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Abstract8

Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the9

body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior10

of the composite is assumed to be hyperelastic to match with the physiological behavior of the native11

tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior12

of the composite regarding the tissue nature and the textile properties would accelerate the choice of the13

appropriate knit.14

We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced15

by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple16

micro or meso-structural observations with mechanical considerations. Knitted fabric composites display17

oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical18

behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer.19

This work focuses on the development of a new directional model for the mechanical representation of20

anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network21

of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on22

reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction23

capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite24

in uniaxial tension.25

Keywords: composite, knitted fabric, rubber-like materials, anisotropy, network model, hyperelasticity,26

uniaxial tension, strain energy density, constitutive modeling27

Introduction28

Because their physical and mechanical properties may be close to the soft biological tissues, textile29

implants are widely used for medical applications [1]. Since the 1960s [2], the use of a textile reinforcement30

for the treatment of abdominal hernia has become popular, leading to an improvement in the surgical cure [3]31

and its success rate. The use of meshes has been then extended to various soft tissues reinforcement: for32

example vascular, abdominal [4] or even pelvic surgery [5]. Knitted fabrics are foremost preferred because33

they are highly flexible and do not easily fray [6], they also offer a broad range of structures and associated34

mechanical behaviors.35

Following the implantation, the healing process of the biological tissues in contact with the textile36

implant, takes place, going together with the growth and colonization of scar tissues around the mesh [7].37

A new composite made of the implant, the native and healed tissues replaces the initial native tissues and38
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should provide a non-pathological physiological behavior. In order to design the appropriate pattern, the39

development of new knitted fabrics goes usually through a “trial and error” process, combined with extensive40

animal studies. In order to shorten the progress towards the adapted textile - i.e. a textile that provides an41

adequate mechanical behavior to the composite, one needs to better understand and model the influence of42

the mesh on the mechanical behavior of the composite.43

Soft connective tissues can support large deformations, and are supposed to be nearly incompressible44

due to their high water content [8, 9, 10, 11, 12]. According to their role in the body, they might present a45

different anisotropy ratio: from highly anisotropic, e.g. the abdominal rectus sheaths and linea alba [13, 14],46

to quasi isotropic, as illustrated by Rubod et al. [15] for the vaginal tissues. The mechanical behavior of47

such materials can be expressed in the frame of hyperelasticity in a way similar to rubber-like materials [11].48

Knitted textiles, on the other hand, are highly porous structures made from the patterned and periodic49

interlooping of yarns. They usually display large deformations and a non linear behavior. In an attempt to50

model the mechanical behavior of the composite constituted of a knitted mesh and a rubber-like material,51

the modeling method requires to manage anisotropic and hyper-elastic behavior.52

Microscale models are frequently used to represent the mechanical behavior of knitted fabric compos-53

ites [6, 16, 17, 18]. The main literature focuses on knitted composites in the linear elasticity framework,54

see amongst others [19, 20, 21]. Huang et al. [22] developed a micromechanical model for the modeling of a55

polyurethane matrix reinforced with an interlock knitted fabric. He was able to represent an anisotropic and56

non linear mechanical behavior in two directions ; even if it appears that the modeling was not completely57

in agreement with the experimental data in one of the two tested directions. The micromechanical modeling58

approach relies on the definition of a unit cell, or a representative volume element, which comes down to59

the yarn loop. The aforementioned study focused on a plain knitted fabric. For meshes and more intricate60

knit patterns, the unit cell is not trivial to define, and tends to increase the computation time and number61

of modeling parameters, which could be a limitation to its application.62

Micro-macro homogenization schemes [23, 24, 25] are able to represent the mechanical behavior of non63

linear composites. However, the large number of mechanical parameters, as well as interaction and bound-64

ary conditions, increase CPU-time and may limit their use. Simple approaches with a limited number of65

parameters are often preferred for hyperelastic material modeling. These models are based on macroscopical66

energy densities. In the literature, one finds two main types of strain energy densities, whether applied to67

rubber-like or biological materials. The first class consists of invariant based strain energy densities, either68

isotropic [26, 27] or anisotropic [28, 29]. Assuming the dry fabric is a continuous anisotropic material, a69

few models use a continuous macroscopical strain energy density to represent the non linear anisotropic70

behavior of the textile [30, 31, 32]. Yet, these continuous strategies raise some questions as the stress and71

