

model allowed to predict the metastatic size distribution at diagnosis (Figure 4C-D). Patient 

224 was predicted to have 21 invisible metastases at the time of diagnosis. The largest 

metastasis contained 2.32 · 104 cells and the smallest only 1 cell. The former was predicted 

to have initiated 12.9 years after the first cell of the PT, i.e. 4.4 years before surgery. The 

model predicts relapse 6.18 years after diagnosis while true relapse occurred at 4.88 years. 

At diagnosis, patient 358 was predicted to have a total of 35 invisible metastases. The 
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largest metastasis contained 1.16 · 104 cells and the smallest 1.36 cells. According to this 

simulation, the first metastasis in this patient was emitted 2.6 years after the PT onset, i.e. 

1.01 years before surgery. The model predicted relapse 1.97 years after diagnosis while 

true relapse occurred at 3.06 years. The differences in PT and metastatic dynamics for these 

two patients are due to the different values of the covariates (Table S1). Distinct levels of 

Ki67 cause distinct growth kinetics. Moreover, unlike patient 224, the tumor of patient 358 

expresses EGFR, which is associated with a higher metastatic potential. Thus although 

patient 358’s tumor is much younger, the total number of (invisible) metastases at surgery 

is predicted to be larger (35 vs 21 metastases in patient 224).  Model predictions are also 

informative in the case of individuals who were censored at the last follow-up. For instance, 

patient 70 (Figure S4) was censored at 17.7 years after diagnosis. This is consistent with 

our model, which predicts that this patient was disease-free after PT resection and would 

never have relapsed (TTR = +∞).  

Comparison with machine learning classification algorithms and Cox 

regression 

We tested the predictive power of machine learning classification algorithms. These cannot 

account for right-censored data. Thus, for this part we focused on prediction of 5-years 

metastatic relapse (yes or no). Best performances were achieved by the random forest and 

logistic regression models (Table 2 and Figure S5A-D). However, owing to the low event 

rate (9.25%), positive predictive value and and F1 scores were low (Table 2). To improve 

these metrics, a balanced, downsampled version of the dataset was constructed. This 

significantly improved PPV and F1, as well as model calibration (Figure S5E-F). We also 

compared our results to classical Cox regression survival analysis, which was found to 

exhibit similar predictive power (Figure S6, Tables 2 and S2). 

 

Discussion 

We propose a mechanistic model for prediction of metastatic relapse after surgical 

intervention in patients with early-stage breast cancer which, for the first time, is able to 

simulate the pre- and post-diagnosis history of the disease from data available at diagnosis 

only. Notably, with a c-index of 0.65 (95% CI, 0.60 - 0.71), the mechanistic model achieved 

similar performances as the RSF algorithm (95% CI, 0.66-0.69) and Cox regression (95% 

CI, 0.62-0.67). These were also comparable with the actual standard prognosis model of 
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breast-cancer-specific survival Adjuvant! (c-index 0.71)7, used for risk classification in the 

MINDACT trial39. Others also reported a similar c-index of 0.67 for prediction of relapse in 

untreated patients, using Cox analysis40. Advanced deep learning algorithms did not 

outperform this predictive power (c-index 0.68) for prediction of survival, even though 

integrating genomic data13. A recent study that considered recurrence (either local, regional 

or distant) reported superior predictive power (AUC 0.81 for prediction of relapse at 5-years, 

versus 0.73 in our analysis), which might be explained by the much larger data set (15, 314 

patients) and inclusion of epidemiological data not available in our analysis.  

Grounded on the biology of the metastatic process, our model provides insights not 

achievable by statistical analysis alone. First, one of the most important and well known 

predictor of metastatic relapse – tumor size23 – is directly incorporated into the model as an 

input parameter, used for calculation of the tumor age. Second, our model allows to test 

whether covariates are associated with growth and/or dissemination. We found that Ki67 

was positively associated with the proliferation parameter 𝛼, which aligns with the definition 

of Ki67 as a proliferation marker41, as well as other results confirming its predictive power42. 