strain measurements are not trivial for discrete structures. Moreover, a continuous model fails to report72

on the inner mobilities and realignment mechanisms occurring in the knitted fabric. In the composite, the73

elastomer presence impairs the natural mobilities of the textile. The strain energy density of the composite74

is therefore expressed from the two continuous energy densities of each material with an additional matrix-75

fiber energy density [33, 34, 35], depending on the embedding matrix mechanical properties and the textile76

fiber orientations. These models require generally an extended number of mechanical parameters, therefore77

a lot of experimental testing for their identification.78

Besides these phenomenological models, network approaches offer micromechanically based models for79

the modeling of hyperelastic materials [36, 37, 38, 39]. They consist in a micro-macro homogenization based80

on a physical description of the material structure. The material is described as a network of macromolecular81

chains. The global strain density is obtained through the integration over a unit sphere surface of elementary82

chain densities [37]. These models are often referred to as micro-sphere [40] or directional models [41].83

Different discrete integration schemes [42, 43, 44, 45] have been used over the years to simplify the84

computation. These models can represent the Müllins induced anisotropy, the softening process along85

specific directions for rubber-like materials [41, 46, 47, 48, 49]. Using an enriched micro-sphere approach,86

Raina and Linder [50] modeled the mechanical behavior of non woven materials. In their approach, fibers87

behave as linear isotropic materials. Taking into account the re-orientation variation and initial undulation88

of the fibers in a network model leads to an accurate representation of the mechanical behavior of non-woven89

samples under different solicitations.90
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Applications are also numerous for biological tissues [51, 52, 53, 54, 12]. Brieu et al. [12] presented an91

adapted version of this approach to model the mechanical behavior of isotropic connective tissues, with92

respect to the elastin and collagen fibers orientations, mechanical properties and volume fractions. Alastrué93

et al. [53, 55], Sáez et al. [56] worked with a microsphere approach to model the behavior of blood vessels :94

the use of different orientation distribution functions (ODF), based on the tissue microstructure, allows to95

define and weight preferential anisotropy directions.96

Since this formalism is already used for the modeling of oriented hyperelastic materials and fibrous97

materials, we propose in this study an extended approach for modeling the mechanical behavior of anisotropic98

knitted fabric reinforced elastomers. Combining textile architectural considerations with the mechanical99

properties of the two constituents, this rather “meso”-sphere approach is able to model the anisotropic100

mechanical behavior of the composite. In the present paper, the initial microstructure defines a Lagrangian101

direction network, the anisotropy is induced by modifying the mechanical properties of each direction with102

regards to its constituent, i.e. if it belongs to the fabric or the matrix part of the composite.103

The first section details the knitted fabric reinforced elastomer composites manufactured and studied104

in this work and briefly states the experimental results obtained after mechanical testing. The second105

part focuses on the modeling framework: the strain energy density is built according to the material’s106

architecture. The last part of this paper validates the model, comparing the modeled and experimental107

behavior of the aforementioned composites. The predictive abilities of the mechanical model are finally108

assessed: the mechanical response of the composite is extrapolated from the mechanical behavior of its109

constituents.110

1. Experiments - Knitted fabric composites111

1.1. Materials112

For the purpose of this study, composite plates were made of knitted fabric reinforced elastomer resins.113

The composites consist in 7 mm thick plates, where the fabric is embedded in the median plane of the114

matrix. Textile thickness ranged from 0.27 mm to 0.56 mm according to norm NF-EN-5084 [57], allowing115

at least 3.2 mm of plain elastomer matrix in the composite on either side. Altogether, six composite plates116

were manufactured, combining two different knitted fabrics and three elastomer materials. In addition117

to the composite plates, pure matrix sheets of each elastomer material, with the same dimension, were118

manufactured. Composite constituents are described separately below.119

Three elastomer resins were chosen as bulk materials. In the following, they will be named respectively R120

(Essil 291, Axson Technologies), M (Sorta-Clearr 37 + 20 % Silicon Thinnerr, Smooth-on) and S (Dragon121

Skinr FX-Pro, Smooth-On). Their respective mechanical strain-stress responses under uniaxial tension are122

shown in Figure 1. The mechanical characterization exhibited as well the incompressibility and isotropy of123

these materials. Each one exhibits a quasi linear stress-strain relationship, easily modeled by a second-order124

Yeoh law [27]. Table 1 presents the mechanical properties of each resin.125

Two knitted fabrics with different patterns as well as mechanical apparent properties were chosen to126

manufacture the composites. Figure 2 illustrates the architectures of knitted fabrics T1 and T2. Each127

textile fabric (DYLCO, France) is manufactured from a 80 µm diameter monofilament polypropylene yarn.128

Average area densities of the fabrics are 48 g/m2 for T1 and 18 g/m2 for T2.129

The dry textile mechanical behavior is characterized under uniaxial tension according to norm NF-EN-130

13934-1 [58]. Five samples of 5 cm in width and 20 cm in length are cut along warp and weft directions and131

mechanically tested in uniaxial tension at a displacement speed of 20 mm/min.132

The mean force per unit width versus the elongation response is plotted for both textiles T1 and T2 in133

Figure 2 (a) and (b). It highlights the non-linearity as well as the anisotropy of the mechanical behavior134

between the two loading directions for each fabric, T1 anisotropy ratio being higher than T2
1.135

1Given that the deformation mechanisms in the dry textile and in the composite cannot be easily correlated to each other,
the experimental data gathered on the dry textile are not used for the modeling approach.
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Name
Mechanical parameters

C0 (MPa) C1 (MPa)
R 1.8× 10−1 2× 10−2

M 8.6× 10−2 3× 10−3

S 1.4× 10−2 7× 10−4

Table 1: Second-order Yeoh parameters for the elas-
tomer matrices

Figure 1: Stress vs strain mechanical answer for elastomer
resins R, M and S.

(a) (b)

Figure 2: Architecture and force per unit width vs deformation response under warp (red) and weft (blue) directions
of dry textiles T1 (a) and T2 (b)

1.2. Composite mechanical characterization136

Since the dry knitted meshes are anisotropic, composite samples are characterized in uniaxial tension137

along the two specific manufacturing directions. The loading directions are chosen to match with the warp138

and weft orientations of the textile. The displacement rate is set to 20 mm/min to meet textile normative139

standards (NF-EN-13934-1) [58]. Uniaxial tension tests are enhanced with cyclic loadings: the material is140

loaded at growing deformation levels and unloaded to 0.5 N. After a cycle, the sample is reloaded up to141
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the next deformation level, increased of 5 % for the composite and 10 % for the resin samples. Cycles are142

performed successively until the sample breaks or is severely damaged. Figure 3 details the loading path in143

terms of strain and force limits and global stress/strain response.144

(a) Cyclic loading path in strain and force
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(b) Cyclic loading stress-strain answer of composite
S+T1

Figure 3: Cyclic loading: (a) Force and strain control limits of the cyclic testing regarding time ; (b) Stress vs
strain behavior

Forces are measured with a 2 kN load-cell (sensitivity: 0.6 N). Video-extensometry is performed on the145

front of the sample: four black paint dots are dropped off on the sample surface, in order to compute both146

longitudinal and transverse deformations. Composites are punched in 5 cm length and 2 cm wide samples.147

These dimensions are considered to ensure the mechanical representativity of the material [59]. Thickness148

is measured with a caliper (precision : 0.02 mm) around 7 mm average.149

The experimental results, illustrated in Figure 3(b) for the composite S+T1, show the hysteresis between150

the loading and unloading parts as well as the discrepancy between the first and second load to a certain level151

of deformation. This softening phenomenon is known as the Müllins effect [60]. The hysteresis between load152

and unload is underlined in Figure 3(b): within the same color, solid and dotted lines stand respectively for153

the load and following unload. Similar observations are made on pure matrix samples or other composites.154

Diani et al. [61] proved, on a filled elastomer, that the viscous contribution appears to be less significant155

during an unloading phase than during a loading one. To ensure insignificant viscoelastic effects, it was156

therefore decided to only model the unload (dotted lines on Figure 3(b)). The identification of the proposed157

constitutive model is arbitrarily focused on the last unload curve, following the maximum stretch level, in158

order to model the behavior over the broadest range of deformations.159

2. Mechanical modeling160

Knitted fabrics present geometrical architectures. Due to the stiffness and anisotropy of the knitted161

fabrics, with respect to the isotropic elastomer resin, the mechanical properties of the newly formed composite162

come mainly from the fabric’s structure. It seems relevant to base the mechanical model on microstructural163

considerations: a new model based on the directional formalism was developed.164

2.1. Directional strain energy density165

Directional models were first developed for hyperelastic, rubber-like materials. Such materials come166

from the reticulation of long macro-molecular chains, organized in a three-dimensional complex network.167