On the other hand, the basal marker EGFR was found to be a significantly positive covariate 

for the dissemination parameter 𝜇. EGFR has previously been demonstrated as being a 

prognostic factor of relapse43, yet it is interesting to note that correlation appears here on 𝜇, 

which is consistent with the known fact that basal-like breast cancers are metastatically more 

aggressive44. Interestingly, the median value of 𝜇 was consistent with the value estimated 

in a previous work using data of metastatic relapse probabilities from a cohort of breast 

cancer patients (𝜇%u% = 2.26 × 1021> cell-1.day-1 here vs 𝜇%u% = 7 × 1021> cell-1.day-1 in 22). 

Our analysis also confirmed the prognostic value of age at diagnosis, with younger patients 

having a higher risk of relapse45. However, we found that after 60 years-old, the risk of 

relapse was increasing (Figure S2). This nonlinearity might explain why age did not appear 

as significant in either our mechanistic or Cox analysis. Although not significant at the 0.05 

threshold, our results suggest prognosis value of CD44 (p = 0.083 for association with 𝛼). 

CD44 is a cellular protein which is used as a marker of breast cancer stem cells46 and is 

associated with metastasis47, 48. Since CD44 is involved in cell adhesion and invasion49, it is 

surprising that it emerges as associated with 𝛼 and not 𝜇. This might indicate limitations of 

our model to detect complex biological processes since inference is only made indirectly 

and using several simplifying assumptions, such as a unimodal lognormal distribution of the 

parameters in the population. This might also be due to the fact that we considered here 

CD44 as a continuous variable, whereas a standard marker is the percentage of 
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CD44+/CD24- cells46. Similarly, only EGFR as a continuous variable was investigated and 

not the more classical EGFR+/CK5/6+ marker43. Indeed, the aim of the current study was to 

establish the methodology of using our mechanistic model as a predictive tool, and we 

favored first keeping continuous variables. We plan to perform more detailed examination 

of such clinical variables in forthcoming work, as well as study the predictive power of the 

model in well-established subgroups such as node-negative patients or patients stratified 

according to the current molecular classification50.   

A major advantage and clinical relevance of the mechanistic model over standard statistical 

or machine learning models, is that it can be used to perform patient-specific simulations 

allowing to assess the extent of invisible metastases at the time of diagnosis and to predict 

future growth of metastases. In turn, this might aid selecting patients that will most benefit 

from extended adjuvant therapy (or conversely, patients who would need only a limited 

number of cycles), by performing individualized simulations of the future course of the 

disease under competing therapeutic strategies. However, it will be first required to develop 

and validate models integrating the effect of systemic adjuvant therapies51. We also believe 

that our methodology could be applied to other cancer types where similar concerns occur 

about the use of adjuvant therapy to avoid metastatic relapse (e.g. lung or kidney cancer). 

In addition, the novel approach we propose to mechanistically model time-to-event data 

could be used to extract biologically relevant information from such data, which – although 

ubiquitous in clinical oncology – are almost exclusively analyzed using agnostic statistical 

tools. 

Our model represents a first attempt of a mechanistic, individual-level, predictive model of  

metastatic relapse and might be improved in a number of ways. For instance, unexplained 

variability remained important despite the inclusion of covariates, suggesting that 

biomarkers other than those tested might improve model predictions. In this regard, genetic 

expression signatures have been shown to have higher predictive power compared to 

standard histological and clinical variables alone52. Our mechanistic model could also be 

refined by higher order phenomena such as dormancy, which has been proposed to explain 

recurrence occurring after many years from surgery53, 54. Finally, to be applied in clinical 

practice, the model should be further evaluated on external data sets.   

 

Acknowledgments 



 

 16 

The authors thank Institut Bergonié for permission to use the data from the Breast Cancer 

Database for this research. They also thank the “Big bang” association for funding support, 

in memory of Marie-Christine Masini. 