Each chain, described by its own strain energy density contributes to the material, i.e. the macro-molecular168

network, strain energy density. Treloar and Riding [37] expressed the strain energy density of an ideal169
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continuous distribution of chains. The global energy potential is written as the integration of each elementary170

energy density over the unit sphere surface:171

W =
1

4π

∫∫
S

w(u)dΩ (1)

where the vector u = (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)) is defined by the spherical coordinates (θ, φ), and172

dΩ is the infinitesimal surface element dΩ = sin(θ)dθdφ.173

These models, developed for highly-deformable rubber-like materials, offer a wide-range of possibilities:174

isotropic or anisotropic behavior, strain softening (Müllins-effect), residual strains ...175

Analytical computation can be time-consuming. For this reason, discrete distributions with a finite176

number of directions were introduced: 3-chain model [36], 8-chain model [38], and larger numerical integra-177

tion schemes providing great precision of the estimated integrate [42]. In order to represent the possible178

anisotropy of the material behavior, new distributions based on the material preferential orientations were179

built up as well [41, 45].180

The discretized strain energy density is expressed as a function of the elementary strain energy density181

w of each material direction ui :182

W (F) =

n∑
i=0

ωiw

(
νi
||ui||

)
(2)

with ||ui|| the norm of the material direction ui, ωi the integration weight associated to direction ui on the183

sphere surface, and w the elementary strain energy density. The previous integration schemes with preset184

directions cannot be used in our specific case as they cannot relate to the architecture of our composite. A185

custom integration scheme over the sphere surface was designed. Directions are set on the sphere surface186

according to the microstructure. The sphere is tiled with nine node quadrangles, on which a quadratic187

Lagrangian function q is integrated. The integration weights of node i (associated with direction i) is188

obtained by assembling the contribution of all the elements, in a similar way to the finite element method.189

The scalar value νi represents the elongation seen by the chain in direction ui. It is computed according190

to :191

νi =
√
t(F.ui)(F.ui) (3)

where F is the macroscopic transformation gradient tensor.192

Directional models, designed for rubber-like material, are based on a non Gaussian statistical theory. The193

commonly used elementary density w requires the use of the inverse Langevin function [62]. Its expression194

depends on two physically relevant parameters : ni and
√
N i, respectively the ith chain density and limit of195

extensibility:196

w(νi) = niN ikT

[
βL(β) + ln

(
β

sinh(β)

)]
(4)

where β = L−1
(
νi
Ni

)
and L(x) = coth(x)− 1/x is the Langevin function.197

Even under an approximate form (Taylor expansion, Padé approximant [63]), the use of non Gaussian198

statistics in the potential expression carries a strong interdependency of the two parameters ni et N i. As a199

result, it can impair the mechanical characterization.200

The physical interpretation of
√
N i implies that this quantity is strictly larger than one : otherwise no201

sooner had the traction test begun than the sample chains already broke. In the specific case of the textile202

reinforced composite, a simplified parameter identification on the experimental data of R+T1 composite was203

run. Assuming the isotropy of the composite, i.e. the same mechanical parameters for each chain within the204

material, mechanical parameters ni = n and
√
N i =

√
N were optimized to fit experimental data, leading205

to a non physical limit of extensibility
√
N < 1. Figure 4 shows the results of the optimization as well206

as the general shapes of stress evolution for admissible values of
√
N . To be able to fit the experimental207

data obtained and previously presented, this model has to allow for physically not admissible mechanical208

parameters.209
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Figure 4: Evolution of the modeled normalized isotropic stress where the elementary density depends of the inverse
Langevin function [62] with a constant chain density n and varying limit of extensibility

√
N . The experimental and

modeled composite R+T1 stress evolution stand in red dots and straight line respectively for the comparison.