 



 

 17 

References 

1. American Cancer Society. Cancer Facts & Figures 2019, 2019 

2. Noone A, Howlader N, Krapcho M, et al: SEER cancer statistics review, 1975–2015. Bethesda, 

MD: National Cancer Institute , 2018 

3. Kohn EC: Invasion and Metastases. Holland-Frei Cancer Medicine 6th edition , 2003 

4. Pollard JW: Defining Metastatic Cell Latency. N Engl J Med 375:280–282, 2016 

5. Shachar SS, Muss HB: Internet tools to enhance breast cancer care. NPJ Breast Cancer 2:16011, 

2016 

6. Ravdin PM, Siminoff LA, Davis GJ, et al: Computer Program to Assist in Making Decisions 

About Adjuvant Therapy for Women With Early Breast Cancer. J Clin Oncol 19:980–991, 2001 

7. Mook S, Schmidt MK, Rutgers EJ, et al: Calibration and discriminatory accuracy of prognosis 

calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective 

cohort study. Lancet Oncol 10:1070–1076, 2009 

8. Wishart GC, Azzato EM, Greenberg DC, et al: PREDICT: a new UK prognostic model that 

predicts survival following surgery for invasive breast cancer. Breast Cancer Res 12:R1, 2010 

9. Wu X, Ye Y, Barcenas CH, et al: Personalized Prognostic Prediction Models for Breast Cancer 

Recurrence and Survival Incorporating Multidimensional Data. JNCI J Natl Cancer Inst 109, 2017 

10. Kourou K, Exarchos TP, Exarchos KP, et al: Machine learning applications in cancer prognosis 

and prediction. Comput Struct Biotechnol J 13:8–17, 2015 

11. Simon N, Friedman JH, Hastie T, et al: Regularization Paths for Cox’s Proportional Hazards 

Model via Coordinate Descent. Proc Natl Acad Sci USA 39:1–13, 2011 

12. Ishwaran H, Kogalur UB, Blackstone EH, et al: Random survival forests. Ann Appl Stat 2:841–

860, 2008 

13. Yousefi S, Amrollahi F, Amgad M, et al: Predicting clinical outcomes from large scale cancer 

genomic profiles with deep survival models. Sci Rep 7:1–11, 2017 

14. Kim W, Kim KS, Lee JE, et al: Development of novel breast cancer recurrence prediction 

model using support vector machine. J Breast Cancer 15:230–238, 2012 

15. Delen D, Walker G, Kadam A: Predicting breast cancer survivability: a comparison of three 

data mining methods. Artif Intell Med 34:113–127, 2005 



 

 18 

16. Hanin L, Rose J: Uncovering the natural history of cancer from post-mortem cross-sectional 

diameters of hepatic metastases. Math Med Biol 33:397–416, 2016 

17. Haeno H, Gonen M, Davis MB, et al: Computational Modeling of Pancreatic Cancer Reveals 

Kinetics of Metastasis Suggesting Optimum Treatment Strategies. Cell 148:362–375, 2012 

18. Koscielny S, Tubiana M, Valleron AJ: A simulation model of the natural history of human 

breast cancer. Br J Cancer 52:515–524, 1985 

19. Newton PK, Mason J, Bethel K, et al: A Stochastic Markov Chain Model to Describe Lung 

Cancer Growth and Metastasis. PLoS One 7:e34637, 2012 

20. Retsky MW, Demicheli R, Swartzendruber DE, et al: Computer simulation of a breast cancer 

metastasis model. Breast Cancer Res Treat 45:193–202, 1997 

21. Iwata K, Kawasaki K, Shigesada N: A dynamical model for the growth and size distribution of 

multiple metastatic tumors. J Theor Biol 203:177–186, 2000 

22. Benzekry S, Tracz A, Mastri M, et al: Modeling spontaneous metastasis following surgery: an 

in vivo-in silico approach. Cancer Res 76:535–547, 2016 

23. Koscielny S, Tubiana M, Le MG, et al: Breast cancer: relationship between the size of the 

primary tumour and the probability of metastatic dissemination. Br J Cancer 49:709–15, 1984 

24. Lavielle M: Mixed Effects Models for the Population Approach: Models, Tasks, Methods and 

Tools. Chapman and Hall/CRC, 2014 

25. de Mascarel I, Debled M, Brouste V, et al: Comprehensive prognostic analysis in breast cancer 

integrating clinical, tumoral, micro-environmental and immunohistochemical criteria. SpringerPlus 