The modeling law fails to represent properly the mechanical behavior of textile composite. It turns,210

at the best, into a phenomenological model with non physical parameters. In this specific case, it seems211

relevant to use a novel elementary potential to replace the inverse Langevin function. Similar to Carol et al.212

[64] or Lion et al. [65] with a directional Mooney-Rivlin chain density, the elementary energy density is213

inspired by a generalized Yeoh law [27], therefore expressed as:214

w(νi) =

n∑
k=1

aik(νi − 1)k (5)

The aik coefficients are understandable as rigidities and expressed in MPa. Unlike the ni and N i they215

are fully independent.216

According to the incompressibility assumption, the first Piola-Kirchhoff stress tensor is written:217

τ =
∂W

∂F
− pF−T (6)

where p is the Lagrange multiplier, or hydrostatic pressure. The partial derivative of the strain density218

regarding F is expressed as:219

∂W

∂F
=

n∑
i

ωi

(∑
k

k(aik(νi − 1)k−1)

)
Fui ⊗ ui

νi
(7)

For anisotropic materials, in order to avoid any residual stresses in an undeformed state, the partial220

derivative
∂W

∂F
is replaced by [41]:221

∂W̃

∂F
=
∂W

∂F
− ∂W

∂F

∣∣∣∣∣
F=1

(8)

2.2. Microstructure representation222

Both elastomers and textile composites are going to be modeled with the directional model, developed223

in Subsection 2.1. To model the mechanical behavior of the composite, one needs to set the material224

discretization and integration network and determine the mechanical properties of each direction.225
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The network describing the material has two main goals: first, to perform the numerical integration over226

the sphere surface, and second, to induce possible privileged anisotropy directions. The directions set relies227

on the material microstructure or architecture. For isotropic materials, like silicon resins, the orientation228

distribution can be randomly chosen on the sphere surface. On the contrary, for an anisotropic composite,229

it is mandatory to introduce specific anisotropy directions, depending in the present study on the knitted230

textile microstructure.231

For isotropic materials, the integration scheme relies on a network of 200 directions, evenly distributed232

on the sphere surface. The discretized sphere is plotted in Figure 5. The same directions set will be used233

for the modeling of any silicon resin. In an isotropic material, each direction displays the same mechanical234

parameters ak, as mentioned in Equations 5 and 7. Pure matrix directions mechanical parameters can be235

obtained from full matrix sample characterization.236

X

−1.0−0.5
0.0

0.5
1.0

Y
−1.0
−0.5

0.0
0.5

1.0

Z

−1.0

−0.5

0.0

0.5

1.0

Figure 5: Example of the distribution of the material and integration directions for an isotropic material

On the contrary, textile parameters cannot be determined from dry textile samples. Textiles are discon-237

tinuous materials, the cross-section is thus not trivially measured or computed. The stress-strain relationship238

cannot be easily obtained. Moreover, a continuous strain energy density does not seem appropriate for mod-239

eling the textile mechanical response. Therefore, the fabric mechanical properties will be identified within240

the composite thanks to the directional approach and the discretization of the material directions.241

In order to induce the anisotropy related to the textile embedded in the matrix, specific material directions242

can be differentiated, by applying variable mechanical parameters. The textile, inducing the anisotropic243

behavior of the composite, is located in the median plane of the sample. Outside this plane, the composite244

is constituted of pure matrix. Therefore, to describe a composite, two directions families will be used:245

“pure fiber” directions, along the textile fabric architecture, and “pure matrix” directions elsewhere. This246

distribution assumes that each direction family is independent from the other. More importantly, it means247

that the textile mechanical properties are independent from the matrix used for manufacturing of the248

composite.249

For reasons of symmetry, either in the T1 or T2 composite, the material is described with three types of250

directions, illustrated in Figure 6:251

- “pure fibers” directions located in the median plane following the textile principal orientations. For252

reasons of symmetry, two types of directions are picked out : Type I fibers, illustrated in blue and253

Type II fibers, highlighted in red in Figure 6(a) and (b) ;254

- and “pure matrix” directions, N directions, featured in black (Figure 6(c), and (d)), evenly distributed255

in the median plane between the fibers’ directions, and outside on the rest of the unit sphere surface.256
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(a) Red and blue lines outline the two fibers family in
T1, respectively along 90◦ and 30◦ to the weft direction

(b) Red and blue lines outline the two fibers family in
T2, respectively along 0◦ and 55◦ to the weft direction

(c) (d)

Figure 6: (a) and (b) Close view of the median plane fibers directions respectively for textile T1 and T2. (c) and
(d) 3D representation of the composite directions distributed to evenly discretize the sphere surface.