2015 4:1 4:528, 2015 

26. Gourgou-Bourgade S, Cameron D, Poortmans P, et al: Guidelines for time-to-event end point 

definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment 

of Time-to-event Endpoints in CANcer trials). Ann Oncol 26:873–879, 2015 

27. Stekhoven DJ, Bühlmann P: MissForest—non-parametric missing value imputation for mixed-

type data. Bioinformatics 28:112–118, 2012 

28. Ishwaran H, Kogalur UB: Random Survival Forests for R. Rnews 7:25–31, 2007 

29. Ishwaran H, Kogalur UB: randomForestSRC: Random Forests for Survival, Regression, and 

Classification (RF-SRC). 2019 

30. Ishwaran H, Kogalur UB, Gorodeski EZ, et al: High-Dimensional Variable Selection for 



 

 19 

Survival Data. J Am Stat Assoc 105:205–217, 2010 

31. Spratt JA, von Fournier D, Spratt JS, et al: Decelerating growth and human breast cancer. 

Cancer 71:2013–2019, 1993 

32. Spratt JS, Meyer JS, Spratt JA: Rates of growth of human solid neoplasms: Part I. J Surg Oncol 

60:137–146, 1995 

33. Commenges D, Jacqmin-Gadda H: Dynamical Biostatistical Models. Chapman and Hall/CRC, 

2015 

34. Comets E, Lavenu A, Lavielle M: Parameter Estimation in Nonlinear Mixed Effect Models 

Using saemix , an R Implementation of the SAEM Algorithm. J Stat Soft 80, 2017 

35. Pedregosa F, Varoquaux G, Gramfort A, et al: Scikit-learn: Machine Learning in Python. Mach 

Learn PYTHON 6 

36. Hossin M, Sulaiman MN: A review on evaluation metrics for data classification evaluations. 

International Journal of Data Mining & Knowledge Management Process 5:1, 2015 

37. Harrell FE, Lee KL, Mark DB: Multivariable prognostic models: issues in developing models, 

evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387, 

1996 

38. Bellera CA, MacGrogan G, Debled M, et al: Variables with time-varying effects and the Cox 

model: Some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC 

Med Res Methodol 10:20, 2010 

39. Cardoso F, van’t Veer LJ, Bogaerts J, et al: 70-Gene Signature as an Aid to Treatment 

Decisions in Early-Stage Breast Cancer. N Engl J Med 375:717–729, 2016 

40. Parker JS, Mullins M, Cheang MCU, et al: Supervised risk predictor of breast cancer based on 

intrinsic subtypes. J Clin Oncol 27:1160–1167, 2009 

41. Dowsett M, Nielsen TO, A’Hern R, et al: Assessment of Ki67 in breast cancer: 

recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 

103:1656–1664, 2011 

42. Yerushalmi R, Woods R, Ravdin PM, et al: Ki67 in breast cancer: prognostic and predictive 

potential. The Lancet Oncology 11:174–183, 2010 

43. Cheang MCU, Voduc D, Bajdik C, et al: Basal-like breast cancer defined by five biomarkers 

has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376, 2008 



 

 20 

44. Rakha EA, Reis-Filho JS, Ellis IO: Basal-like breast cancer: a critical review. Journal of clinical 

oncology 26:2568–2581, 2008 

45. Lian W, Fu F, Lin Y, et al: The Impact of Young Age for Prognosis by Subtype in Women with 

Early Breast Cancer. Sci Rep 7:1–8, 2017 

46. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al: Prospective identification of tumorigenic 

breast cancer cells. Proceedings of the National Academy of Sciences 100:3983–3988, 2003 

47. Li F, Tiede B, Massagué J, et al: Beyond tumorigenesis: cancer stem cells in metastasis. Cell 

Research 17:3–14, 2007 

48. McFarlane S, Coulter JA, Tibbits P, et al: CD44 increases the efficiency of distant metastasis of 

breast cancer. Oncotarget 6:11465, 2015 

49. Sheridan C, Kishimoto H, Fuchs RK, et al: CD44+/CD24- breast cancer cells exhibit enhanced 

invasive properties: an early step necessary for metastasis. Breast Cancer Research 8:R59, 2006 

50. Perou CM, Sørlie T, Eisen MB, et al: Molecular portraits of human breast tumours. Nature 

406:747–752, 2000 

51. Benzekry S, André N, Benabdallah A, et al: Modelling the impact of anticancer agents on 

metastatic spreading. Math Model Nat Phenom 7:306–336, 2012 

52. van de Vijver MJ, He YD, van’t Veer LJ, et al: A gene-expression signature as a predictor of 

survival in breast cancer. N Engl J Med 347:1999–2009, 2002 

53. Karrison TG, Ferguson DJ, Meier P: Dormancy of Mammary Carcinoma After Mastectomy. J 

Natl Cancer Inst 91:80–85, 1999 

54. Uhr JW, Pantel K: Controversies in clinical cancer dormancy. Proc Natl Acad Sci USA 

108:12396–12400, 2011 

  



 

 21 

Figure and table legends 

Figure 1: Scheme of the mechanistic model 

Growth of primary and metastatic tumours are characterized by a common growth 

parameter 𝛼. Emission of metastases from the primary tumour occurs at a rate that depends 

on the primary tumour size and on a parameter of metastatic potential 𝜇. The time-to-

recurrence is defined as the lapse time from diagnosis until the first emitted metastasis 

reaches the visible size.  

 

Figure 2: Survival random forest and covariate selection 

A) Minimal depth ranking of covariates.  

B) Cross-validated Harrel’s c-index under sequentially fit RSF models with variables 

ordered by importance using minimal depth. Bars are 95% confidence intervals. 

C) Calibration plots for the RSF model with the 5 top variables (red box in figure A). Bars 

are 95% confidence intervals. 

 

Figure 3: Fit of the mechanistic model 

A) Mean of the conditional metastasis-free survival functions from the mechanistic model 

and Kaplan-Meier estimates with 95% confidence interval.  

B) Calibration plots of metastasis-free survival for the final mechanistic model with 

covariates.  

 

Figure 4: Simulations of the cancer history for two patients  
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Simulations were performed using predicted values of the individual parameters 𝛼§ & and �̂�& 
as log𝛼ª« = log 𝛼%u% + 𝛽�&A ,, ⋅ 𝐾𝑖67& +	𝛽�¡¢¢,, ⋅ 𝐶𝐷44& and log𝜇ª« = log𝜇%u% + 𝛽£¤¥¦,} ⋅
𝐸𝐺𝐹𝑅& 	. Population parameters 𝛼%u%, 𝛽�&A ,, , 𝛽�¡¢¢,, , 𝜇%u% and 𝛽£¤¥¦,} were inferred from a 

training set that did not contain patient 𝑖, during the cross-validation procedure. 

A-B): Growth of the primary tumor and metastases that will ultimately become visible at a 

10 years post-surgical horizon. The red dashed line indicates the observed time of 

metastatic relapse 

C-D): Size distribution of the invisible metastases at the time of diagnosis.  

 

Table 1: Parameter estimates. Mechanistic mixed-effects models for the time to metastatic 

relapse were fitted to the data using likelihood maximization. Parameters 𝛼 (growth) and 𝜇 

(dissemination) were assumed to follow lognormal distributions with fixed effects (typical 

value) 𝛼%u% and 𝜇%u%, standard deviation of the random effects 𝜔, and 𝜔} and standard 

deviation of the error model 𝜎 (see methods). A first version was fitted without covariates 

(top) and a second with inclusion of dependence of the individual parameters on individual 

covariates (bottom).  r.s.e. : relative standard error. p-value refers to a Wald test for statistical 

significance of the covariate on the parameter value. 

 

Table 2: Prediction metrics for classification of 5- and 10-years metastatic relapse. 

For comparison purpose between time-to-event and classification models, prediction 

metrics performed on the entire data set are reported. In bold is the best score achieved for 

a given metric. 
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Supplementary material 

Figure S1: Percentage of missing values in each variable 

Figure S2: Partial dependence plots of the random survival forest predicted DMFS as a 

function of the top eight predictors according to the minimal depth ranking  

Figure S3: Distant metastasis-free survival predictions of the mechanistic model and 

Kaplan-Meier estimates with 95% confidence intervals stratified by values of the primary 

tumour size (diameter) at diagnosis 

Figure S4: Predictions of the mechanistic model for individual patients 

Figure S5: Prediction of 5-years metastatic relapse using machine learning classification 

algorithms 

Left: Metrics and plots for the random forests and logistic regression algorithms for the full 

dataset (brown) and the downsampled dataset (blue).  

A-B) Metrics parallel plot representing scores of accuracy, area under the receiver-

operator curve (AUROC), negative predictive value (NPV), positive predictive value (PPV) 

and F1 (100 replicates). 