2.3. Model implementation257

Since the transformation gradient tensor components are not all measurable (particularly the in-plane258

cross-sectional shear strains) in the anisotropic composite, the volume variation cannot be estimated. In259

order to simplify the problem, we assume that the textile does not impair the incompressibility of the260

matrix ; the composite is therefore assumed to be incompressible.261

Since the transverse deformation along the thickness of the sample is not known, the gradient transforma-262

tion tensor is estimated as : F = diag(F11, F22,
1

F11F22
) to ensure the incompressibility of the material [41].263

In order to speed up the mechanical parameter identification, we assume a more simple elementary264

density than the general form, expressed as :265

wi = ai0(νi − 1) + ai4(νi − 1)5 (9)

where ai0, ai4 and νi are respectively the mechanical parameters and the deformation along Direction i,266

computed from Equation 3. Alternative densities with intermediate polynomial orders were tested but267

did not significantly change the mechanical behavior modeling, while the computation time during the268

mechanical parameters identification highly increased. The density is therefore simplified and reduced to269

only two polynomial orders, which were considered to be sufficient for the representation of the mechanical270

behavior.271

For silicon matrix samples, one set of two parameters {am0 , am4 } is consequently enough to model the272

entire behavior of the material. In a composite sample, “pure matrix” directions are assumed to act like the273

directions of the full resin samples. Similarly to Alastrué et al. [53], “pure fiber” directions are supposed274

to behave like cords: a fiber direction contributes to the overall stress only when submitted to a traction275

solicitation. If a fiber direction undergoes compression loading, the direction will behave as if it were made276

of pure matrix.277

Under small deformations, the embedded textile fibers are supposed to realign with the traction direction.278

Composites seem indeed to behave like full elastomer samples in that range, as suggested for composite M+T1279
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Figure 7: Mechanical stress response in uniaxial tension of matrix M and composite M+T1 under warp and weft
directions

in Figure 7. Therefore, the preponderant mechanical parameter in small deformations is set equal to the280

matrix : afiber0 = am0 . The strain energy density of a fiber direction is written as a function wfi depending281

on one fiber mechanical parameter af4 :282

wfi =

{
am0 (νi − 1) + af4 (νi − 1)5 when F.ui > 1 (fiber direction in traction)
am0 (νi − 1) + am4 (νi − 1)5 when F.ui ≤ 1 (fiber direction in compression)

(10)

The optimization of the mechanical parameters is obtained through the minimization of the error between283

the experimental and modeled stress tensor components. The minimization is performed with a genetic284

algorithm, the differential evolution algorithm [66] that finds the global minimum of a multivariate function,285

available in Python library Scipy [67].286

3. Results287

With the help of the modeling framework, set in the previous section, and experimental data on full288

matrix and composite samples, the mechanical properties of respectively “pure” matrix and “pure fibers”289

directions are determined. The model implementation and optimization is performed in Python with the290

help of the Numpy and Scipy libraries [67, 68].291

3.1. Mechanical properties identification292

Table 2 and Figure 8 summarize the results of the identification process of the pure matrix parameters.293

The fit stands close to the experimental results whichever resin sample. The directional strain energy294

density is still relevant for isotropic materials as it does not increase the number of mechanical parameters295

in comparison with a second-order Yeoh law.296
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Resin
Mechanical parameters
am0 (MPa) am4 (MPa)

R 2.83 6.88
M 1.84 0.54
S 0.31 0.04

Table 2: Identified mechanical parameters of the direc-
tional model for each resin.

Figure 8: Experimental and modeled plots of the stress-
strain behavior of resins R, M and S under uniaxial tension.

297

According to the proposed approach, the “pure matrix” mechanical properties in the composite are the298

same as in the full-matrix samples. Therefore, only the “pure fibers” mechanical properties needs to be299

identified in order to model the mechanical behavior in warp and weft directions. The textile mechanical300

parameters should remain identical whatever the silicon resin. One set of mechanical parameters, {aI4, aII4 }301

per fabric should allow the modeling of the three composites, made with the relevant textile, in warp or302

weft orientation of the solicitation. The unique set is obtained while minimizing at the same time the error303

between modeled and experimental data for the three composites and two orientations of solicitation.304

Figures 9 and 10 display the experimental and modeled plots after the optimization of fabric T1 and T2305

mechanical parameters respectively.306

Figure 9: Experimental (dotted) and modeled (straight lines) plots of the mechanical behavior in uniaxial traction
in warp and weft orientations of composites made of textile T1 and silicon resins : from left to right R, M and S.
The textile parameters are aI

4 = 6.9× 102 MPa and aII
4 = 2.0× 103 MPa.

For each textile, the minimization converges toward a unique set of mechanical coefficients {aI4, aII4 },307

that is able to represent both the anisotropic behavior within the same composite and, according to the308

embedding resin, the shape of the mechanical answer of the three materials. Mean relative errors between309

the modeled and experimental stress signal are quantified for each composite. Composites R+T1 and M+T1310

are well approximated with respective mean errors of about 13% and 11% along the warp direction and 7%311

or 9% along the weft direction. The modeling of composite S+T1 is less effective with mean relative errors312

around 30% in both directions.313
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Figure 10: Experimental (dotted) and modeled (straight lines) plots of the mechanical behavior in uniaxial traction
under warp and weft orientation of composites made of textile T2 and silicon resins : from left to right R, M and S.
The textile parameters are aI

4 = 1.4× 102 MPa and aII
4 = 7.5× 102 MPa.

The model identification shows similar efficiency and mean errors on composites reinforced with T2.314

Mean errors go up to 8% in both directions for R+T2 and M+T2 while reaching 30 to 35% respectively315

along warp and weft directions in S+T2. Figure 10 shows indeed the non-ideal fit of the composite S+T2.316

The fiber parameters were identified by minimizing the error between the modeled and experimental stresses317

of the three composites at the same time. The contributions to the error function are much more important318

given the stress levels for the composites R+T2 and M+T2 than for S+T2, given the lower rigidity of resin319

S. That could explain the non-ideal fit. This would also explain the poorer fit in composite S+T1 compared320

to R+T1 and M+T1. In addition, the weft and warp direction experimental responses showed opposite321

behavior compared to composites R+T2 and M+T2. This is another bias that could be responsible for the322

poor modeling fit.323

With such polynomial directional law, the mechanical behavior of structured anisotropic materials is rep-324

resented accurately, based on a relevant description of the material microstructure and only two mechanical325

parameters.326

3.2. Prediction327

Method328

The previous sections, dealing with the parameter identifications, highlighted the independence of the329

silicon and textile mechanical parameters for composites made of the same textile and different bulk elas-330

tomers. It would be interesting, knowing the textile and a new silicon separately, to predict the behavior of331

the composite manufactured from these two components.332

The textile fiber parameters can only be identified with the help of a composite constituted of the fabric333

embedded in an elastomer bulk. The model formalism is indeed not appropriate for non-continuous material334

such as dry knitted fabric.335

In a prediction context, only the mechanical parameters aik and the evolution of the longitudinal strain336

F11 are known a priori. In order to predict the stress response τ11 under uniaxial tension according to337

Equation 6, additional input variables are required to run the model: the other diagonal components of the338

gradient transformation tensor F, precisely how F22 and F33 evolve regarding the axial stretch, and finally339

the Lagrange multiplier p, to enforce incompressibility.340

From the diagonal form of the gradient transformation tensor and the incompressibility assumption, the341

expression of F33 only depends on F11 and F22: F33 =
1

F11F22
. The stress tensor, modeled according to342

Equation 6, leads to a system of three equations and three unknown variables: τ11, the axial stress, F22 the343

transverse strain, and p the Lagrange multiplier. In a first step, the transverse deformation F22 and p can344
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be obtained from the resolution of τ22 = τ33 = 0 in uniaxial tension:345 
τ22 = 0 =

n∑
i=0

(
ai0 + 5ai4(νi − 1)4

) F22u
i
2

2νi
− p

F22

τ33 = 0 =
n∑
i=0

(
ai0 + 5ai4(νi − 1)4

) F33u
i
3

2νi
− p

F33

(11)

with νi =
√

(F11ui1)2 + (F22ui2)2 + (F33ui3)2346

Knowing F22 and p, the longitudinal stress is estimated in a second step:347

τ11 =

n∑
i=0

(
ai0 + 5ai4(νi − 1)4

) F11u
i
1

2νi
− p

F11
(12)

This two-step prediction method is applied on composites made from textile T1 or T2. In the following,348

the fiber mechanical parameters will be identified either from a single composite or two composites at the349

same time rather than on the three composites simultaneously. These parameters are then used to predict350

the behavior of the remaining one(s).351

Results352

The mechanical parameters of T1 fibers are identified only in composites S+T1 and R+T1 separately in353

order to model composite M+T1. Their values might vary slightly depending on the composite used for the354

characterization, as shown in Table 3. Fitting curves, displayed on Figure 11(a) and (b) seem closer to the355

experimental results as the optimization is indeed less constrained than in Subsection 3.1.