C-D) ROC curves. Mean ± entire range (100 replicates). 

E-F) Calibration plots. Mean ± entire range (100 replicates). 

Figure S6: Calibration plots for the Cox model with the eight covariates selected through 

the RSF analysis  

Table S1: Covariates and resulting inferred parameter values for individual predictions. 

TTR = time-to-relapse 

Table S2: Cox regression using the first five covariates selected by minimal depth with the 

random survival forest model. HR = hazard ratio. 95% CI = 95% confidence interval. 
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Table 1

Parameter Estimate r.s.e. (%) p-value

Model without
covariates

logαpop -6.34 12.6
logµpop -26.8 3.68
σ 0.542 28.4
ωα 3.37 36.4
ωµ 3.78 15.9

Model with
covariates

logαpop -9.01 10.8
βKi67,α 0.093 29.6 0.001
βCD44,α 0.017 57.7 0.083
logµpop -25.9 4.4
βEGFR,µ 0.053 38.1 0.009
σ 0.606 24
ωα 2.75 22.1
ωµ 3.03 20.5



Table 2

Algorithm AUROC Accuracy Sensitivity Specificity PPV NPV F1

5 years

Mechanistic model 0.73 0.68 0.75 0.67 0.19 0.96 0.30

Random survival forest 0.73 0.69 0.64 0.70 0.18 0.95 0.28

Random forest 0.75 0.66 0.71 0.66 0.18 0.96 0.28

Logistic regression 0.75 0.83 0.42 0.87 0.24 0.94 0.31

k-nearest neighbor 0.62 0.91 0.02 1.00 0.41 0.91 0.05

Gradient boosting 0.71 0.90 0.11 0.98 0.36 0.92 0.17

Support vector machine 0.64 0.87 0.09 0.95 0.15 0.91 0.11

Cox 0.71 0.72 0.66 0.73 0.20 0.95 0.31

10 years

Mechanistic model 0.67 0.67 0.62 0.68 0.30 0.89 0.41

Random survival forest 0.69 0.62 0.71 0.60 0.28 0.90 0.41

Cox 0.65 0.65 0.61 0.65 0.28 0.88 0.39
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Figure S2. Partial dependence plots of the random forest predicted distant metastasis-
free survival as a function of the top five predictors according to the minimal depth 

ranking.  
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Figure S3. Distant metastasis-free survival predictions of the mechanistic model 
and Kaplan-Meier estimates with 95% confidence intervals stratified by values of 
the primary tumour size (diameter) at diagnosis



Figure S4. Predictions of the mechanistic model for individual patients
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Patient 238
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Patient 70

Patient ID Tumor size (mm) Ki67 (%) EGFR (%) CD44 (%) Observed TTR (cens) Predicted TTR Prediction error (days)

56 7 55 80 0 1435 (1) 799 636
230 27 27 0 90 1290 (1) 2276 986
525 10 50 50 0 2034 (1) 1057 977
70 10 45 0 0 6457 (0) +∞ -



Figure S5. Prediction of 5-years metastatic relapse using machine 
learning classification algorithms



Figure S6. Calibration plots for the Cox model with the five covariates 
selected through the RSF analysis 
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Patient 224 Patient 358

Tumor diameter (mm) 26 15
Ki67 (%) 40 52
EGFR (%) 0 80
CD44 (%) 0 0

α̂
i 0.00776 0.0309

µ̂
i 3.71× 10−12 1.72× 10−10

Observed TTR (years) 4.9 3.1
Predicted TTR (years) 6.2 2.0
Prediction error (years) 1.3 1.1
Pre-surgical history (years) 17.3 3.7
Number of mets at diagnosis 21 35

Table S1: Covariates and resulting inferred parameter values for individual predictions. TTR = 
time-to-relapse



Table S2: Cox regression using the first five covariates selected by minimal depth with the 
random survival forest model.

HR 95% CI p-value

Ki67 1.02 [1.01, 1.03] 1.8 · 10−5

Tumor size 1.01 [0.99, 1.03] 0.33
Age 0.99 [0.98, 1.01] 0.43

EGFR 1.01 [1.00, 1.02] 0.04
CD44 1.00 [1.00, 1.01] 0.48