Composite
Mechanical parameters
aI4 (MPa) aII4 (MPa)

R+T1 785 1781
S+T1 430 1796

Table 3: Mechanical parameters of the textile fiber directions as identified in composites R+T1 and S+T1

356

(a) (b)

Figure 11: Experimental and modeled curves of composites S+T1 (a) and R+T1 (b).

The prediction can be achieved, while performing the two-step process described in the previous para-357

graph, for each parameter set. Trend lines are therefore computed, creating a prediction range of the358
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composite M+T1. As seen in Figure 12, the prediction range surrounds the experimental results. The359

identification of the fiber mechanical parameters on R+T1 and S+T1 concurrently may fairly improve the360

predicted response. The conjectured warp and weft behavior, plotted in straight lines on Figure 12, stands361

closer to the experimental results.362

Figure 12: Prediction range of the mechanical behavior of composite M+T1 in uniaxial tension under warp and
weft directions.

The robustness of the prediction is assessed when permuting the identified and predicted composites.363

Figure 13(a) and (b) shows the predicted behavior of composites R+T1 and S+T1 respectively. While the364

prediction abilities are satisfying when looking at the more rigid composite, they are not as good for the365

softest composite S+T1. This could come from the higher gap in the mechanical properties of the elastomer366

resin S compared to the two others. This is the main limitation: the model can be used as an effective367

predictive tool when the embedding material is chosen in a close range to the resin of the known composites.368

(a) (b)

Figure 13: Prediction range of the mechanical behavior of composites R+T1 (a) and S+T1 (b) in uniaxial tension
under warp and weft directions.

In a similar way, the predicted behavior is computed for composite constituted of textile T2. The369

predicted behavior is compared to the experimental results in Figure 14. In a similar way, a modeled range370

surrounds the experimental data, showing the efficiency of the prediction.371
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Figure 14: Prediction range of the mechanical behavior of composite M+T2 in uniaxial tension under warp and
weft directions.

4. Conclusion372

A simple directional model was developed for the modeling of knitted textile reinforced composites.373

The directional formalism takes into account privileged directions of anisotropy based on a description of374

the microstructure. The polynomial directional elementary density keeps the physical meaning of every375

parameter: each direction is associated with its own rigidity parameters. The present study focused on the376

validation of this model for two different textiles embedded in rubber-like materials. The model is able to377

correctly represent the stress response of composites made with two textiles in uniaxial tension. It can also378

be used as a predictive tool, when both the matrix and textile mechanical parameters are known. However,379

in order to provide a reliable prediction, it seems necessary to study a resin material in the range of those380

used during the identification. Without additional data or observations, this remains the main limitation of381

the present study.382

The results obtained in terms of identification or prediction were less effective for the softer composite.383

The deformation mechanisms of the composite on the one hand, and in the knitted fabric on the other384

hand, were not investigated. Full-field measurements during the test could provide a better understanding385

of the mobilities, fiber rearrangement or deformations occurring during the loading. Information about the386

deformation mechanisms should also help to refine the modeling approach.387

In the present work, the interactions between the fiber directions, due to the interlooping of the yarn388

and structure of the textile, were neglected. Using coupling parameters might be an improvement for389

the representation of the mechanical behavior of the composite, especially when the matrix leads to large390

deformations. It may also be mandatory when using this model in different loading configurations.391

The modeling approach was indeed only validated on uniaxial loading cases. The uniaxial loading392

was considered because of its wide use in biological tissue testing. However, besides its poor mechanical393

representativity with regards to physiological solicitations, uniaxial tension fails to represent the coupling394

effects that might happen during multi-axial testing. Further work should focus on the modeling or prediction395

of different loading conditions: multi-axial, or additional loading directions under uni-axial tension for396

example.397

The last perspective of this work is aimed at developing a damage model: the aforementioned composites398

presented a damageable behavior with a strong Müllins effect. The cyclic loading results should also be used399

to improve the model with damage parameters capable to model the evolution of the residual stress evolution,400

as well as the rigidity loss with the maximum strain seen by the material.401
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